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We report on the first calculation of the longitudinal and transverse light front distribution amplitudes of
the D� and D�

s mesons and their first four moments. As a by-product, we also obtain these distribution
amplitudes for the ρ, ϕ, K�, and J=Ψ mesons and confirm a prediction of lattice QCD for the vector kaon:
while the longitudinal distribution amplitude is almost symmetric, the transverse one is oblique implying
that the strange quark carries more momentum.
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I. MOTIVATION

In relativistic quantum field theory the infinite degrees of
freedom do not allow for a straightforward definition of a
particle’s wave function as in quantum mechanics. In
particular, in quantum chromodynamics (QCD) the funda-
mental quark and gluon fields are not even observable. On
the other hand, the bound states of antiquark-quark pairs
can be described by a Bethe-Salpeter wave function, the
closest relative to a wave function in quantum mechanics.
Still, in the instant-form of QCD dynamics these wave
functions are defined in an infinite-body field theory in
which particles interact and their number is not conserved.
One could overcome this difficulty if the hadron’s light-

front wave function was known exactly, though realistic
calculations of hadronic bounds states in the front form are
a challenging task [1]. A different path to a sensible
definition of a wave function in quantum field theory is
drawn by projecting the Bethe-Salpeter wave function in
the instant form on the light front. Depending on the
projection chosen this yields the hadron’s light-front wave
function or its light-front distribution amplitude (LFDA).
The latter describes the longitudinal momentum distribu-
tion of valence quarks in the limit of negligible transverse
momentum. While they are nonmeasurable objects, they
are widely being applied in hadron and flavor physics.
For instance, the asymptotic LFDA of the pion,

ϕðx; μÞ ¼μ→∞
6xð1 − xÞ, enters in the expression of its elastic

electromagnetic form factor at very large momentum
transfers [2,3]. Since the LFDAs are scale-dependent and

become broader at smaller momenta, they directly influ-
ence the momentum dependence of the elastic form factors
in momentum regions accessible in collider experiments
[4–6]. Weak B decays into two light(er) mesons are
frequently treated as hard exclusive processes in which
the decay amplitude is factorized into perturbative short-
distance contributions and a nonperturbative transition
amplitude. Here, too, the LFDAs enter both the hard-
scattering integrals and the heavy-to-light transition ampli-
tudes [7–11]. More recently, the exclusive electroweak

production of Dð�Þ
s mesons on an unpolarized nucleon was

investigated in the framework of collinear QCD factoriza-
tion which also involves the heavy meson’s LFDA [12–15].
Beyond its numerous applications in hard exclusive

processes, these one-dimensional distributions provide a
practical probability interpretation of partons, as in this frame
the particle number is conserved. Namely, the distributions
ϕðx; μÞ express the light-front fraction of the hadron’s
momentum that a valence quark carries. Another compelling
feature is that one can observe the qualitative and quantitative
impact of dynamical chiral symmetry breaking (DCSB) on
the LFDA at a given scale μ. For instance, the distribution
amplitude ϕπðx; μÞ of the pion is a concave function which
clearly evolves from its asymptotic μ → ∞ form to a much
broader distribution [16]. Similarly, the kaon’s distribution
amplitude, ϕKðx; μÞ, is not symmetric about the midpoint
x ¼ 1=2, which expresses nothing but SU(3) flavor sym-
metry breaking, and that asymmetry is exacerbated with
increasing mass difference of the quarks [17,18].
The question arises of howDCSB impacts antiquark-quark

states in other JPC channels and an extension to the vector
mesons is natural. Moreover, the LFDA of vector mesons
arises in the collinear factorization of weak B-decay ampli-
tudes [19] and in diffractivevector-meson production [20,21].
Within the combined framework of the Dyson-Schwinger
equation (DSE) and the Bethe-Salpeter equation (BSE) [22]
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the LFDAs of the ρ andϕmesonswere calculated inRef. [23]
and later the LFDAs of heavy quarkonia were obtained in
Ref. [24]. In here, using a kindred DSE and BSE framework,
we extend earlier work on D and Ds distribution amplitudes
[18] to those of their vector partners and make predictions for
the twist-2 LFDA of the D� and D�

s mesons considering the
two-quarkFock-state of their light frontwave function.Along
the way, we compute the LFDA of the ρ, K� ϕ, and J=Ψ
mesons and compare themwith the distribution amplitudes of
other approaches [20,21,24–27].

II. TWIST-TWO DISTRIBUTION AMPLITUDES

A vector meson with total momentum P and mass mV ,
P2 ¼ −m2

V , made of a quark and an antiquark of flavors f
and g is described by four twist-two distribution ampli-
tudes, though only two of them are independent at leading
twist as a consequence of a Wandzura-Wilczek type of

relation [25]. The two LFDAs we consider, ϕk
Vðx; μÞ and

ϕ⊥
V ðx; μÞ, describe the fraction of total momentum on the

light front, x ¼ kþ=Pþ ¼ ðk0 þ kzÞ=ðP0 þ PzÞ, carried by
the quark in longitudinally and transversely polarized
mesons, respectively. They can be extracted from the
Bethe-Salpeter wave function, χfgVνðk;PÞ, with the follow-
ing projections onto the light front [23,24]:

fVϕ
k
Vðx; μÞ ¼

mVNcZ2
ffiffiffi

2
p

n · P
TrD

Z
Λ d4k
ð2πÞ4 δðn · kη − xn · PÞ

× γ · nnνχ
fg
Vνðk; PÞ; ð1Þ

f⊥Vϕ⊥
V ðx; μÞ ¼ −

NcZT

2
ffiffiffi

2
p TrD

Z
Λ d4k
ð2πÞ4 δðn · kη − xn · PÞ

× nμσμρO⊥
ρνχ

fg
Vνðk; PÞ; ð2Þ

where Nc ¼ 3, n ¼ ð0; 0; 1; iÞ is a lightlike vector and
n̄ ¼ 1

2
ð0; 0;−1; iÞ its conjugate with n2 ¼ n̄2 ¼ 0, n · P ¼

−mV , n̄ · P ¼ −mV=2, and n · n̄ ¼ −1, where we use the
Euclidean metric. In Eq. (2) the Dirac commutator σμν is
contracted with the tensor [28],

O⊥
ρν ¼ δρν þ nρn̄ν þ n̄ρnν: ð3Þ

In Eqs. (1) and (2), χfgVνðk;PÞ ¼ SfðkηÞ Γfg
Vνðk; PÞSgðkη̄Þ is

the projected wave function, where Γfg
Vνðk;PÞ denotes the

Bethe-Salpeter amplitude (BSA) and SfðkηÞ and Sgðkη̄Þ are
respectively the quark and antiquark propagators with
momenta kη ¼ kþ ηP and kη̄ ¼ k − η̄P. The details of
their calculation, solving numerically the DSE for the
quarks of a given flavor and the BSE for a vector meson,
in particular the D and D� mesons, are provided elsewhere
[18,29,30]. The parameters ηþ η̄ ¼ 1 define momentum
fractions and Λ is an ultraviolet regularization mass-scale;
no observables can depend on η, η̄, andΛ owing to Poincaré
covariance. Furthermore, Z2ðμ;ΛÞ is the wave-function

renormalization constant and ZTðμ;ΛÞ is the tensor-vertex
renormalization constant of the quark. Both constants as
well as f⊥V depend on the renormalization scale μ, whereas
fV is renormalization-point independent and measures the
strength of the ρ0 → eþe− decay amplitude.

The expressions for ϕk
Vðx; μÞ and ϕ⊥

V ðx; μÞ in Eqs. (1)
and (2) are not amenable to straightforward numerical
integration. Instead, one computes Mellin moments [16],

hxmik;⊥ ¼
Z

1

0

xmϕk;⊥
V ðx; μÞdx; ð4Þ

from which one can reconstruct the distribution amplitudes
on the domain x ∈ ½0; 1�. The BSA normalization ensures
that hx0ik ¼ hx0i⊥ ¼ 1which in turn defines the vector and

tensor decay constants, fkV and f⊥V .
Integrating both sides of Eqs. (1) and (2) and

applying the Dirac-function property
R
1
0 x

mδða − xbÞdx ¼
am

bmþ1 θðb − aÞ, leads to the expressions,

hxmik ¼
mVNcZ2

ffiffiffi

2
p

fV
TrD

Z
Λ d4k
ð2πÞ4

ðn · kηÞm
ðn ·PÞmþ2

γ ·nnνχ
fg
Vνðk;PÞ;

ð5Þ

hxmi⊥ ¼ −
NcZT

2
ffiffiffi

2
p

f⊥V
TrD

Z
Λ d4k
ð2πÞ4

ðn · kηÞm
ðn · PÞmþ1

× nμσμρO⊥
ρνχ

fg
Vνðk; PÞ: ð6Þ

With this,we are in principle able to computeMellinmoments
to arbitrary order m. We do so by employing the numerical
solutions of the quark propagators for complex momenta
defined by the parabolas, k2η ¼ k2 − η2m2

V þ 2iηmV jkjzk and
k2η̄ ¼ k2 − η̄2m2

V − 2iη̄mV jkjzk, where zk ¼ k · P=jkjjPj,
−1 ≤ z ≤ þ1, and of the BSA of the vector mesons [30].
That is, other than in Ref. [18], we do not rely on complex-
conjugate pole parametrizations of the propagators nor on
Nakanishi representations of the BSA, as the latter introduce
ambiguities when fitted to numerical solutions. The direct
integration comes at the price that we can only access
moments up tommax ¼ 4–6, as the numerical error becomes
significant for larger moments. These moments, though, are
sufficient to reconstruct the desired LFDA.
We proceed as in Refs. [16–18,23,24] and in the case of

the light vector mesons we use an expansion in terms of
Gegenbauer moments Cα

nð2x − 1Þ, which form a complete
orthonormal set on x ∈ ½0; 1� with respect to the measure
½xð1 − xÞ�α−1=2, in order to reconstruct their two indepen-
dent twist-two LFDAs (x̄ ¼ 1 − x):

ϕk;⊥
Vrecðx; μÞ ¼ N ðαÞ½xx̄�α−1

2

�

1þ
XN

n¼1

anCα
nð2x − 1Þ

�

: ð7Þ

This expansion is employed for neutral mesons as well as
for flavored mesons, which are not C-parity eigenstates.
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In case of the former, the odd components an vanish. In
fitting the calculated moments in Eqs. (5) and (6), we
consider, besides the coefficients an, the power α itself a
parameter rather than projecting on the α ¼ 3=2 basis. This
allows to limit the expansion to N ¼ 2 and considerably
simplifies the fits discussed below [16]. The heavy vector
mesons, i.e., the D�, D�

s , and J=ψ , are parametrized with a
different expression:

ϕk;⊥
Vrecðx; μÞ ¼ N ðα; βÞ4xx̄e4αxx̄þβðx−x̄Þ: ð8Þ

This functional form is more appropriate for a distribution
amplitude with a convex-concave-convex functional behav-
ior that tends to a δ-function in the infinite heavy quark
limit, as the use of an expansion, such as in Eq. (7), leaves
one no choice but to retain a large number of Gegenbauer
moments. A very similar functional expression is also
found when the Nakanishi weight function is extracted
from the quarkonia’s Bethe-Salpeter wave function [31].
The normalizations N ðαÞ and N ðα; βÞ in Eqs. (7) and (8)
can be found in Ref. [32].
We thus reconstruct the vector LFDAs by minimizing

the sum,

ϵk;⊥ ¼
Xmmax

m¼1

�
�
�
�

hxmireck;⊥
hxmik;⊥

− 1

�
�
�
�
; ð9Þ

where the moments hxmireck;⊥ are calculated using Eq. (4) and

the expansion in either Eq. (7) or Eq. (8), whereas hxmik;⊥
denotes the moments in Eqs. (5) and (6). It is useful to
contrast our predictions for the longitudinal and transverse
LFDAs with those obtained using other approaches,
namely with lattice QCD (LQCD) [26,27], QCD sum rules
(QCDSR) [25] and with earlier calculations in the DSE-
BSE framework (DSE) [23]. In order to do so we also
compute the moments,

hξ2mik;⊥ ¼
Z

1

0

ξ2mϕk;⊥
V ðx; μÞdx; ð10Þ

in terms of the difference of momentum fractions,
ξ ¼ x − ð1 − xÞ ¼ 2x − 1.

III. RESULTS

We begin with the light vector mesons and determine the

coefficients ak;⊥n of their Gegenbauer expansion via a least-
square fit of ϵk;⊥ (9) with the four moments hxi; hx2i;
hx3i; hx4i. We report their values and those of the corre-

sponding ak;⊥n of the ρ, ϕ and K� mesons in Table I and
compare the moments hξ2mik;⊥ (10) with other results in
Table II.
The LFDAs for the ρ and ϕ mesons are compared in

Fig. 1 with the prediction of a DSE-based calculation and
the LDFA reconstructed with moments from LQCD,
respectively. We infer that the distributions follow the
expected pattern: both LFDAs are symmetric about the

midpoint, x ¼ 1=2. However, the ϕk;⊥
ρ ðx; μÞ distributions

are broad while ϕk;⊥
ϕ ðx; μÞ tend to the asymptotic form

TABLE I. The first four Mellin moments, hxmik and hxmi⊥, of the light vector mesons and the coefficients of their
reconstructed Gegenbauer expansion (7). The errors on a1, a2 and α stem from the minimization.

hxik;⊥ hx2ik;⊥ hx3ik;⊥ hx4ik;⊥ ak;⊥1 ak;⊥2 αk;⊥

ρk 0.500 0.312 0.226 0.161 0.0 0.003� 0.038 0.908� 0.023
ρ⊥ 0.500 0.312 0.218 0.160 0.0 −0.136� 0.007 0.799� 0.006
ϕk 0.500 0.296 0.195 0.134 0.0 −0.372� 0.010 0.864� 0.010
ϕ⊥ 0.500 0.296 0.193 0.134 0.0 −0.386� 0.002 0.870� 0.002
K�

k 0.509 0.323 0.236 0.179 0.041� 0.027 −0.191� 0.048 0.643� 0.031

K�⊥ 0.528 0.351 0.262 0.204 0.119� 0.003 0.122� 0.015 0.840� 0.019

TABLE II. Comparison of hξ2mik;⊥ moments for the ρ, ϕ and
K� mesons. The QCDSR values are obtained with Eq. (4)
employing the Gegenbauer expansion (7) with α ¼ 3=2 and
the value for a2 in Ref. [25]. Similarly, we fit the tabulated values

of ϕk
Vðx; μÞ and ϕ⊥

V ðx; μÞ provided in Ref. [27] with the same
Gegenbauer expansion and use them to calculate the moments.

ρk;⊥ hξ2ik hξ2i⊥ hξ4ik hξ4i⊥ hξ6ik hξ6i⊥ hξ8ik hξ8i⊥
Herein 0.263 0.250 0.136 0.127 0.090 0.081 0.062 0.044
DSE [23] 0.231 0.252 0.109 0.126 0.065 0.079 0.044 0.056
QCDSR [25] 0.234 0.238 0.109 0.111 0.063 0.065 0.042 0.043
HERA [20,21] 0.227 0.260 0.105 0.130 0.062 0.079 0.041 0.054
LQCD [26] 0.240(40)

ϕk;⊥ hξ2ik hξ2i⊥ hξ4ik hξ4i⊥ hξ6ik hξ6i⊥ hξ8ik hξ8i⊥
Herein 0.186 0.182 0.077 0.073 0.042 0.039 0.026 0.024
DSE [23] 0.233 0.253 0.111 0.127 0.067 0.080 0.046 0.056
QCDSR [25] 0.245 0.238 0.115 0.111 0.068 0.065 0.045 0.043
LQCD [27] 0.212 0.250 0.097 0.127 0.057 0.081 0.039 0.058

K�
k;⊥ hξ2ik hξ2i⊥ hξ4ik hξ4i⊥ hξ6ik hξ6i⊥ hξ8ik hξ8i⊥

Herein 0.272 0.298 0.146 0.164 0.097 0.109 0.072 0.080
QCDSR [25] 0.227 0.227 0.104 0.104 0.060 0.060 0.039 0.039
LQCD [27] 0.200 0.292 0.088 0.162 0.050 0.111 0.032 0.084
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ϕðxÞ ¼μ→∞
6xx̄. In addition, we observe that ϕk

ρðx; μÞ is
slightly broader than ϕ⊥

ρ ðx; μÞ, the origin of which are

the different values of ak2 and a
⊥
2 in Table I. It appears from

Table II that our calculated hξ2mik moments for the ρmeson
are overall about 11% larger, whereas the values for hξ2mi⊥
are in very good agreement with those of Ref. [23] and the
HERA fit [20,21].

In the case of the ϕ-meson, we note that ϕk
ϕðx; μÞ ≈

ϕ⊥
ϕ ðx; μÞ since ak2 ≈ a⊥2 and αk ≈ α⊥. We remark that our

results for ϕk;⊥
ϕ ðx; μÞ differ from those in Ref. [23] as can be

inferred from Fig. 1. The reason for this, despite a like-
minded BSE approach, is that we use a larger strange-quark
mass,ms ¼ 166 MeV at μ ¼ 2 GeV. With a lower value of
ms ≈ 100 MeVwe find similar distributions as in Ref. [23].
However, we prefer to renormalize the DSE with a larger
strange mass as it results in a more consistent description of
the K, K�, D�

s and ϕ mesons.

We now turn our attention to the K� and present the
longitudinal and transverse LFDAs in Fig. 2, where we
juxtapose them with predictions from LQCD and QCDSR.
Notably, the longitudinal distribution is a concave, nearly
symmetric function of x, much broader than the asymptotic

form, which is a consequence of the smallness of the ak1
coefficient. The transverse LFDA, on the other hand, is
asymmetric around the midpoint and its maximum is
located at x ¼ 0.78, which clearly indicates SU(3) flavor
symmetry breaking. The asymmetric shape is due to the
similarity of the Gegenbauer coefficients, a⊥1 ≈ a⊥2 whereas

ak1 ≪ ak2, see Table I. This is in agreement with a recent

calculation in LQCD, though in that study ϕk
K� ðx; μÞ tends

toward the asymptotic distribution [27]. In contrast to these

findings, QCDSR predicts ϕk
K� ðx; μÞ ≈ ϕ⊥

K� ðx; μÞ [25].
As we noted earlier, the heavier vector charmonium

and charmed mesons require a modified description of their
LFDA (8) to fit the moments. We report these moments,
hxmik and hxmi⊥, for the J=Ψ, D� and D�

s in Table III. The

distributions ϕk
J=Ψðx; μÞ and ϕ⊥

J=Ψðx; μÞ we then reconstruct

FIG. 2. Top panel: longitudinal and transverse distribution
amplitudes, ϕk

K� ðx; μÞ and ϕ⊥
K� ðx; μÞ for μ ¼ 2 GeV. Bottom

panel: Comparison of our predictions for the K� with those of
QCDSR [25] and LQCD [27], where we replaced x → 1 − x in
Eq. (9). The shaded areas and error bands are as in Fig. 1.

FIG. 1. Comparison of the LFDAs for the ρ (top panel) and ϕ
(bottom panel) mesons with those of Refs. [23] (DSE) and [27]
(LQCD) at μ ¼ 2 GeV. Error bands reflect the uncertainties of
the fit parameters. The intervals 0 ≤ x < 0.1, 1 ≥ x > 0.9 are
shaded, as LQCD does not provide data for these momentum
fractions due to systematic errors. For comparison, we plot the

asymptotic LFDA ϕðx; μÞ ¼μ→∞
6xx̄.
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are plotted in Fig. 3. They are reminiscent of their pseudo-
scalar counterpart, i.e., the LFDA of the ηc, which exhibits
the same convex-concave-convex functional behavior and is
more sharply peaked than the asymptotic LFDA [18]. It turns
out that the longitudinal distribution is broader and less
localized as a function of x than the transverse distribution,
an observation also made in Ref. [24].
We conclude this section with a first prediction of theD�

and D�
s meson distribution amplitudes which we compute

with the projections in Eqs. (1) and (2) of the Bethe-
Salpeter wave functions. The latter are taken from
Ref. [30]; see Table 4 therein for the corresponding masses
and weak decay constants. The distributions we reconstruct
from hxmik and hxmi⊥ listed in Table III are shown in Fig. 4.
Clearly, in both cases the LFDAs are asymmetric and

ϕk
D� ðx; μÞ and ϕ⊥

D� ðx; μÞ peak at about x ≈ 0.8�0.85, while

ϕk
D�

s
ðx; μÞ and ϕ⊥

D�
s
ðx; μÞ reach their maximum in the

range x ≈ 0.65�0.8.
This is readily interpreted as the charm quark carrying

most of the light-front momentum in theD� meson, but less
so in the D�

s meson. Interestingly, the transverse distribu-
tions are more asymmetric and the charm seems to carry a
larger fraction of the meson momentum than in the
longitudinal distribution. Arguably, this observation gen-
eralizes our results for theK�, where the much smaller mass
difference between the strange and up quarks leads to an

almost symmetric form of ϕk
K� ðx; μÞ and to a broad yet

asymmetric function ϕ⊥
K� ðx; μÞ.

IV. CONCLUSION

We extracted the LFDAs of the ρ, ϕ, K�, J=Ψ, D�, and
D�

s mesons from their Bethe-Salpeter wave functions,
which we calculated in Refs. [29,30], with two projections
onto the light front given by Eqs. (1) and (2). The transverse
LFDA of the ρ meson is in very good agreement with that
obtained in a similar DSE-BSE approach [23] and with the
HERA fit [20,21], while our longitudinal moments, hξmik,
are generally about 11% larger than those in the literature.

We then presented the first calculation of the ϕk
K� ðx; μÞ

and ϕ⊥
K� ðx; μÞ within the DSE-BSE framework and confirm

the functional form found with LQCD simulations [27]:
while the longitudinal distribution of the K� is almost
symmetric about the midpoint x ¼ 1=2, the transverse
distribution is broad and slanted, which we interpret as
the strange quark carrying the larger fraction of the meson’s
momentum. In the heavy meson sector, both LFDAs of the
J=Ψ are alike with that of the ηc, i.e., they are symmetric
and narrow, yet not merely concave distributions.
Last not least, we extended our studies in Ref. [18] to

the longitudinal and transverse LFDAs of the D� and D�
s

mesons, a first calculation of these distributions to our
knowledge. Our findings are in line with observations for
the pseudoscalar D and Ds mesons [18]: the distributions

FIG. 3. Longitudinal and transverse J=Ψ distributions. The
error bands reflect the uncertainties in αk;⊥ and βk;⊥.

TABLE III. Mellin moments hxmik and hxmi⊥ of the J=Ψ, D�
and D�

s mesons. Fitting these moments with their definition in

Eq. (4) and the corresponding ϕk;⊥
V ðx; μÞ parametrization (8)

yields αk;⊥ and βk;⊥ and accompanying fit errors.

hxik;⊥ hx2ik;⊥ hx3ik;⊥ hx4ik;⊥ αk;⊥ βk;⊥
J=Ψk 0.500 0.274 0.159 0.097 4.549� 0.411 0.081� 0.051
J=Ψ⊥ 0.500 0.259 0.139 0.076 12.703� 1.931 0.004� 0.710
D�

k 0.694 0.511 0.396 0.315 0.531� 0.207 2.460� 0.131

D�⊥ 0.742 0.589 0.471 0.389 0.094� 0.001 3.073� 0.001
D�

sk 0.627 0.418 0.294 0.217 2.582� 0.651 2.263� 0.296

D�
s⊥ 0.655 0.465 0.346 0.272 0.448� 0.305 1.832� 0.136

FIG. 4. Longitudinal and transverse LFDAs of the D� and D�
s

mesons at μ ¼ 2 GeV; error bands as in Fig. 3.
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are asymmetric and reach their maximum at large momen-
tum fractions, namely x ≈ 0.65�0.85. In other words, the
charm quark is most likely to carry the largest fraction of
the D�

ðsÞ-momentum, and this is even more so the case for
the transverse distribution.
We remind that we provided all the analytic parametri-

zations of the LFDAs discussed in this work and the
parameters are found in Tables I and III. Therefore, the
LFDAs of the J=Ψ and D�

ðsÞ mesons can readily be used in

diffractive vector-meson production and are of interest to
the experimental program of the Electron-Ion Collider.
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