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We study one-dimensional QCD at finite quark density by using the sign optimization framework. The
fermion sign problem is mitigated by deforming the path integral domain SUð3Þ to a complexified one
M ⊂ SLð3Þ, explicitly constructed to reduce the phase fluctuations. The complexification is constructed
using the angular representation of SUð3Þ. We provide a physical explanation of the optimization
procedure in terms of complex saddle points. This picture connects the sign optimization framework to the
generalized Lefschetz thimbles.
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I. INTRODUCTION

Understanding the phases of matter governed by the
strong nuclear force remains an open problem, even after
50 years since the formulation of the microscopic theory,
quantum chromodynamics (QCD). The main difficulty in
comprehensively mapping the phase diagram of QCD
quantitatively is the strong interactions between quarks
and gluons which necessitates nonperturbative methods.
A standard, nonperturbative approach is lattice QCD which
heuristically formulates QCD as a classical statistical
system such that physical observables can be calculated
numerically via importance sampling. The probability of
each configuration is given by e−S=Z, where S is the
(Euclidean) action and Z is the partition function. However,
for a large class of problems, including QCD with finite
quark density, S is complex, and the importance sampling
suffers from large phase oscillations [1–4]. This is known
as the sign problem. In fact, the sign problem is ubiquitous
in systems with strongly interacting fermions at finite
density, such as the Hubbard model away from half filling,
which is thought to model high-Tc superconductors [5], or
neutron matter at the core of neutron stars, as well as out-of-
equilibrium systems that evolve in real time where the
Feynman path integral is by construction complex [6–10].
Recently a set of frameworks has been developed to

tackle the sign problem which utilize the fact that one could
change the domain of the field theory path integral to a

complexified one without changing the value of the
integral. One then finds a domain which reduces the phase
oscillations thereby reducing the sign problem, which is
similar to but more general than the multidimensional
stationary phase contours (i.e., Lefschetz thimbles)
[11–14]. Variations on this idea include generalized
Lefschetz thimbles [15], sign optimization [16–18], and
“learnifolds” [19] to name a few. See also [20] for a recent
review of these ideas and an extensive set of references.
In this work we explore the sign optimization approach in

one-dimensional QCD where the complex domain is built
explicitly by minimizing the sign problem using an opti-
mization method. A similar analysis of one-dimensional
QCD has been done in Ref. [21]. One shortcoming of these
kinds of optimization or machine-learning type approaches
is that what happens between the input and output is
generally not visible, making it challenging to have a
physical picture of the process. Because of this “black-
box” nature of the method, it is often difficult to make use of
the specific properties (e.g., symmetries) of the underlying
theory which for complicated systems such as QCD is likely
necessary. In this work, we focus on providing a physical
picture of the optimization procedure in terms of complex
saddle points of the underlying theory. Our work also
provides a natural connection between the optimization
and Lefschetz thimble approaches.

II. ONE-DIMENSIONAL QCD

In this section we quickly review the essential properties
of one-dimensional QCD [22], which has been studied to
test various ideas and formalisms to tackle QCD related
problems, such as the properties of the Dirac spectrum [23]
and the sign problem [24,25], in particular by using a
similar sign optimization method to ours [21] and Lefschetz
thimbles [26].
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We shall consider an SUð3Þ gauge theory with Nf

number of quarks on a lattice with no spatial extent and
Nt sites in the temporal direction which sets the temper-
ature T ¼ 1=Nta, where a is the lattice spacing. We assume
all the quarks have massm and consider the system at finite
density with the associated chemical potential μ. In one
dimension, there is no plaquette (field strength) and, hence,
no gauge action. After integrating out the fermions, the
only remaining degrees of freedom are the gauge links, Ut,
that wrap around the temporal direction. Furthermore we
can fix the gauge such that only the last link is nontrivial,
i.e., P≡U1…UNt

. In short, the theory is essentially a
matrix model of Polyakov loops, P ∈ SUð3Þ, with the
partition function

Z ¼
Z

dP detNfðaDÞ; ð1Þ

where dP is the Haar measure and the Dirac determinant is
given as

detðaDÞ ¼ 1

23Nt
detðA13×3 þ eμ=TPþ e−μ=TP†Þ ð2Þ

with A ¼ 2 coshðμc=TÞ and μc ¼ a−1 sinhðamÞ. At finite
density, the theory exhibits the sign problem as detðaDÞ
becomes complex for nonzero values of μ. The sign problem
essentially kicks in around μ ≈ μc which approaches m (the

lowest energy to excite a state) in the continuum limit. A
standard way of dealing with the sign problem is “reweight-
ing” where the field configurations are sampled from the
probability distribution e−ReS. The remaining phase, e−iImS,
is treated as a part of the observable. The physical observ-
ables can be expressed in terms of the “phase quenched”
theory with the partition function Zpq ¼

R
dPe−ReS as

hOi≡ 1

Z

Z
dPe−SO ¼ 1

σ

1

Zpq

Z
dPe−ReSOe−iImS; ð3Þ

where the average phase

σ ¼ he−iImSiReS ≡
R
dPe−ReSe−iImSR

dPe−ReS
¼ Z

Zpq
≤ 1 ð4Þ

can be viewed as a measure for the severity of the sign
problem. Small values of σ indicate a small overlap between
the original theory and the phase quenched onewhich means
one needs to sample a large number of configurations
(typically exponentially) in the phase quenched theory in
order to obtain an accurate value for the observable. This is a
manifestation of the sign problem.
Finally, it is useful to parametrize SUð3Þ in terms of eight

angles, Φi ∈ fθ1; θ2; θ3;ϕ1;…;ϕ5g, with 0 ≤ θi ≤ π=2
and 0 ≤ ϕi ≤ 2π [27] such that the Polyakov loop can
be written as

P ¼

0
B@

c1c2eiϕ1 s1eiϕ3 c1s2eiϕ4

s2s3e−iðϕ4þϕ5Þ − s1c2c3eiðϕ1þϕ2−ϕ3Þ c1c3eiϕ2 −c2s3e−iðϕ1þϕ5Þ − s1s2c3eiðϕ2−ϕ3þϕ4Þ

−s1c2s3eiðϕ1−ϕ3þϕ5Þ − s2c3e−iðϕ2þϕ4Þ c1s3eiϕ5 c2c3e−iðϕ1þϕ2Þ − s1s2s3eið−ϕ3þϕ4þϕ5Þ

1
CA; ð5Þ

where ci ≡ cos θi and si ¼ sin θi and the Haar measure is

dP ¼ Hðθ⃗Þd8Φ; Hðθ⃗Þ ¼ 1

2π5
s1c31s2c2s3c3: ð6Þ

III. COMPLEXIFICATION AND SIGN
OPTIMIZATION

The domain of the path integral (1) is SUð3Þ. However
by Cauchy’s theorem we can deform it into another domain
M ⊂ SLð3Þ. As long as M is continuously connected to
SUð3Þ without crossing any singularities, and the integrand
is a holomorphic function, as we shall assume, the value of
the path integral does not change. At the same time, since
SR is not a holomorphic function, the denominator in
Eq. (4) Zpq does change. The key idea is to find a surface
M over which Zpq is smaller, leading to a larger value of σ
and a milder sign problem.

We will do this by using the sign optimization method
where we parametrizeM by using a set of variables, λ⃗, and
maximize σ with respect to λ⃗. We first parametrize the
complex space M as

Φ̃i ¼ Φi þ ifΦi
ðΦÞ: ð7Þ

Here fΦi
ðΦÞ ¼ 0 corresponds to SUð3Þ. The eight complex

angles Φ̃i parametrize an eight-dimensional surface in
SLð3Þ which can be continuously connected to SUð3Þ
via a family of intermediate surfaces defined through
f → sf with 0 ≤ s ≤ 1. An advantage of using this para-
metrization is that the path integral over M can easily be
reexpressed in terms of the original variables as

Z ¼
Z

d8ΦJðΦÞe−SHðΦ̃ðΦÞÞ ≡
Z

d8Φe−SeðΦÞ; ð8Þ
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where JðΦÞ ¼ j detð∂Φ̃i=∂ΦjÞj is the associated Jacobian
for the change of variables from Φ̃ back to Φ, SHðΦÞ≡
−Nf log detðaDÞ − logHðΦÞ and SeðΦÞ≡ SHðΦ̃ðΦÞÞ−
log JðΦÞ. Each function fΦi

can in principle depend on
all eight angles but must obey the periodicity conditions
fθiðθi ¼ 0Þ ¼ fθiðθi ¼ π=2Þ ¼ 0, fϕi

ðϕi ¼ 0Þ ¼ fϕi
ðϕi ¼

2πÞ [28,29]. In this work we will use two different Ansätze
for fΦi

s: (i) the “diagonal” Ansatz1

fϕi
¼

XN−1

n¼0

λðiÞn cos
�
nϕi þ ηðiÞn

�
; fθi ¼

XN−1

n¼1

νðiÞn sinð2nθiÞ

ð9Þ

and (ii) the “mixing” Ansatz

fϕi
¼

�P
N−1
m;n¼0 λ

ðiÞ
m;n cosðmϕ1 þ nϕ2 þ ηðiÞmnÞ; i ¼ 1; 2;

λðiÞ; i ¼ 3; 4; 5:

ð10Þ

Working with these more restricted Ansätze rather than the
most general Fourier decomposition reduces the number of
parameters in the optimization procedure making it practi-
cally feasible. We elaborate on this further below.
The next step is to find a value of λ⃗ that maximizes jσj.

To achieve this we follow a gradient ascent algorithm to
find a local extremum of log jσλ⃗j.2 We first start from SUð3Þ
(i.e., λ⃗ ¼ 0) and update λ⃗ according to

λ⃗ðτ þ 1Þ ¼ λ⃗ðτÞ þ δ∇λ⃗ log jσλ⃗ðτÞj; ð11Þ

where τ enumerates the gradient ascent steps. We repeat
this procedure up to some τmax. Depending on the physical
parameters such as μ; Nf, etc., the step size δ has to be
empirically adjusted so that it is neither too large, which
leads to runaways, nor too small, which leads to slow
convergence to minimum. More sophisticated adaptive
algorithms can also be used if needed. A straightforward
calculation leads to

∇λ⃗ log jσλ⃗j ¼ hReð∇λ⃗Se − TrðJ−1∇λ⃗JÞÞiSR; ð12Þ

where SR ≡ ReSH [30]. Therefore each gradient ascent
update requires a Monte Carlo computation which remark-
ably does not have any sign problem. In the following
section we present the results of this procedure.

IV. RESULTS

We performed sign optimization for two and (to compare
with semiclassical estimates) 200 quark flavors and for a
range of μ. We worked in the chiral limit m ¼ 0, since it is
the limit where the sign problem kicks in as quickly as
possible (i.e., μc ¼ 0). We set the lattice spacing a ¼ 1 and
all the dimensionful quantities are measured in units of
temperature. In sign optimization we have used N ¼ 4
Fourier coefficients for the diagonal (44 parameters) and
N ¼ 3 for the mixing (39 parameters) Ansätze. Each
Monte Carlo run had 5000 configurations in each gradient
ascent step generated by a standard Metropolis algorithm
where the remaining sign problem is reweighted. The
observables in Figs. 1 and 3 calculated onMλ⃗ are obtained
from the last step of the gradient ascent.
In Fig. 1 we show the average phase σ as a function

of μ compared with the exact analytical result for SUð3Þ.
For any Nf and μ the mixing Ansatz performs better
than the diagonal. As expected the uncertainty in the
results decreases as the sign improves. In Fig. 2 we
show the improvement in the sign problem (as gauged
by σ) as a function of the gradient ascent step for values
of μ where the original sign problem is the worst
(see Fig. 1).
Finally in Fig. 3 we show the average Polyakov loop as

a function of μ compared with the exact analytical result.
As expected all the results agree with the exact result, a
consequence of the fact that theMλ⃗ is equivalent to SUð3Þ
as a path integral domain albeit with a milder sign problem.
Even though the original sign problem is not too severe to
begin with, the improvement in the sign problem can be
seen in the noticeably smaller error bars, especially for the
mixing Ansatz.

FIG. 1. The average sign as a function of chemical potential
for Nf ¼ 2, 200. Solid curves represent the exact value of σ for
SUð3Þ.

1In what follows we will simply refer to the Fourier coef-
ficients λðiÞ cos ηi; λðiÞ sin ηi and νðiÞ collectively as λ⃗.

2Here we explicitly denote the dependence of σ onM with the
subscript λ⃗.
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V. DISCUSSION AND SEMICLASSICAL ANALYSIS

Let us now discuss the results and present a physical
picture for the sign optimization procedure. In general it is
difficult to visualize eight dimensional surfaces; however,
it is useful to work with the eigenvalues of the Polyakov
loop. For any Pwe can writeUPU† ¼ diagðeiψ1 ; eiψ2 ; eiψ3Þ
such that ψ1 þ ψ2 þ ψ3 ¼ 0 for some U ∈ SUð3Þ.
Now, the path integral can be expressed in terms of two
independent eigenvalues, say ψ1;2. The Haar measure
reduces to dP ∝ Vðψ1;ψ2Þdψ1dψ2, where Vðψ1;ψ2Þ ¼
sin2ðψ1−ψ2

2
Þ sin2ð2ψ1þψ2

2
Þ sin2ðψ1þ2ψ2

2
Þ is a Vandermonde

determinant. In Fig. 4 we show the distribution of the
eigenvalues for two sets of parametersNf ¼ 2, μ ¼ 1.2 and
Nf ¼ 200, μ ¼ 4 generated by using the mixing Ansatz.
The real parts of ψ1;2 are distributed around six regions
related to Weyl chambers of SUð3Þ, whereas the imaginary
parts [associated with the deviation from SUð3Þ] are mostly
concentrated approximately in a triangular area. For Nf ¼
200 the configurations are clustered closer to ψ i ¼ 0.

The physics of this pattern can be understood as
follows. The saddle points of the path integral are given
by ∂ψ i

Seffðψ1;ψ2Þ ¼ 0, where Seff ¼ −Nf log detðaDÞ−
logV. They are complex valued as a result of the interplay
between the Dirac determinant, which attracts the eigen-
values toward one of the three center elements of SUð3Þ,3
and the Haar measure, which is repulsive. In the semi-
classical, large Nf limit the eigenvalues approach4 to the
center values, where the imaginary part vanishes. In other

words the Haar measure splits each naive eigenvalue ψ ðkÞ
i

into six clusters of complex eigenvalues distributed around
it, one per each chamber (see Fig. 4). Each eigenvalue in
a given cluster has the same action. Furthermore for
any eigenvalue, ψ i, −ψ�

i is also an eigenvalue due to the
underlying CK symmetry [31]. Similar phenomena are
observed in other matrix models [32].
From Fig. 4 one can see that the sign optimization

“builds” the complex domain Mλ⃗ around the complex
saddles, within the constraints of the Ansatz. This picture
also sheds light on why the mixing Ansatz outperforms
the diagonal one even though it only depends on two of
the eight angles and depends on a smaller number of
parameters. In a suitable gauge, P can be expressed as
diagðeiϕ1 ; eiϕ2 ; e−iðϕ1þϕ2ÞÞ. Therefore having terms such as
cosðn1ϕ1 þ n2ϕ2 þ ηÞ in the Ansatz allows it to capture
the fluctuations around the complex saddle points (i.e.,
the Lefschetz thimbles) more accurately than the diagonal
Ansatz.

FIG. 2. The improvement of the sign problem as measured by
the average phase σ through the gradient ascent. Solid lines
represent the exact value of σ for SUð3Þ.

FIG. 3. The Polyakov loop hTrPi as a function of μ=T. For
visual clarity the SUð3Þ and diagonal Ansatz data are offset in the
x axis.

FIG. 4. The distribution of the eigenvalues of the Polyakov
loop. The locations of the complex saddle points are denoted by
black dots. The dashed lines are y ¼ x;−2x;−x=2.

3The three center elements of SUð3Þ are ψ ð0Þ
1 ¼ ψ ð0Þ

2 ¼
0;ψ ð1Þ

1 ¼ ψ ð1Þ
2 ¼ 2π=3, and ψ ð2Þ

1 ¼ ψ ð2Þ
2 ¼ 4π=3.

4However, the measure of the center values in the path integral
is always zero for any finite Nf.
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VI. CONCLUSIONS

In this work we studied the sign problem in one-
dimensional QCD. The main strategy we followed was
to construct complex path integration domains that reduce
the sign problem without changing the value of the path
integral. These domains are constructed explicitly by
maximizing the average sign that is a gauge for the sign
problem via gradient ascent. We observed that the sign
optimization constructs the domains around the complex
saddle points of the theory even though it has no prior
knowledge of them. Roughly speaking, it approximately
reconstructs the generalized thimbles around these saddle
points. This can be seen more clearly in the semiclassical

limit but persists even away from it. We also showed that an
Ansatz for the optimization that allows more freedom to
explore the fluctuations around the saddles performs better.
The main takeaway is that the knowledge of complex
critical points can be used to tailor the optimization Ansatz
to maximize performance, highlighting the importance of
studying complex saddles in quantum field theory [31,33].
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