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The solution of gauge theories is one of the most promising applications of quantum technologies. Here,
we discuss the approach to the continuum limit for Uð1Þ gauge theories regularized via finite-dimensional
Hilbert spaces of quantum spin-S operators, known as quantum link models. For quantum electrodynamics
(QED) in one spatial dimension, we numerically demonstrate the continuum limit by extrapolating the
ground state energy, the scalar, and the vector meson masses to large spin lengths S, large volume N, and
vanishing lattice spacing a. By exactly solving Gauss’s law for arbitrary S, we obtain a generalized PXP
spin model and count the physical Hilbert space dimension analytically. This allows us to quantify the
required resources for reliable extrapolations to the continuum limit on quantum devices. We use a
functional integral approach to relate the model with large values of half-integer spins to the physics at
topological angle Θ ¼ π. Our findings indicate that quantum devices will in the foreseeable future be able
to quantitatively probe the QED regime with quantum link models.
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I. INTRODUCTION

The rapid development of quantum technologies culmi-
nating in the precise control of large quantum systems [1–4]
has fundamentally altered the scope of physics questions
that can be addressed for strongly interacting systems. As a
complementary approach to smashing nuclei in colliders to
uncover their substructure, one can realize quantum many-
body systems in controlled analog quantum simulators or
digital quantum computers and study their ground state
properties at finite density or during real-time evolution
associated with quenches, which are extremely difficult to
tackle using Markov chain Monte Carlo methods [5,6].
Motivated by this possibility, pioneering proposals [7–10]
have been put forward to study properties of lattice gauge
theories with the long-term goal of simulating quantum
chromodynamics, the theory of strong interactions. These
ideas have triggered an intensive theory effort to devise
efficient and feasible implementations (for recent reviews

see, e.g., [11–13]), resulting in first experimental realiza-
tions [14–21] in recent years.
Nonperturbative calculations of quantum field theories

(QFTs) require a careful treatment of regularization and
renormalization, for which the lattice approach has proven
most successful [22]. The lattice Hamiltonian of a gauge
theory [23] retains exact gauge invariance, while a finite
spatial lattice reduces the infinite number of degrees of
freedom of the field theory to a finite number of lattice
sites and links. The local Hilbert space dimension of the
gauge fields, however, remains infinite in the original
Wilsonian formulation. Quantum link models (QLMs)
[24–26] regulate these infinite-dimensional Hilbert spaces
with qudits while maintaining exact gauge invariance.
They are ideal candidates to be studied on quantum
devices such as analog quantum simulators or digital
quantum computers, which typically work with finite-
dimensional local Hilbert spaces. Extracting information
relevant for the QFT in the continuum limit, especially
when realized in the low-dimensional Hilbert spaces
available in current quantum devices, requires a sequence
of extrapolations, which is the main topic of this article.
Effects of truncating the infinite-dimensional Hilbert

space have been extensively investigated for lattice theories
with continuous global and local symmetries [27–36]. For
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pure Uð1Þ gauge theory in (2þ 1)D dimensions, trunca-
tions in the magnetic basis have been argued to be superior
to truncations in the electric basis for reaching the con-
tinuum limit [37] (see also [38–40]). Nevertheless, rapid
convergence in such truncations has been observed pre-
viously in [41,42]. The related approach of approximating
continuous groups with discrete groups of increasing order
also has a long history [43–50].
The continuum limit physics is quite sensitive to the

nature of the employed truncation. For example, in the
(1þ 1)D Oð3Þ model, the physics of asymptotic freedom
could only be recovered with at least a 16-dimensional local
Hilbert space in the angular momentum basis truncation
[51]. However, using qubit operators [52], it was shown that
the same continuum limit only required two qubits per site
[53]. The QLM approach is similar to this qubit regulari-
zation, but uses larger spin-S operators for the Uð1Þ gauge
links. It was analytically shown that large representations for
the gauge links in QLMs recover the standard Wilson lattice
gauge theory [54]. A fine-tuning free approach to the
continuum limit using the QLMs is via the dimensional
reduction in the D-theory formulation [55]. This is, however,
only possible if a phase with an exponentially large
correlation length is generated [56]. In this article, we
explore the former approach and show that careful analysis
techniques allow us to reach the continuum limit quantita-
tively for certain physical observables, even with very small
values of S (≲3–5), extending the observations made in
[41,42]. We solve Gauss’s law analytically for a general
spin-S representation and estimate the quantum resources to
simulate the continuum limit. Our results may help to
improve digital quantum simulations of the massive
Schwinger model [57–59], through variational quantum
eigensolvers and Trotterized real-time dynamics. Finally,
we use path integrals to demonstrate how large half-integer
spins give rise to the topological angle Θ ¼ π.

II. HAMILTONIAN AND GAUSS’S LAW

We focus on Uð1Þ gauge theories in d spatial dimen-
sions with (staggered) fermionic matter [23]. The gauge
fields are described by Ŝn;j ¼ ðŜþ; Ŝ−; ŜzÞn;j, the raising,
lowering, and z-component quantum spin-S operators on
the links ðn; jÞ connecting neighboring sites n and nþ ej
on a hypercubic lattice of size Nd.1 For any S, the raising
(lowering) operators are S� ¼ ðSx � iSyÞ=2 with Sx=y the
x=y component of the spin vector S⃗. For the spin-1=2
representation, for example, the spin operators are related
to Pauli matrices, S⃗ ¼ σ⃗=2. The spins are coupled to
fermionic operators ψ̂n on the sites, as described by the
Hamiltonian

Ĥ ¼ g2

2

X
n;j

ðŜzn;jÞ2 þ μ
X
n

ð−1Þn1þ���þnd ψ̂†
nψ̂n − Ĥm

−
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðSþ 1Þp X

n;j

ð−1Þ
P

k<j
nkðψ̂†

nŜþn;jψ̂nþej þ H:c:Þ:

ð1Þ

The first two terms are the electric field energy at the bare
coupling g and the staggered fermion mass μ. The gauge-
matter interaction is the correlated hopping of fermions
along a link with the simultaneous raising or lowering of
the corresponding spin. For d > 1, there is the magnetic
energy term, Ĥm ¼ 1

2g2S2ðSþ1Þ2
P

PðŜþP1
ŜþP2

Ŝ−P3
Ŝ−P4

þ H:c:Þ,
with P labeling elementary plaquettes consisting of links
P1;2;3;4 forming a square. We identify the spins with gauge
fields ðÛ; Û†Þ ↔ ðŜþ; Ŝ−Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SðSþ 1Þp
and electric field

Ê ↔ Ŝz. This identification preserves the commutation
relations, ½E;Uð†Þ� ¼ ð−ÞUð†Þ, as well as an exact gauge
symmetry with (2Sþ 1)-dimensional Hilbert space. To
achieve the correct scaling behavior, appropriate factors of
S are inserted in the dimensionless couplings in Eq. (1)
(see Sec. I in the Supplemental Material [60] for more
details). The gauge transformations are generated by the
Gauss law operator,

Ĝn ¼
X
j

ðŜznþej;j − Ŝzn;jÞ −
�ð−1Þn − 1

2
þ ψ̂†

nψ̂n

�
; ð2Þ

satisfying ½Ĥ; Ĝn� ¼ 0. The Hilbert space thus separates into
superselection sectors labeled by eigenvalues of Ĝn. For the
physical Hilbert space Hphys, we require Ĝnjphysi ¼ 0.
In the renormalization group (RG) sense, the parameters

g, μ, and S can be regarded as directions in the space of
couplings, to be adjusted such that the theory flows to a
fixed point corresponding to the desired QFT. In the
remainder of this Letter, we focus on the case of one spatial
dimension, d ¼ 1, where Eq. (1) provides a lattice version
of the (massive) Schwinger model [61–63]. The continuum
Schwinger model is parametrized by the (bare) values of the
electric charge e and the fermion mass m. In its lattice
version at lattice spacing a, these parameters appear through
the dimensionless combinations g ¼ ae and μ ¼ am. The
QFT limit is reached for large S, large N, and small a, as
demonstrated in Fig. 1. Specifically, we first take the infinite
spin length limit S → ∞ at fixed a and N, then the
thermodynamic limit N → ∞ at fixed a, and finally the
continuum limit a → 0 at fixed μ=g. The different extrap-
olations have to be performed for appropriately rescaled
(“renormalized”) quantities that correspond to physical
observables (see Sec. IV in the Supplemental Material
[60] for details). In general, the final continuum limit
involves a rescaling of the dimensionless coupling constants
in order to reach the RG fixed point [22]. This complication

1Throughout this work, we employ periodic boundary
conditions.
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is absent for the present model (except for a redefinition of
the ground state energy) [62,64].

III. MASS SPECTRUM FROM THE QLM

The massive Schwinger model is considerably simpler
than QED in higher dimensions due to the absence of
magnetic interactions and the strong Gauss’s law constraints.
Consequently, both the weak and strong coupling limits,
e=m ¼ 0 and e=m ¼ ∞, respectively, are exactly solvable,
and analytic expansions around these limits [65,66] can be
used for benchmarking the extrapolation. Our principal
numerical methods are exact diagonalization (ED) (using
the PYTHON package QuSpin [67]) and variational techniques
based on infinite matrix product states (IMPS) [68,69]
directly in the thermodynamic limit. To perform ED, we
derive an equivalent spin model constrained by a projector
P on neighboring gauge link configurations allowed by

Gauss’s law. The resulting Hamiltonian has the form
(see Sec. II in the Supplemental Material [60])

Ĥ ¼ P
XN
n¼1

�
g2

2
ðŜznÞ2 þ 2μð−1ÞnŜzn −

Ŝxnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðSþ 1Þp

�
P: ð3Þ

For S ¼ 1=2, this reduces to a constrained model of hard-
core bosons [70], sometimes referred to as a PXP model,
whose total number of allowed states can be analytically
counted [71] and which is believed to explain the anomalous
thermalization observed in the 51-Rydberg atom experiment
[72]. The relation between a PXP model and the spin-1=2
QLM was first noted in [73], which we generalize here to
arbitrary S. Moreover, we extend the analysis of [71] and
derive an analytic expression for the dimension of the
physical Hilbert subspace, given by (see the Supplemental
Material [60])

dimHphysðS;NÞ ¼ 2N
X2Sþ1

m¼1

�
cos

�
mπ

4Sþ 3

��
N
: ð4Þ

The remarkably small Hilbert space size, scaling linearly
with S at a fixed N (see Sec. II in the Supplemental Material
[60] for an illustration), enables ED calculations for rela-
tively large system sizes, and data up to S ¼ 3 and N ¼ 16
are presented here. Results from IMPS simulations in the
thermodynamic limit are also shown for S ≤ 5 for the
Hamiltonian in Eq. (1), where Gauss’s law is enforced by
adding a large energy penalty ∝

P
n Ĝ

2
n [74,75], with Ĝn

defined in Eq. (2). Our results, summarized in Fig. 1,
demonstrate how to accurately reach the continuum limit
with QLMs for the ground state energy and the energies of
the first two excited states, the “vector” and “scalar”
particles. We find excellent agreement in the strong coupling
limit, due to small fluctuations around hŜzi ¼ 0, such that
our numerics with small S (≤ 3 for ED and ≤ 5 for IMPS)
already capture the relevant physics. For higher excited
states or toward weak coupling, the fluctuations grow more
pronounced and larger spin lengths S become necessary.2

The detailed steps of the underlying extrapolation are
shown in Fig. 2 for ED, illustrated for the analytically
solvable strong coupling limit (m=e ¼ 0). Despite small
spin lengths S ¼ 1, 2, 3, we observe a clear 1=S scaling,
enabling a reliable extrapolation to the S → ∞ limit.
Similarly, the subsequent N → ∞ extrapolation is per-
formed with the expected leading behavior at large N.
The largest systematic error arises from the choice of fit
range for the final a → 0 extrapolation, which requires
increasingly large values of N and S, attributed to

FIG. 1. (a) In a Uð1Þ QLM, matter fields (blue dots) reside on
the sites of a lattice, while gauge fields, represented by spins (red
arrows), live on the links connecting two neighboring lattice sites.
Gauss’s law ties consecutive gauge fields to the matter in between
as indicated by the shaded ellipses. The ground state energy,
shown in (c), and the first two excited states (with vector and
scalar quantum numbers), shown in (b), in the zero momentum
sector of QED obtained from the Uð1Þ QLM using ED and iMPS
show excellent agreement with the analytical prediction for
m=e ¼ 0. In (b), the gray solid lines indicate the leading order
(LO) analytical expansions [65] for small m=e and e=m,
respectively. The error bars indicate an estimated systematic
uncertainty (see Sec. IV in the Supplemental Material [60]).

2The path integral construction presented in Sec. V of the
Supplemental Material [60] suggests that the Uð1Þ limit can be
reached by scaling the spin length as S ∝ 1=g for a fixed, but
large, gS ≫ 1.
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increasing electric field fluctuations at the continuum limit.
Empirically, we find that systematic errors are minimized
by disregarding “far-off” N and S extrapolation where the
extrapolated values differ by more than 10% from the one
of the largest available system size. We thus select a
smallest lattice spacing a, for which the underlying data
are sufficiently converged with respect to S and N. Note
that this procedure naturally depends on the observable.
The ground state energy can be extrapolated with lattice
spacings down to ae ∼ 0.1, while we only reach ae ∼ 0.3
for the scalar mass. Details of the numerical extrapolations
are presented in Sec. IVof the Supplemental Material [60].
Figure 3 shows our final results for the vector and scalar

masses with a trivial m=e dependence subtracted. The
IMPS results are obtained analogously to the ED simu-
lations, but without the N extrapolation. The agreement
between both approaches demonstrates that the thermody-
namic limit is reached, and that the limits S → ∞ and
N → ∞ commute for this model. Comparing to previously
obtained results [76] at S → ∞, we find good agreement of
both the ED and IMPS data for the vector mass, indicating
that S ¼ 3 is sufficient to resolve this excitation. As
anticipated, the scalar mass requires larger S values, and
we observe stronger deviations in ED.

FIG. 2. We illustrate the sequence of extrapolations from left to right, required to reach the continuum limit for the ED data with
m=e ¼ 0. The energies of the vacuum (bottom row), vector particle (middle row), and scalar particle (top row) are extrapolated to
S → ∞ (left column), N → ∞ (middle column), and a → 0 (right column), as discussed in the main text. The circles in the middle row
indicate the values obtained from the corresponding S extrapolations shown in the left column. Similarly, the ticks in the right column
indicate the values corresponding to theN extrapolations in the middle column. For clarity, we only show selected values of ae andN for
the first two extrapolations. For comparison, the green crosses indicate the exact analytical results. All fits employed for the
extrapolations are polynomials and χ2 denotes the resulting normalized square error of the fit (see Sec. IVof the Supplemental Material
[60] for details, where we also provide a table with our quantitative results).

FIG. 3. Final result for vector (lower) and scalar (upper)
masses, with the leading dependence 2m=e subtracted. Our
results reproduce the analytic prediction of the massless limit
(m=e ¼ 0) and are quantitatively consistent with the perturbative
expectation (gray solid line). For the vector mass, both IMPS (red
dots) and ED (blue diamonds) results agree with each other and
previously obtained results (black crosses) at infinite spin length.

TORSTEN V. ZACHE et al. PHYS. REV. D 106, L091502 (2022)

L091502-4



IV. ESTIMATION OF REQUIRED RESOURCES
ON A QUANTUM DEVICE

As illustrated above, already very small spin lengths
S≲ 3 and system sizes N ≲ 16 are sufficient to obtain
quantitative estimates for the low-lying mass spectrum. A
brute-force implementation would nevertheless still require
controlling a Hilbert space of dimension ½2ð2Sþ 1Þ�N∼
1416 ∼ 261. Because of Gauss’s law, most of these states are
unnecessary.
To estimate the minimal required resources to imple-

ment the model on a quantum device naturally working
with the corresponding qudits of size 2Sþ 1 [77–84],
consider the equivalent spin model, Eq. (3). Then control
over only N ∼ 16 such qudits would be sufficient to reach
the continuum limit. According to Eq. (4), a perfect
encoding on a digital quantum computer would need only
dimHphysðS ¼ 3; N ¼ 16Þ ¼ 63757 < 216 states, enabling
our procedure to be carried out on existing quantum
computing devices with control over 16 qubits. This fact
has been already exploited to carry out the ED calculations
on a conventional laptop computer.
To illustrate the applicability of our improved encoding

[Eq. (4)], consider two examples: (i) the mass spectrum
discussed above using a perfect qubit encoding and (ii) real-
time dynamics on qudit hardware. The first example may be
tackled with a variational quantum eigensolver (VQE)
[20,85], which finds an optimal representation of an input
variational ansatz for the ground or a low-lying excited state,
by classically minimizing hĤi. We emphasize that this does
not require one to actually implement Ĥ, but only to
measure its expectation value. It is then favorable to work
in a computational basis with the perfect encoding where Ŝz

is diagonal, such that most terms of Ĥ can be measured
directly. Only Ŝx has to be treated separately, which we
leave for future work, but we note that it will remain local
because the projection P acts locally. Having obtained the
spectrum via VQE, the masses are extracted by classical
postprocessing via the extrapolations discussed above.
For real-time dynamics, a Trotter decomposition on a

system of qudits yields3

e−iĤΔt ¼
YN
n¼1

e−i
g2

2
ðŜznÞ2Δt ×

YN
n¼1

e−i2ð−1ÞnμŜ
z
nΔt

×
YN
n¼1

Pe−i=
ffiffiffiffiffiffiffiffiffiffiffi
SðSþ1Þ

p
ŜxnΔtP þOðΔt2Þ: ð5Þ

The first two single-qudit gates can be efficiently executed
in parallel. For a fixed n, the off-diagonal term with Ŝxn

involves a projector acting locally on ðn − 1; n; nþ 1Þ.
This corresponding Trotter evolution can therefore be
realized as a 3-qudit controlled unitary acting only on
the middle qudit n if the triplet ðn − 1; n; nþ 1Þ is
compatible with Gauss’s law. This suggests to parallelize
this last term in three layers, enabling scaling to large
system sizes. This approach might be used, e.g., to observe
the type of quench dynamics discussed in [86], where the
required small spin lengths S ≤ 4 are within reach of
existing technology (see, e.g., [87] for a review of qudit
quantum computing and [88] for an experimental realiza-
tion, as well as [89–93] for recent related developments
using qudits).

V. FIELD THEORETIC DESCRIPTION

To address the closely related question of convergence to
the Kogut-Susskind limit, we use coherent state path
integrals. Physically, the worldline of a spin S at spatial
site n traces out an arbitrary closed curve on the Bloch
sphere under the Hamiltonian evolution in imaginary time,
subtending a solid angle Ω, as shown in Fig. 4(a). The path
integral Z ¼ TrĜðe−βĤÞ (see Sec. V of the Supplemental
Material [60]) is dominated by the electric field term ðŜznÞ2,
which contributes as ∼ exp½−ϵg2SðS − 1=2Þ cos2ðθnÞ=2�,
where ϵ is the Trotter discretization and θn;ϕn are the
angular coordinates of the spin. For large g2S, θn → π=2 as
indicated in Fig. 4(b). In this limit, the quantum spin is
confined to the equator of the Bloch sphere and reduces to
the quantum rotor of the Wilson-Kogut-Susskind formu-
lation, consistent with the numerics.
An important additional observation is that the area traced

out by the closed curve on the Bloch sphere by Ŝn admits a
topological interpretation as a Berry phase. In the con-
tinuum limit, this area is ω½Ω� ¼ R β

0 dτ _ϕðτÞ cosðθðϕðτÞÞÞ ¼H ϕ0

ϕ0
dϕ cosðθðϕÞÞ [94], where τ ∈ ½0; β� is the Euclidean

time. At leading order in the large-S limit, only the number
of total windings is relevant, with each winding contributing
2πS. While this term is irrelevant for the integer spins used
in this work, for half-integer spins it gives rise to a π flux in
the system. This feature rigorously establishes that QLMs
with large values of half-integer spin lead to a topological

FIG. 4. (a) Closed path traced by a quantum spin S on the Bloch
sphere. (b) With increasing S, the path of the spin is forced along
the equator to minimize fluctuations of the electric energy term.

3Note that here we do not enforce the perfect encoding. The
Trotter decomposition is then valid on states jψi that fulfill
Pjψi ¼ jψi, and since P commutes with Ŝzn, the projector only
appears with the terms involving Ŝxn.
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theta angle Θ ¼ π, often anticipated in the literature
[10,19,73,95] already for the spin-1=2 case.

VI. CONCLUSION AND OUTLOOK

In this Letter, we have numerically demonstrated the
continuum limit of QED in (1þ 1)D, regularized with
quantum spin-S operators for several physical observables.
A highlight of our results is the small spin values S≲ 3–5
that suffice to reach the continuum limit. The systematic
finite-size scaling enables us to quantitatively estimate the
resources of a quantum device to realize the continuum
limit. These results lend hope that near future quantum
simulation experiments with small S and limited lattice size
can yield valuable data that can be extrapolated to the QFT
limit. Using a coherent state path integral, the approach to
the Kogut-Susskind limit is derived and the connection of
half-integer spins with topological angle π is formalized.
For future investigations, the feasibility of our approach

may immediately be tested using today’s quantum hard-
ware. High-energy aspects of these models, such as the
presence of quantum scars [96] and Floquet dynamics
[97,98], are worth studying. In higher dimensions, an
exciting challenge is to quantify the convergence properties

of both Abelian and non-Abelian QLMs with increasing
link representations. Finally, we note that the calculation of
the mass spectrum of the Schwinger model using quantum
devices is merely a stepping stone toward more complex
tasks. The situation changes completely when considering,
e.g., real-time dynamics where our proposed Trotterization
using qudits can provide a substantial advantage over
traditional qubit approaches.
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