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We construct a type-II holographic superconductor from an anisotropic rotating background metric. We
study the effects of the magnetic field on the vortex structure, including continuous deformations from
triangular to square lattices or vice versa. Our holographic model reproduces known experimental vortex
lattice deformations and the increment of the vortex population by increasing the external magnetic field.

DOI: 10.1103/PhysRevD.106.L081902

I. INTRODUCTION

Nowadays, the gauge/gravity duality has become an
important tool to describe different physical phenomena.
Since the original proposal, AdS=CFT correspondence [1],
the framework has been extended to explore different
phenomena such as quark-gluon plasma [2], superfluidity
[3], and superconductivity [4–6]. The seminal works in
superconductivity qualitatively reproduce the condensation
operator for different boundary conditions. Ever since,
major progress has been made to extend the holographic
description of the phenomena. The vortex structure was
explored for the first time in Ref. [7], while a clearer
analytical procedure was implemented in Ref. [8], repro-
ducing the Abrikosov vortex structure [9]. A degree of
anisotropy has been also considered via Lifshitz black
holes in arbitrary dimension [10]. For both the condensate
and the magnetic fields, a good agreement between the
semianalytical matching method and the numerical
methods has been reported. The holographic superconduc-
tor for rotating AdS-type spacetimes was constructed
in Refs. [11,12], where the introduction of a magnetic
potential component Aφ is mandatory to support the

configuration and make compatible the boundary con-
ditions. A noteworthy revisit to the problem is presented
in Ref. [13], where analytical methods are pursued instead of
a numerical approach. Several details of the Lifshitz holog-
raphy were collectively worked out in Refs. [14,15], includ-
ing both the condensate operator and the vortex structure. To
the best of the authors’ knowledge, this is the first report on
vortex lattice deformations in type-II superconductors, real-
ized from a rotating holographic description. In previous
works, the consideration of anisotropy and angular momen-
tum achieve solely a modification of the lattice scale.

II. THE SETUP

Our starting point is the five-dimensional anisotropic
rotating metric

ds2 ¼ −
�
r
l

�
2z
fðrÞðΞdt − adϕÞ2 þ r2

l4
ðadt − Ξl2dϕÞ2

þ dr2

ðrlÞ2fðrÞ
þ
�
r
l

�
2

dy⃗2; ð1Þ

where Ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2=l2

p
, dy⃗2 ¼ dx2 þ dy2, fðrÞ ¼ 1−

ðrhr Þzþ3, z is the critical exponent, a is the rotation
parameter, l is the Lifshitz radius, and rh is the horizon
radius. Spacetime in Eq. (1) stems from the Einstein-
Maxwell-dilaton gravity

S ¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
R − 2λ

2κ
−
1

2
ð∇μφÞ2 −

1

4
e−bφF μνF μν

�
ð2Þ

for suitable Maxwell and dilaton fields Aμ and φ, respec-
tively. The metric describes a five-dimensional black hole,
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and it falls into a particular case of the solutions reported
in Ref. [16]. The black hole temperature, a fundamental
quantity for the upcoming analysis, is given by

T ¼ 1

4π

ðzþ 3Þrzh
lzþ1Ξ

: ð3Þ

The holographic model is well described by the action

Sm¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
1

4
FμνFμνþ 1

l2
ðjDμΨj2þm2jΨj2Þ

�
; ð4Þ

with equations of motion

∇μFμν −
1

l2
ð2AνjΨj2 − iΨ∇νΨ̄þ iΨ̄∇νΨÞ ¼ 0;

∇μ∇μΨ − 2iAμ∇μΨ − iΨ∇μAμ − ðm2 þ AμAμÞΨ ¼ 0; ð5Þ

whereDμ ≡∇μ − iAμ is the gauge covariant derivative. For
simplicity, we adopt throughout the rest of the text the new
coordinate patch ðt;ϕ; u; x; yÞ, with u ¼ rh=r, and where
the boundary and horizon are located at u ¼ 0 and u ¼ 1,
respectively.

III. EFFECT OF AN EXTERNAL
MAGNETIC FIELD

In this section, we investigate the effects of placing the
type-II holographic s-wave superconductor under the
influence of an external magnetic field. It is well known
that type-II superconductors are characterized by manifest-
ing two critical magnetic fields, a lower one Bc1 and an
upper one Bc2. The vorticity phenomenon appears when
the external magnetic field surpasses the lower critical
value, B > Bc1. However, when the external magnetic field
approaches the upper critical value Bc2 from below, a
vortex lattice is prone to be formed. On the other hand, by
decreasing the external magnetic field in the direction
perpendicular to the boundary (u ¼ 0) while keeping the
temperature and chemical potential fixed, it can be seen that
the scalar field Ψ begins to condensate below the upper
critical value Bc2.
To construct the vortex lattice, we will use a generalized

version of the procedure introduced in Ref. [8]. First, we
need to solve the system in Eq. (5) near the upper critical
magnetic field. With this aim, we perform a series expan-
sion of the scalar and gauge fields on the parameter
ϵ ¼ ðBc2 − BÞ=B:

Ψðu; y⃗Þ ¼ ϵ1=2Ψ1ðu; y⃗Þ þ ϵ3=2Ψ2ðu; y⃗Þ þ � � � ; ð6aÞ

Aμðu; y⃗Þ ¼ Að0Þ
μ ðu; y⃗Þ þ ϵAð1Þ

μ ðu; y⃗Þ þ � � � ; ð6bÞ

in which μ ¼ ðt;ϕ; x; yÞ. We assume the leading-order
contribution of the scalar field in the form of

Ψ1ðu; y⃗Þ ¼ Φðu; yÞeipx, with p constant. Moreover, to have
a constant magnetic field normal to the boundary, we shall

consider Að0Þ
x ðu; y⃗Þ ¼ By. In addition, a constant chemical

potential at the boundary imposes Að0Þ
t ðu; y⃗Þ ¼ Að0Þ

t ðuÞ and
Að0Þ
ϕ ðu; y⃗Þ ¼ Að0Þ

ϕ ðuÞ. Thus, the nontrivial lowest-order
Maxwell equations, coming from Eq. (5), read

Að0Þ
t

00 −
�
ðΞ2 − 1Þ f

0

f
−
ð2ðz − 1ÞΞ2 − zÞ

u

�
Að0Þ
t

0

−
aΞ
l2

�
f0

f
−
2ðz − 1Þ

u

�
Að0Þ
ϕ

0 ¼ 0; ð7aÞ

Að0Þ
ϕ

00 þ
�
Ξ2

f0

f
−
ð2ðz − 1ÞΞ2 þ 2 − zÞ

u

�
Að0Þ
ϕ

0

þ aΞ
�
f0

f
−
2ðz − 1Þ

u

�
Að0Þ
t

0 ¼ 0; ð7bÞ

while the remaining ones imply Að0Þ
y ðu; y⃗Þ ¼ 0, and where

the prime notation refers to derivatives with respect to u.
At this order, the scalar and the Maxwell fields are not
coupled, as expected from Eq. (6). These two equations can
be decoupled and analytically integrated. The following
regular solutions arise:

Að0Þ
t ðuÞ ¼ μ − ρ

�
u
rh

�
3−z

; Að0Þ
ϕ ðuÞ ¼ ν − ζ

�
u
rh

�
3−z

; ð8Þ

with constant chemical potential μ, constant charge density
ρ, and ζ ¼ − a

Ξ ρ. Clearly, the above functions satisfy the
required boundary conditions provided 1 ≤ z < 3. The
regularity of the gauge field at the horizon translates to
the vanishing of these components at u ¼ 1, requiring the
fixing ρ ¼ r3−zh μ and ζ ¼ r3−zh ν. Notice that a nontrivial
rotation parameter a ≠ 0 demands a magnetic component
of the gauge field. In the limit a ¼ 0, an electric gauge
ansatz is sufficient to meet the boundary conditions.
On the other hand, the lowest-order scalar equation has

separable solutions of the form Φðu; yÞ ¼ RnðuÞγnðy;pÞ,
with the functions RnðuÞ and γnðy;pÞ defined by the
following equations:

�
−∂2YY þ Y2

4

�
γnðy;pÞ ¼

λn
2
γnðy;pÞ; ð9aÞ

R00
nðuÞ þ

�
f0

f
−
zþ 2

u

�
R0
nðuÞ ¼

��
l2

rh

�
2 Bλn

f

þ l2

f

�
m2

u2
þ ðaAð0Þ

t þ ΞAð0Þ
ϕ Þ2

r2h

�

−
�
lu
rh

�
2ðz−1Þ ðl2ΞAð0Þ

t þ aAð0Þ
ϕ Þ2

r2hf
2

�
RnðuÞ; ð9bÞ
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where Y ≔
ffiffiffiffiffiffi
2B

p ðy − p=BÞ. Equation (9a) is identified as
a one-dimensional Schrödinger-like equation and is inter-
preted as the distribution of the order parameter on the
ðx; yÞ plane. Moreover, the radial equation (9b) defines the
superconducting phase transition.
Let us now consider the regular and normalizable

solutions of Eq. (9a). These are spanned by the Hermite
polynomials as

γnðy;pÞ ¼ e−Y
2=4HnðYÞ; ð10Þ

with eigenvalues defined by λn ¼ 2nþ 1, for a non-
negative integer n.
Now, we derive a general expression for the upper

critical magnetic field Bc2 as a function of the background
parameters. Near the boundary, the radial solution is given
according to

RðuÞ ¼ J−uΔ− þ JþuΔþ ; ð11Þ

withΔ� ¼ zþ3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzþ3Þ2þ4l2m2

p
2

. To keep arguments as simple
as possible, we also impose the boundary condition J− ¼ 0
and set Jþ ¼ J and Δþ ¼ Δ.
The solution of Eq. (9b) near the horizon is tackled

through an expansion of RðuÞ around u ¼ 1:

RðuÞ ¼ Rð1Þ þ R0ð1Þðu − 1Þ þ 1

2
R00ð1Þðu − 1Þ2 þ � � � ;

ð12Þ

so that boundary conditions are met:

R0ð1Þ ¼ −
l2ðm2r2h þ l2BÞ

r2hðzþ 3Þ Rð1Þ; ð13aÞ

R00ð1Þ ¼ 1

2ðzþ 3Þ2
�
−
�
l
Ξ

�
2
�
l
rh

�
2z
½Að0Þ

t
0ð1Þ�2

þ l2m2½l2m2 þ 2ðzþ 3Þ�

þ l4B
r2h

�
2l2m2 þ l4B

r2h

��
Rð1Þ: ð13bÞ

In what follows, we will use the semianalytical matching
method [10] which has shown good agreement with the
numerical computations. This method is based on the mild
assumption that there is an intermediate point u ¼ um
where the horizon and boundary solutions, Eqs. (11) and
(12)—as well as their first derivatives—match. The result-
ing algebraic system can be solved consistently to give

B ¼ r2h
l4η

�
−δþ

�
χ þ η2

�
l
Ξ

�
2
�
l
rh

�
2z
½Að0Þ

t
0ð1Þ�2

�
1=2

�
;

ð14Þ

with

η ¼ ð1 − umÞ½ð2 − ΔÞum þ Δ�;
χ ¼ 2ðzþ 3Þð2ðzþ 3Þu2m − l2m2η2Þ;
δ ¼ 2um½ðzþ 3Þ þ l2m2ð1 − umÞ�

þ Δð1 − umÞ½2ðzþ 3Þ þ l2m2ð1 − umÞ�: ð15Þ

Near to the upper critical magnetic field value, B ≈ Bc2 is a
good approximation. Hence, using Eq. (8) in Eq. (14), we
disclose the expression

Bc2¼
�
lzþ1Ξ
zþ3

�
2=zT2=z

l4η

�
−δþ

�
χþðδ2−χÞ

�
Tc

T

�
6=z

�
1=2

�
;

ð16Þ

wherein the critical temperature is found to be

Tc ¼
zþ 3

lzþ1Ξ
1

ðδ2 − χÞz=6
�
η2l2zðz − 3Þ2

�
l
Ξ

�
2

ρ2
�
z=6

: ð17Þ

Moreover, it can be shown that when T ≈ Tc, the upper
critical magnetic field has a linear dependence with the
temperature

Bc2 ∝
�
1 −

T
Tc

�
; ð18Þ

in agreement with the well-known results in the Ginzburg-
Landau theory of superconductivity.

IV. VORTEX LATTICE DEFORMATION

We are now in position to address the construction of the
vortex lattice. We will follow a slightly similar procedure to
the one implemented in Refs. [8,14], by generalizing their
symmetry arguments. We should note that it is sufficient to
consider the lowest mode n ¼ 0 in the solution for γn, since
it is expected to correspond with the most stable case [8].
Namely, we take

γ0ðy;pkÞ ¼ exp

�
−

1

2r20
ðy − pkr20Þ2

�
; ð19Þ

with r0 ¼ 1=
ffiffiffiffi
B

p
. In this sense, the lattice is constructed by

a superposition of the lowest-order solutions

Ψ1ðu; y⃗Þ ¼ R0ðuÞ
X∞
k¼−∞

ckeipkxγ0ðy;pkÞ; ð20Þ

where R0ðuÞ is the lowest-order solution of the radial
equation (9b). At this point, one finds it useful to define the
spatial factor in Eq. (20) as
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γLðy⃗Þ ¼
X∞
k¼−∞

ckeipkx exp

�
−

1

2r20
ðy − pkr20Þ2

�
: ð21Þ

This expression is very similar to the one emerging in
Ginzburg-Landau theory for the order parameter of a type-
II superconductor under the influence of a constant mag-
netic field. The coherence length is identified as r0 ¼ ξ, and
close to the critical temperature it approaches

ξ ∝
�
1 −

T
Tc

�
−1=2

; ð22Þ

which also agrees with the known result in the Ginzburg-
Landau theory.
Note that the function (21) is periodic along the x

direction, but not necessarily along the y direction.
However, for this function to represent a vortex lattice,
we need periodicity (at least up to a phase factor) along the
y direction as well. This is possible if we choose the
parameters ck, qk, and pk to be

ck ≡ eiqk ; qk ≡ αk2; pk ≡ βk; ð23Þ

with α and β denoting arbitrary real constants. The above
definition allows us to write γL in terms of the elliptic theta
function ϑ3 as

γLðy⃗Þ ¼ e−y
2=2r2

0ϑ3ðv; τÞ; ð24Þ

in which

v ¼ β

2π
ðx − iyÞ; τ ¼ 1

2π
ð2αþ iβ2r20Þ: ð25Þ

In this form, the symmetries of γL are dictated by the well-
known symmetries of ϑ3. Using this fact, we can easily
show that γL has a pseudoperiodicity in the following
directions:

b⃗1 ¼
2π

β
∂x; b⃗2 ¼

2α

β
∂x − βr20∂y: ð26Þ

Here lies the keystone of the uttermost result. In contrast
to Refs. [8,14], we determine the most general form of
Eq. (26), which accommodates a lattice deformation
beyond a rescaling by r0. In consequence, the pseudoper-
iodicity of γL reads

γL

�
xþ 2π

β
; y

�
¼ γLðx; yÞ; ð27aÞ

γL

�
xþ 2α

β
; y − βr20

�
¼ exp½−iðαþ βxÞ�γLðx; yÞ: ð27bÞ

Altogether, the properties of γL guarantee a lattice structure
on jγLj2 with fundamental regions spanned by the vectors in

Eq. (26). Therein, the magnetic flux penetrating a unit cell
is quantized and given by B × 2πr20 ¼ 2π. This coincides
with the well-known results in the Ginzburg-Landau theory.
From Eq. (26), we find the following relations between two
adjacent vectors in the fundamental cell:

cos θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

β4

4π2B2

s
; α ¼ π cos θ; ð28Þ

wherein θ denotes the angle between these two vectors
and we have chosen their magnitudes to be the same.
Concerning the above relations, it is crucial to note that
they provide a mechanism to continuously deform a given
vortex lattice driven by the external magnetic field. Note
that β remains arbitrary in Eq. (28), hence it can be chosen
appropriately as a function of the external magnetic field.

V. EXPERIMENTAL REALIZATION

Beyond the theoretical scopes of the model here con-
ceived, we present a direct application to the local vortex
lattice deformations of a FeSe-based superconductor induced
by an external magnetic field, as presented in Ref. [17]. The
experimental results show a transition from a nearly triangu-
lar lattice at B ¼ 1 T to a rhombic lattice at B ¼ 3 T, and an
almost square one at B ¼ 4 T, at fixed temperature. Herein,
T stands for the tesla unit, which is linked to the length scale
in the bulk gravitational theory through T ¼ ½l�−1. In our
model, it suffices to determine an appropriate form of the β
parameter in terms of the external magnetic field. Our case of
interest, the FeSe lattice ofRef. [17], is adequately comprised
through the quadratic regression

β ¼ a1 þ a2Bþ a3B2; ð29Þ

with the coefficients given by a1 ¼ 2.37693T1=2, a2 ¼
−0.27870T−1=2, anda3 ¼ 0.23444T−3=2. Figure 1 illustrates
the evolution of avortex structurewhen the externalmagnetic
field increases. The observed configurations take placewhen
the magnetic field adopts the values Btr ¼ 1 T for the
triangular structure, Brh ¼ 3 T for the rhombic, and Bsq ¼
4 T for the square one. Besides that, the vortex density
increaseswhen increasing themagnetic field,which also is in
agreement with the experimental observations of Ref. [17].
On the other hand, if we consider β as a nonzero arbitrary

constant, the vortex deformation will take place from a
triangular to a square lattice, but now occurs by decreasing
the external magnetic field. In this case, the triangular
lattice corresponds to Btr ¼ β2=

ffiffiffi
3

p
π, while the square one

corresponds to Bsq ¼ β2=2π, so that the transition is
complete when the magnetic field has decreased about
13.4% with respect to Btr. However, to the best of our
knowledge, this behavior has not been observed in experi-
ments using superconducting materials.
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Finally, we advert to a less interesting case in which
β ∼

ffiffiffiffi
B

p
. In this particular setting, the external magnetic

field has no other effect but scaling the vortex structure,
similar to already known models.

VI. CONCLUSIONS AND DISCUSSION

In this work, we have constructed a holographic super-
conductor stemmed from a rotating Lifshitz background
that mimics a type-II s-wave superconductor.
In constructing the Abrikosov vortex lattice, a general-

ized approach to that in Refs. [8,14] proved fruitful. We
managed to describe continuous transformations of the
vortex lattice by varying the magnetic field as a prediction
of the holographic model. In particular, with a proper
election of the parameter β as a function of the external
magnetic field, we faithfully reproduced the experimentally
observed vortex transformation of the FeSe-based super-
conductor investigated in Ref. [17]. Likewise, the transition
of the lattice morphology reported in Ref. [18] for a LiFeAs
superconductor can also be modeled by our framework.
Yet, the freedom in choosing β means a further modeling
power, worth investigating in detail with application to
other phenomenological results.
An interesting point of comparison with our findings

is provided by Ref. [19]. There, the authors propose a

numerical model capable of predicting the triangular and
rectangular cases at different temperatures. However, no
other lattice configurations are reported, nor is there a
mechanism for continuous deformations.
Finally, we emphasize that though our model was shaped

from a near Bc2 approximation, the theory accurately
describes transitions in the vortex lattice beyond the critical
point. Thus, this work also paves the way to reproducing
experimental magnetization curves by adjusting the free
parameter βðBÞ.
Besides, this holographic approach can be extended to

other studies—namely, to describe holographic ferromag-
netic or ferroelectric materials, and to analyze the magnetic
response of materials simultaneously exhibiting both super-
conductivity and ferromagnetism.
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(a) (b) (c)

FIG. 1. The transformation of the vortex lattice from triangular (a), passing through a rhombic form (b), to a square one (c), as the
external magnetic field is increased. The vortex cores are located at the centers of the blue regions, wherein the function jγLj2 vanishes.
The displayed figures depict a generic behavior independent of the choice of the background parameters. However, the critical
dynamical exponent is restricted to 1 ≤ z < 3 due to renormalizability of the gauge field; see Eq. (8).
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