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Frame-dragging effect manifests itself as polarization direction rotation when linearly polarized
electromagnetic/gravitational wave scatters from a spinning point source through gravitational interactions,
an effect also known as the gravitational Faraday rotation. Treating general relativity as an effective field
theory, the Faraday rotation angle and its quantum corrections are computed using scattering amplitudes.
While the classical rotation angle is universal as expected from the equivalence principle, the quantum
corrections are found to be different between electromagnetic and gravitational waves, supporting earlier
studies that some formulations of the equivalence principle may need reformulation in the quantum regime.
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I. INTRODUCTION

Quantum gravity is incomplete in the sense that no
known theory remains valid at all energy scales. However,
it is known that any theory of gravitons (defined as self-
interacting massless spin-2 particles) obeying certain physi-
cal principles such as unitarity, Lorentz invariance, and
locality must reduce to general relativity (GR) at sufficiently
low energy or curvature scales [1–3]. Moreover, GR as a
quantum theory is a perfectly valid effective theory which
gives consistent predictions below the cutoff scale, where
the cutoff is conjectured to be of the order of the Planck
mass [4–6]. Therefore, it is still possible to make definite
predictions in quantum gravity which do not depend on the
ultraviolet completion of the theory. The aim of this study is
probing quantum corrections to frame-dragging, also known
as the Lense-Thirring effect.
Frame-dragging is a feature of GR for which its

Newtonian counterpart does not exist. Thus, the study of
quantum corrections to frame-dragging is a study of
quantum GR, which is qualitatively different from studies
of quantum effects in Newtonian gravity; the former cannot
be faithfully studied from the latter. This makes quantum
frame-dragging an interesting subject of study as usual
studies of quantum effects focus on phenomena having
Newtonian analogs [4,5,7–11].

Frame-dragging is sourced by angular momentum, and
localized distribution of angular momentum can be approxi-
mated as a point source with spin. Spin effects in quantum
GRhave already been studied in the literature, as corrections
to the metric [12–15], or as corrections to the potential
[16,17]. However, both the metric and the potential are
gauge-dependent quantities in GR, which renders them
incomplete as observable effects. Moreover, the spins of
the point sources considered in the works were quantum
spins having values of s ¼ 1=2 or s ¼ 1. There is a
conceptual gap between quantum spin (having values
s ¼ 1=2; 1; 3=2;…) and classical spin, and closure of the
gap seems necessary to make connections with potentially
realizable experiments; the frame-dragging effect sourced
by quantum spinswould be too small to have any observable
consequences. Fortunately, methods to circumvent both
limitations have already been studied in the literature.
The limitation of gauge-dependent quantities can be

overcome by studying scattering observables measured at
asymptotic infinity, which are free of gauge ambiguities.
The approach has already been used to argue breakdown
of the equivalence principle in the quantum realm
[10,11,18,19]. A scattering observable that is a direct
consequence of frame-dragging effect is the gravitational
Faraday rotation (GFR), where polarization direction of
linearly polarized light (or gravitational wave) is rotated
due to the ambient gravitomagnetic field sourced by
angular momentum [20–28]. The rotation angle can also
be computed using scattering amplitudes of quantum field
theory [29], which makes it an ideal observable for
studying quantum frame-dragging.
The conceptual gap between quantum and classical spin

has been studied in the context of scattering amplitude
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approaches to the classical gravitational two-body problem
[5,8,9,30–34]. While it is known that certain classical spin
effects can be captured by quantum spins [16,35–38], the
description fails to capture terms that are affected by
identities dependent on spin representations of the spinning
particle, such as trace identities. Therefore, higher-spin
(s > 2) particle descriptions are required to capture the full
dynamics of classical spinning particles [39–43], which has
met with great success in determining the classical two-
body dynamics in GR [39,40,43–52]. In this work the
semiclassical Compton amplitude [48], which is defined as
the Compton amplitude in the classical spin limit (s → ∞
with S ¼ sℏ fixed), is used. Note that amplitude compu-
tations at tree level [39–41,44,45,53] and one-loop level
[49,51,52,54] with spins in the classical spin limit have
been checked against corresponding classical computa-
tions, and found to reproduce classical spin dependence to
all orders in spin, which can be viewed as evidence for the
validity of the approach.
The GFR angle α and its leading quantum corrections at

linear order in spin are computed to be

αXðbÞ ¼
5πG2m2ðk̂ · a⃗Þ

4b3
þ cX

G2mℏðk̂ · a⃗Þ
πb4

; ð1aÞ

where m is the mass of the gravitating point source,
a⃗ ¼ S⃗=m is its spin-length vector, b is the impact
parameter, k̂ ¼ k⃗=ω is the propagation direction of the
electromagnetic/gravitational wave, and X ¼ γ, h denotes
particle species.

cγ ¼ − 994
15

þ 32 log b
b0

photon;

ch ¼ −60þ 24 log b
b0

graviton:
ð1bÞ

The leading classical term of Eq. (1a) agrees with known
geometric optics limit results [20,28,29]. Similar to the
deflection angle [10,11,18,19], the quantum corrections to
the GFR angle differ for different particle species.
In terms of the deflection angle θ ¼ 4Gm

b ð1þOðGmb ÞÞ,
the GFR angle can be written as,

αXðθÞ ¼
5π

256
ðk̂ · χ⃗Þθ3 þ c̃X

m2
Pl

m2
ðk̂ · χ⃗Þθ4;

c̃X ¼
� c̃γ ¼ − 497

240
− log θ

θ0
photon

c̃h ¼ − 15
8
− 3

4
log θ

θ0
graviton;

ð2Þ

where χ⃗ ¼ S⃗=Gm2 is the dimensionless spin parameter and
mPl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=8πG

p
is the reduced Planck mass. This expres-

sion has the advantage that all quantities on both sides
can (in principle) be directly measured at asymptotic
infinity, and that ill-definedness of b at the wave-packet
scale can be avoided [55]. It would be interesting to study

whether measurements at asymptotic infinity open up
loopholes that can be used to bypass the known no-go
results for experimental observation of quantum gravity
effects [56,57].

II. COMPUTATION SETUP

Consider a massive-massless 2 → 2 scattering
p1k2 → p0

1k
0
2, where p denotes massive momenta with

mass m and k denotes massless momenta, while q ¼ k02 −
k2 ¼ p1 − p0

1 is the transfer momentum. The massive
particle has spin Sμ, causing GFR on massless particle’s
polarization through frame-dragging.
The GFR angle α is obtained from the difference of

phase gain between two helicity states of the massless
particle. The difference in phase gain is identified with the
difference in eikonal phases δ of helicity-preserving scat-
tering amplitudes [29],

α ≔ −
δþ − δ−
2jhj ; ð3Þ

where the eikonal phase δ� is the logarithm of the scattering
amplitude in impact parameter space (IPS) [58–65].

eiδ� ≔
Z

dDq
ð2πÞD PðqÞhp0

1; k
0
2ð�ÞjSjp1; k2ð�Þi;

PðqÞ ¼ e−ib·qδ̂½q · ðp1 þ p0
1Þ�δ̂½q · ðk2 þ k02Þ�: ð4Þ

Here δ̂ðxÞ ¼ 2πδðxÞ, and � is the massless particle’s
helicity. The classical terms of the eikonal phase satisfy
exponentiation under the adopted projection condition PðqÞ
[66,67]. Only the nonanalytic terms of the scattering
amplitude contribute to finite b eikonal phase, which are
constructible from unitarity-based methods [68–70].
The relevant S-matrix elements iM can be obtained from

the 4 → 0 amplitude M4ðp1; k
þh
2 ; k−h3 ; p4Þ using crossing

symmetry. The relevant tree-level amplitudes were found to
not contribute to GFR [29],

Mð0Þ
4 ¼ Mð0Þ

4;s¼0 × exp

�
i½2jAj3i
½2jp1j3i

�
;

Mð0Þ
4;s¼0

ðκ=2Þ2 ¼
8<
:

− ½2jp1j3i2
t h ¼ 1

½2jp1j3i4
ðs−m2Þðu−m2Þt h ¼ 2;

ð5Þ

where s ¼ ðp1 þ k2Þ2, t ¼ ðk2 þ k3Þ2, u ¼ ðp1 þ k3Þ2,
and κ ¼ ffiffiffiffiffiffiffiffiffiffiffi

32πG
p

. The case h ¼ 2 corresponds to the
semiclassical spinning Compton amplitude for Kerr black
holes valid to quartic order in spin [39,42,44,48,71], which
also enters the two-graviton cut in Fig. 1 asML. The vector
Aμ ¼ ðk2 þ k3ÞνSμνðp1Þ was introduced to simplify the
notations [72]. The spin tensor Sμνðp1Þ is the Lorentz
generator Jμν restricted to the little group space of the
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incoming particle of momentum p1, satisfying the covar-
iant spin supplementary condition p1μSμν ¼ 0 [73] and
related to the spin vector by Sμν ¼ − 1

m ϵ
μναβp1αSβ. The spin

vector is the mass rescaled Pauli-Lubanski pseudovector
Sμ ¼ −1

2m ϵ
μαβγp1αJβγ [43,46,48]. Only the terms up to linear

order in spin are considered, but the extension to higher
orders would be straightforward.

The relevant terms of the one-loop amplitudeMð1Þ
4 can be

constructed from the two-graviton cut in Fig. 1. The cut has
nonvanishing contributions only when internal graviton
states have opposite helicities [11], e.g., lþ and lþ

1 . For this
helicity configuration the subamplitudes are given as [76]

M
lþ;−l−

1

L ¼ ð−κ=2Þ2½ljp1jl1i4
−4tðk2 · lÞðk2 · l1Þ

exp
�
i½ljAjl1i
½ljp1jl1i

�
; ð6Þ

M
−l−;lþ

1

R ¼ ð−κ=2Þ2½l1j2jli4
−4tðk2 · lÞðk2 · l1Þ

�h3li
h2li

�
2h
; ð7Þ

where ML ¼ MCompðp1;lþ2;−l−2
1 ; p4Þ is the semiclassi-

cal spinning Compton amplitude Eq. (5), and MR ¼
MXhhXðkþh

2 ;lþ2
1 ;−l−2; k−h3 Þ is the two-graviton–two-

helicity-h amplitude valid for h ≤ 2. The cases h ¼ 1, 2
are considered, which correspond to the Einstein-Maxwell
theory (h ¼ 1) and GR (h ¼ 2).
Using unitarity-based methods [68–70], the one-loop

integrand for M4ðp1; k
þh
2 ; k−h3 ; p4Þ is constructed from the

two-graviton cut as [77]

iMð1Þ
4 ¼

Z
dDl
ð2πÞD

h
M

lþ;−l−
1

L M
−l−;lþ

1

R

i
þ ðl ↔ −l1Þ

2l2l2
1

; ð8Þ

where the “numerator” ML ×MR captures all momentum
dependence of the full one-loop integrand subject to the
cut conditions l2 ¼ 0 and l2

1 ¼ ðl − k2 − k3Þ2 ¼ 0, which
determines the nonanalytic t dependence of the full
amplitude relevant to long-distance physics [9]. The second
term ðl ↔ −l1Þ in the numerator of Eq. (8) denotes

opposite helicity configuration for the gravitons. Explicit

evaluation of the first termM
lþ;−l−

1

L M
−l−;lþ

1

R for nth order in
spin yields

MLMR

ðκ=4Þ4
����
OðSnÞ

¼ in

n!
½tr−ðk2l1p1lÞ�4−n½tr−ðk2l1AlÞ�n
t2ðp1 · lÞðp1 · l1Þðk2 · lÞðk2 · l1Þ

×
1

½3jp1j2i2h
�
tr−ðk2lk3p1Þ
2ðk2 · lÞ

�
2h
; ð9Þ

where tr−ðab � � �Þ ¼ trð1−γ5
2

ab � � �Þ. The vector Aμ is
expanded on the basis formed from external momenta:

Aμ ¼ a1p
μ
1 þ a2k

μ
2 þ a3k

μ
3 þ a4ϵαβγμp1αk2βk3γ; ð10Þ

where the coefficients ai are rational functions of
Mandelstam invariants and spin-vector Lorentz invariants

fðk2 · SÞ; ðk3 · SÞ; ϵαβγμpα
1k

β
2k

γ
3S

μg: ð11Þ

All loop-momentum-dependent Levi-Civita contractions
take the form ϵαβγμpα

1k
β
2k

γ
3l

μ under the expansion Eq. (10).
Any expression linear in this Levi-Civita contraction
vanishes after loop-momentum integration [19], so they
can be discarded before performing reduction to master
integrals.
Reduction to master one-loop integrals was performed

using the package LiteRed v1.83 [80,81], where the one-loop
amplitude is expanded on the basis of scalar bubble (I2ðtÞ),
massive (I3ðt; mÞ) and massless (I3ðt; 0Þ) triangle, and two
box (I4ðs;tÞ and I4ðu;tÞ) integrals. The results forM4ðh;nÞ
defined by the relations

κ4M4ðh; nÞ
½3jp1j2i2h

¼ iMð1Þ
4 ðp1; k

þh
2 ; k−h3 ; p4ÞjOðSnÞ; ð12Þ

expanded in terms of master integrals

M4ðh; nÞ ¼ b1I4ðs; tÞ þ b2I4ðu; tÞ þ t1I3ðt; mÞ
þ t2I3ðt; 0Þ þ bI2ðtÞ; ð13Þ

are presented in the ancillary file integralcoeffs.m
[82] for h ¼ 0, 1, 2 and n ¼ 0, 1, where the coefficients
(b1, b2, t1, t2, and b) are rational functions of Mandelstam
invariants and polynomials of spin Lorentz invariants
[Eq. (11)]. The integral coefficients were checked against
overlapping known results in the literature [11,19,29] and
found to agree.
The eikonal phase [Eq. (4)] is evaluated using the center

of momentum (COM) frame kinematics parametrized as

FIG. 1. The two-graviton cut for the one-loop amplitude
M4ðp1; k

þh
2 ; k−h3 ; p4Þ. Solid lines denote massive semiclassical

spinning particle, dashed lines denote massless helicity h particle,
and wavy lines denote internal exchanged gravitons. ML is
the semiclassical gravitational spinning Compton amplitude
[Eq. (6)], and MR is the two-graviton–two-helicity-h amplitude
[Eq. (7)]. Figure drawn with package TIKZ-FEYNMAN [75].
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pμ
1 ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ω2

p
;−k⃗þ q⃗=2Þ; kμ2 ¼ ðω; k⃗ − q⃗=2Þ;

p0μ
1 ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ω2

p
;−k⃗ − q⃗=2Þ; k0μ2 ¼ ðω; k⃗þ q⃗=2Þ;

ð14Þ

where k ≔ k2þk0
2

2
and q ≔ k02 − k2. On-shell conditions

require k⃗ · q⃗ ¼ 0 and ω2 ¼ k⃗2 þ q⃗2=4. The ℏ factors are
restored through the rules [29,36,83,84]

G →
G
ℏ
; Sμ →

Sμ

ℏ
; ω → ℏω; k⃗ → ℏk⃗; q⃗ → ℏq⃗;

ð15Þ

and the classical expansion parameters are chosen as

�
Gmjq⃗j ∼ Gm

b
;
jq⃗jjS⃗j
m

∼
S
mb

;
jq⃗j
ω

∼
1

ωb
¼ λ

b

�
; ð16Þ

where b ¼ jb⃗j is the impact parameter and λ ≔ ω−1 is
the wavelength of the massless particle. Only the leading
terms in ðωbÞ−1 are considered, limiting the analyses to
the geometric optics regime [29,84]. ℏ ¼ 1 is used unless
explicit ℏ counting is necessary. In the COM frame, the
components of the covariant spin vector are

Sμ ¼
�
p⃗1 · S⃗
m

; S⃗þ p⃗1ðp⃗1 · S⃗Þ
mðmþ E1Þ

�
; ð17Þ

where E1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ω2

p
and p⃗1 ¼ −k⃗þ q⃗=2. The follow-

ing basis of spin Lorentz invariants is used in the eikonal
phase where nμ ¼ ϵαβγμpα

1k
βqγ:

ðk · SÞ ¼ −
�
mþ ω

m
ðk⃗ · S⃗Þ − ωðq⃗ · S⃗Þ

2m

�
½1þOðℏ2Þ�;

ðq · SÞ ¼ −ðq⃗ · S⃗Þ½1þOðℏ2Þ�;
ðn · SÞ ¼ ðmþ ωÞfq⃗ · ðk⃗ × S⃗Þg½1þOðℏ2Þ�:

The expressions were expanded to first subleading order in
ℏ. The little group factor ½20jp1j2i is

½20jp1j2i ¼ ½2jp1j20i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr−ðk2p1k02p1Þ

q

¼ 2ðmþ ωÞω½1þOððq=ωÞ2;ℏ2Þ�: ð18Þ

The ϵ−1 pole subtracted scalar integrals (D ¼ 4 − 2ϵ) are
used when converting to IPS, where t ¼ −q⃗2 and relevant
terms for leading quantum corrections were kept. The
integrals were taken from Ref. [85].

I2ðtÞ ¼
−i
16π2

logðq⃗2Þ;

I3ðt;0Þ ¼
−i
32π2

log2ðq⃗2Þ
q⃗2

;

I3ðt;mÞ ¼ −i
32

�
1

m
ffiffiffiffiffi
q⃗2

p þ logðq⃗2Þ
π2m2

�
;

I4ðs; tÞþ I4ðu; tÞ ¼
−ðm−ωÞ
16πm2ω

logðq⃗2Þ
q⃗2

;

I4ðs; tÞ− I4ðu; tÞ ¼
−1

16πmω

logðq⃗2Þ
q⃗2

: ð19Þ

The table for IPS Fourier transform is

Z
d2q
ð2πÞ2 e

iq⃗·b⃗ 1

q⃗2
¼ −

logðbÞ
2π

;

Z
d2q
ð2πÞ2 e

iq⃗·b⃗ 1ffiffiffiffiffi
q⃗2

p ¼ 1

2πb
;

Z
d2q
ð2πÞ2 e

iq⃗·b⃗ logðq⃗2Þ ¼ −
1

πb2
;

Z
d2q
ð2πÞ2 e

iq⃗·b⃗ logðq⃗2Þ
q⃗2

¼ log2ðbÞ
2π

;

Z
d2q
ð2πÞ2 e

iq⃗·b⃗ log
2ðq⃗2Þ
q⃗2

¼ −
2log3ðbÞ

3π
; ð20Þ

where regulator-dependent terms [e.g., logð4πÞ, γE, ζn, etc.]
were dropped from the Oðϵ0Þ terms computed from the
master integral Eq. (3.14) of Ref. [86] (D − 2 ¼ 2 − 2ϵ).

III. RESULTS

The eikonal phase [Eq. (4)] is decomposed into the
average part δ̄ and the GFR angle α [Eq. (3)] as

δ�→� ¼ δ̄ ∓ jhjα; ð21Þ

which is further decomposed into five pieces,

δ ¼ δ⌶ þ δ□−⌶2 þ δ△ þ δ▽ þ δ≬; ð22Þ

where δ stands for δ̄, α, or δ�. The decomposition is based
on the contributing integral; δ⌶ is the tree, δ△ðδ▽Þ is the
massive(massless) triangle, δ≬ is the massless bubble, and
δ□−⌶2

is the remainder that captures failure of exponen-
tiation by the box contributions, e.g., [87]

iδ□−⌶2

þ ¼
�Z

d2q
ð2πÞ2

κ4½b1I4ðs; tÞ þ b2I4ðu; tÞ�
½2jp1j20i2h

	
−
½δ⌶þ �2
2!

:

The remainder term is also known as the quantum remain-
der [65,90,91], but is known to contribute classically at first
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subleading order in ðωbÞ−1 [29]. When writing the eikonal
phase, it is convenient to define the vectors

k̂ ≔
k⃗
ω
; a⃗ ≔

S⃗
m
; d⃗ ≔

k⃗ × S⃗
mω

¼ k̂ × a⃗: ð23Þ

The vector k̂ has unit length to the considered approxima-
tion order, is directed along the massless particle’s propa-
gation direction, and is orthogonal to the IPS.
The tree eikonal phase from Eq. (5) is independent of

helicity,

δ̄⌶ ¼ δ⌶� ¼ −4Gðmþ ωÞω
�
logðbÞ þ d⃗ · b⃗

b2

	
; ð24Þ

and has quantum terms [92] which did not appear in the
previous study, traced back to different IPS projection
condition PðqÞ and different definition of ω [29].
The remainder and massive triangle contributions are

found to be universal; they are the same for h ¼ 0, 1, 2.

iδ̄□−⌶2 ¼ 2G2m2

b2

�
1 −

6ðd⃗ · b⃗Þ
b2

þ 2ωℏ
m

�
1 −

4ðd⃗ · b⃗Þ
b2

		
;

iα□−⌶2 ¼ 8G2m2ðk̂ · a⃗Þ
ωb4

�
1þ ωℏ

m

�
;

δ̄△ ¼ 15πG2m2ω

4b

�
1þ ωℏ

m

��
1 −

4

3

ðd⃗ · b⃗Þ
b2

	

−
15

2π

�
Gm
b

�
2
�
ωℏ
m

��
1 −

8

3

ðd⃗ · b⃗Þ
b2

	
; ð25Þ

α△ ¼ 5πG2m2ðk̂ · a⃗Þ
4b3

�
1 −

8

π2
ℏ
mb

	
: ð26Þ

The remainder terms are purely imaginary, and the classical
remainder terms are ðωbÞ−1 subleading compared to the
classical triangle terms [29]. Since it is unclear how to
interpret the imaginary terms, the remainder terms are
neglected in the final analysis.
The remaining contributions differ for external scalarðφÞ,

photonðγÞ, and gravitonðhÞ. The massless triangle contri-
butions have a universal scaling:

δ̄▽X ¼ 8G2mωℏ
πb2

�ðd⃗ · b⃗Þ
b2

þ logðbÞ
�
1−

2ðd⃗ · b⃗Þ
b2

		
c▽1;X; ð27Þ

α▽X ¼ 8G2mℏðk̂ · a⃗Þ
πb4

½−1þ logðbÞ�c▽2;X; ð28Þ

where

c▽1;φ ¼ 3; c▽1;γ ¼ 3; c▽1;h ¼ 4; ð29Þ

c▽2;γ ¼ 4; c▽2;h ¼ 3; ð30Þ

and X ¼ φ; γ; h denotes particle species. The bubble con-
tributions are not as orderly:

δ̄≬X ¼ G2mωℏ
πb2

c≬3;X þG2mωℏðd⃗ · b⃗Þ
πb4

c≬4;X; ð31Þ

α≬X ¼ G2mℏðk̂ · a⃗Þ
πb4

c≬5;X: ð32Þ

The coefficients are found to be

c≬3;φ ¼ 3

10
; c≬3;γ ¼ −

161

30
; c≬3;h ¼ −

29

2
; ð33Þ

c≬4;φ ¼ 52

5
; c≬4;γ ¼

326

15
; c≬4;h ¼ 40; ð34Þ

c≬5;γ ¼ −
364

15
; c≬5;h ¼ −26: ð35Þ

Collecting the results (α△, α▽, and α≬) yields the GFR
angle Eq. (1), or Eq. (2) in dimensionless variables, after
restoring reference scales (b0 or θ0) in the logarithms.
The difference of the GFR angle between photons and
gravitons is

αγ − αh ¼ −
�
94

15
− 8 log

b
b0

�
G2mℏðk̂ · a⃗Þ

πb4

¼ −
�
47

240
þ 1

4
log

θ

θ0

�
m2

Pl

m2
ðk̂ · χ⃗Þθ4: ð36Þ

While the remainder term α□−⌶2

is nonzero, the difference
[Eq. (36)] is independent of it because its contribution is
universal.

IV. DISCUSSION

Measuring classical frame-dragging effect is already a
technological challenge [93], and measuring its quantum
corrections does not seem to be possible in the near future if
not impossible [for reference, ðmPl=M⊙Þ2 ∼ 10−78 for solar
mass M⊙]. Nevertheless, the quantum corrections to the
GFR angle are interesting from a theoretical perspective,
as the result provides a window into how the equivalence
principle—the founding principle of GR which can be
bootstrapped from physical requirements [94]—should be
understood when quantum loops are present.
In classical geometric optics approximation the GFR

angle is computed by integrating the Levi-Civita connec-
tion along the ray’s trajectory [20], which is independent of
particle’s species and can be understood as a manifestation
of the equivalence principle [28,29]. But, in the quantum
regime different particle species experience different polari-
zation rotation, which can be attributed to the difference in
the trajectories [10], the difference in the frame-dragging
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rate, or both. Any of the suggested options are in tension
with the usual formulation of the equivalence principle,
which demands that massless particles travel on a universal
trajectory and experience a universal frame-dragging rate.
Moreover, the difference of the GFR angle [Eq. (36)] is

robust against redefinitions; it is invariant under the mass
redefinition m → mð1þ # ωℏ

m Þ or the impact parameter
redefinition b → bð1þ # Gm

b þ # ℏ
mbÞ, where # are Oð1Þ c

numbers. The former is relevant since on-shell mass and
classical mass can be different [66]. The latter is relevant
since the definition of bmay change due to geometry of the
kinematics [95], and since it is ill defined at the wave-
packet scale (ℏm is the Compton wavelength).
However, it would be premature to conclude from the

findings that the equivalence principle is violated, as the
tension may be resolved under scrutiny. One possibility is
that the difference [Eq. (36)] is a tidal effect induced by the
finite size of the wave packet, for which the equivalence
principle need not hold. The other possibility is that the
equivalence principle only constrains outcomes of experi-
ments, which are subject to the resolving power of the
experimental apparatuses.
For the former possibility, the difference should depend

on the size of the wave packet, which in turn is determined
by the massless particle’s wavelength λ ¼ ω−1. While the
quantum suppression factor ℏ

mb in Eq. (36) does not depend
on λ, the wavelength dependence could be hidden in the
reference scale b0. For the latter possibility, the difference

should be compared with the theoretical bound on the
resolution for the deflection angle and the polarization
direction. Understanding how the reference scale (b0 or θ0)
of the logarithms is determined would be necessary for
exploring any of the considered possibilities, and a more
thorough analysis is needed before a definite conclusion
could be made. Whether the conclusions of this work,
which are based on calculations of a single quantum of
electromagnetic/gravitational wave scattering from a point
source, still apply for classical waves described by coherent
states [67] would be another subject for future studies.
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