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We propose a prescription for describing correlation functions in higher-dimensional defect conformal
field theories (DCFTs) by those in ancillary conformal field theories (CFTs) without defects, which is a vast
generalization of the image method in two-dimensional boundary CFTs. A correlation function of n
operators inserted away from a defect in a DCFT is represented by a correlation function of 2n operators in
the ancillary CFT, each pair of which is placed symmetrically with respect to the defect. We establish the
correspondence by matching the constraints on correlation functions imposed by conformal symmetry on
both sides. Our method has the potential to shed light on new aspects of DCFTs from the viewpoint of
conventional CFTs.
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The method of images is one of the most powerful
mathematical techniques for solving differential equations
under a boundary condition by extending the domain of a
function across the boundary that mirrors the images of the
original domain to the outside. It is a highly versatile
method applicable to various situations, ranging from
classical electromagnetism to condensed matter physics
to string theory. The most familiar and intuitive physical
application one encounters is the calculation of the electric
field of a charged particle in the presence of a conducting
surface. Another well-known example in condensed matter
physics relates to topological insulators. In the presence of
the U(1) topological term, when an electrically charged
particle is placed near the gapless surface of a topological
insulator, a magnetic monopole appears as a mirror image
of the electric charge [1].
Interestingly, a similar idea of having mirror images was

proposed by Cardy [2] in two-dimensional boundary
conformal field theory (BCFT2), and applied to reduce
the correlation functions of local operators to those of the
local operators and their mirror images in a two-dimensional
conformal field theory (CFT2) without boundary. This is
known as the “doubling trick” as it doubles the number of
operators inside the correlator. The validity of this trick
follows straightforwardly from the fact that both the
correlation functions in BCFT2 and the corresponding
CFT2 satisfy the same conformal Ward identities. This

perspective allows us to investigate BCFT2 by leveraging
various techniques and results in CFT2. Prominent exam-
ples include quantum impurity problems (the Kondo effect)
[3,4], spin-spin correlation functions in the Ising model [5],
open string theories and D-branes [6,7], and quantum
quenches in CFT2 [8,9].
More generally, BCFT falls into a subclass of defect

CFTs (DCFTs) with extended objects called “defects” in
addition to local operators. From the DCFT point of view,
the boundary of BCFT in d dimensions can be regarded as a
(d − 1)-dimensional defect. DCFTs with lower-dimensional
defects have attracted attention and been extensively inves-
tigated in recent works; boundary and defect conformal
bootstrap [10–12], Lorentzian inversion formula for two-
point functions in DCFT [13], classification of defect central
charges [14–19], defect C-theorems [20–23], integrable
structures [24,25], to name a few. Further developments
of DCFT in various fields may be found in [26] and the
references therein.
Adding an arbitrary defect to CFT typically breaks the

entire conformal symmetry SOð1; dþ 1Þ, while DCFT
allows a class of defects (conformal defects of planar or
spherical shape) that preserve a part of conformal sym-
metry.1 The residual symmetry group of DCFT with a
p-dimensional defect DðpÞ is SOð1; pþ 1Þ × SOðd − pÞ
and is called the defect conformal group. The SOð1; pþ 1Þ
and SOðd − pÞ groups correspond to the conformal and
rotational groups that act on and around the defect,
respectively. Without loss of generality, we place a
p-dimensional planer defect at xμ ¼ 0 for μ ¼
pþ 1; � � � d and decompose the d-dimensional coordinatesPublished by the American Physical Society under the terms of
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1Throughout this paper, we consider DCFTs in Euclidean
spacetime.
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xμ into parallel and transverse directions to the defect as
xμ ¼ ðx̂a; xi⊥Þ with a ¼ 1;…; p and i ¼ pþ 1;…; d. As a
simplest example, we illustrate a line defect (p ¼ 1) in a
three-dimensional space Rd¼3 in Fig. 1.
In DCFT, there are two types of operators: bulk local

operators and defect local operators. In particular, a bulk
scalar operator Oδ with conformal dimension δ is located
away from the defect, while a defect local scalar operator
Ôδ̂ with conformal dimension δ̂ lives on the defect and
represents localized excitations there. Although a few
initial studies of the correlation functions of bulk and
defect local operators have been carried out in [27–30],
these methods are rather involved and of less practical use
so far (see, e.g., [31] for the current status).
In this paper, we propose a novel generalization of the

method of images in DCFT, which translates correlation
functions of DCFT into those of CFT.2 Our prescription
provides us a clear-cut way to write down DCFT correlators
without resorting to specialized techniques, and lowers the
substantial barriers to investigating unexplored structures
of defects in CFT.
We first focus on scalar primaries for simplicity and state

our prescription. Then, we move on to the spinning case.
Our statement for scalar primaries is as follows:
The correlation function of n bulk scalars Oδα ; α ¼

1;…; n and m defect local scalars Ôδ̂α̂
; α̂ ¼ 1;…; m in

DCFT is equivalent to the correlation function of n-pairs of

local scalars Oδα=2 and m local scalars Oδ̂α̂
in an ancillary

CFT by the following relation:
�Yn

α¼1

OδαðxαÞ
Ym
α̂¼1

Ôδ̂α̂
ðyα̂Þ

�
DCFT

≈
�Yn

α¼1

½Oδα=2ðxαÞOδα=2ðx̄αÞ�
Ym
α̂¼1

Oδ̂α̂
ðyα̂Þ

�
CFT

; ðSÞ

where ≈ means that both sides satisfy the same differential
equations dictated by conformal symmetry. The coordinate
x̄ stands for the antipodal point of x along the transverse
direction to the boundary/defect: x̄μ ¼ ðx̂a;−xi⊥Þ, whereas
y is the coordinate on the defect, yμ ¼ ðŷa; yi⊥ ¼ 0Þ.3
We emphasize that the ancillary CFT considered here is

neither the bulk part of the DCFT nor necessarily unitary in
general. To clarify this point, let us take as an example a
line defect in a free scalar theory in four-dimensional
spacetime [27,35]. The free scalar field is a bulk scalar
primary operator of dimension δ ¼ 1, so the conformal
dimension of the corresponding auxiliary scalar on the CFT
side becomes δ=2 ¼ 1=2, which is clearly below the
unitarity bound in four-dimensional CFT [36]. The ancil-
lary CFT correlators h� � �iCFT considered in the statement
(S) serve just as conformally invariant structures and should
not be regarded as physical objects. To make manifest the
auxiliary role of the CFT, we use different fonts to denote
the operators in DCFT and the associated CFT.
Figure 2 and 3 show two specific cases of the statement

(S); a line defect (p ¼ 1) in three dimensions (d ¼ 3) and
d-dimensional BCFT ðp ¼ d − 1Þ, respectively.
We now present a few working examples of the

correspondence (S) in order.
a. Bulk one-point function. The one-point function of a

bulk local operator in DCFT is uniquely fixed by the
conformal symmetry to be

hOδðxÞiDCFT ¼ aδ
jx⊥jδ

; ð1Þ

where jx⊥j2 ≡ xi⊥x⊥;i and aδ is a constant whose value
depends on a model of DCFT. On the other hand, the two-
point function of bulk operators inserted at xμ ¼ ðx̂a; xi⊥Þ
and the antipodal point x̄μ ¼ ðx̂a;−xi⊥Þ is

hOδ=2ðxÞOδ=2ðx̄ÞiCFT ¼ Cδ=2

jx − x̄jδ ¼
Cδ=2

2δjx⊥jδ
; ð2Þ

where Cδ=2 is a constant. It reproduces the DCFT one-point
function (1) up to a coefficient.
b. Bulk-to-defect two-point function. Next, we consider

the two-point function of a bulk operator at xμ and a defect
local operator at yμ ¼ ðŷa; 0Þ:

FIG. 1. Illustrated is a line defect Dðp¼1Þ located at x2⊥ ¼ x3⊥ ¼
0 in three-dimensional spacetime Rd¼3. In this case, the full
conformal group SOð1; 4Þ breaks into the product of the
conformal group SOð1; 2Þ and the rotation group SO(2).

2The method of images was foreseen previously in the study of
a line defect in the (2þ 1)-dimensional Ising model [32]. This
correspondence was also hinted by other recent researches in
BCFT (e.g., [16,33,34]). We thank J. H. H. Perk and A. Söder-
berg for informing us of their relevant works.

3We consider a theory with defects invariant under antipodal
reflection x ↦ x̄.
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hOδðxÞÔδ̂ðyÞiDCFT ¼ bδ;δ̂
jx⊥jδ−δ̂ðjx̂ − ŷj2 þ jx⊥j2Þδ̂

; ð3Þ

where jx̂j2 ≡ x̂ax̂a and bδ;δ̂ is a model-dependent constant.
Applying the method of images yields the following three-
point function in CFT:

hOδ=2ðxÞOδ=2ðx̄ÞOδ̂ðyÞiCFT
¼ Cδ=2;δ=2;δ̂

jx − yjδ̂jy − x̄jδ̂jx − x̄jδ−δ̂

¼ Cδ=2;δ=2;δ̂

2δ−δ̂jx⊥jδ−δ̂ðjx̂ − ŷj2 þ jx⊥j2Þδ̂
; ð4Þ

with an undetermined constant Cδ=2;δ=2;δ̂. This correlator
correctly reproduces the bulk-to-defect two-point function
(3) up to a coefficient as expected.
c. Outline of the proof of the image method. Conformal

correlators are strongly constrained by differential equa-
tions associated with conformal symmetry. These equa-
tions are often called the conformal Ward identities.
Therefore, it is enough to show that both hand sides of
(S) satisfy the same differential equations related to
common symmetries: the conformal symmetry parallel
to the defect and the rotational symmetry around the
defect. Here we illustrate this strategy by taking the bulk
one-point function as a simplest example. We will check
that both hOδðxÞiDCFT and hOΔ1

ðx1ÞOΔ2
ðx2ÞiCFT satisfy

the same differential equations inherited from the residual
symmetry SOð1; pþ 1Þ × SOðd − pÞ if we place two
primaries mirror-symmetrically in the CFT side, namely,
x1 ¼ x, x2 ¼ x̄, and Δ1 ¼ Δ2 ¼ δ=2.
d. Translations in the parallel directions. The conformal

Ward identities in DCFT associated with the translations
parallel to the defect are

∂

∂x̂a
hOδðxÞiDCFT ¼ 0; ð5Þ

while on the CFT side the conformal Ward identities along
the xa direction are

�
∂

∂xa1
OΔ1

ðx1ÞOΔ2
ðx2Þ

�
CFT

þ
�
OΔ1

ðx1Þ
∂

∂xa2
OΔ2

ðx2Þ
�

CFT
¼ 0: ð6Þ

If we take mirror-symmetric configuration (x1 ¼ x, x2 ¼ x̄
and Δ1 ¼ Δ2 ¼ δ=2), the differential equations (6)
reduce to

∂

∂xa
hOδ=2ðxÞOδ=2ðx̄ÞiCFT ¼ 0; ð7Þ

which correctly reproduces (5).
e. Dilatation. On the DCFT side, the dilation symmetry

yields the conformal Ward identity

�
xμ

∂

∂xμ
þ δ

�
hOδðxÞiDCFT ¼ 0; ð8Þ

while in CFT we have

��
xμ1

∂

∂xμ1
þ Δ1

�
OΔ1

ðx1ÞOΔ2
ðx2Þ

�
CFT

þ
�
OΔ1

ðx2Þ
�
xμ2

∂

∂xμ2
þ Δ2

�
OΔ2

ðx2Þ
�

CFT
¼ 0: ð9Þ

FIG. 2. The method of images (S) for n ¼ 2, m ¼ 1 in three-
dimensional spacetime with a line defect. The bulk-bulk-defect
three-point function in DCFT [Left] behaves in the same way as
the five-point conformally invariant structure [Right]. Each bulk
scalar primary in DCFT is associated with a pair of auxiliary
scalar primaries placed in the mirror-symmetric configuration
with respect to the position of the defect in an ancillary CFT.

FIG. 3. The method of images (S) for BCFTwith two bulk and
one boundary operators. The BCFT correlator on upper half-
space xd⊥ ≥ 0 [Left] is equivalent to the corresponding ancillary
CFT correlator on the full space [Right].
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By locating x1, x2 at the mirror-symmetric configuration
and setting Δ1 ¼ Δ2 ¼ δ=2, (9) takes the same form as (8):

�
xμ

∂

∂xμ
þ δ

�
hOδ=2ðxÞOδ=2ðx̄ÞiCFT ¼ 0: ð10Þ

f. Special conformal transformations in the parallel
directions. The conformal Ward identities for the special
conformal transformations in DCFT are given by

�
2x̂a

�
xμ

∂

∂xμ
þ δ

�
− x2

∂

∂x̂a

�
hOδðxÞiDCFT ¼ 0; ð11Þ

while the conformal Ward identities for the special con-
formal transformations along the xa direction in CFT are

��
2x̂1;a

�
xμ1

∂

∂xμ1
þΔ1

�
−x21

∂

∂xa1

�
OΔ1

ðx1ÞOΔ2
ðx2Þ

�
CFT

þ
�
OΔ1

ðx1Þ
�
2x̂2;a

�
xμ2

∂

∂xμ2
þΔ2

�
−x22

∂

∂xa2

�
OΔ2

ðx2Þ
�

CFT

¼ 0: ð12Þ

In the mirror-symmetric configuration with Δ1 ¼ Δ2 ¼
δ=2, (12) gives rise to the same differential equation as (11).
Similarly, hOδðxÞiDCFT and hOδ=2ðxÞOδ=2ðx̄ÞiCFT satisfy
the same differential equations for the parallel and trans-
verse rotational symmetries. Thus, we have verified our
statement (S) for a bulk one-point function.
By applying the same strategy as the one-point case to

higher-point functions, 2n-point CFT correlators can be
shown to satisfy the same conformal Ward identities for
n-point DCFT correlators when the operators are located in
the mirror-symmetric configurations and their conformal
dimensions are chosen appropriately. We will provide the
complete proof of (S) to the upcoming paper [37], where
wewill use the embedding space formalism [38] to simplify
the derivation by dealing with the conformal Ward iden-
tities more concisely.
g. Method of images for spinning primaries. The method

of images for scalar operators takes a similar form to
Cardy’s doubling trick in two-dimensional BCFTs, where
the holomorphic factorization allows to split a bulk local
operator into the holomorphic and antiholomorphic parts.
In higher-dimensional spacetime, the generalization of the
image method for spinning operators is more intricate than
the scalar case as the tensor structure of spinning operators
is quite different from the two-dimensional case, and the
holomorphic factorization no longer holds. To circumvent
the difficulties for dealing with symmetric traceless tensors,
we use the encoding polynomial techniques [39]. Let us
construct the encoding polynomial for a spin-J symmetric
traceless tensor fμ1���μJðxÞ by contracting its indices with a
null polarization vector zμ (zμzμ ¼ 0):

fJðx; zÞ≡ zμ1 � � � zμJfμ1���μJðxÞ: ð13Þ

Then, we argue a kinematical correspondence between a
spinning operator in DCFT and a pair of ancillary CFT
operators located mirror-symmetrically against the defect
with respect to the position x as well as the polarization
vector z:

�Yn
α¼1

Oδα;Jαðxα; zαÞ
�

DCFT

≈
�Yn

α¼1

½Oδα=2;Jα=2ðxα; zαÞOδα=2;Jα=2ðx̄α; z̄αÞ�
�

CFT

; ðS0Þ

where z̄ ¼ ðẑ;−z⊥Þ. The proof of (S0) proceeds in parallel
with the scalar case (S). Here we content ourselves with
working out the simplest example and relegate the proof to
the sequel [37].
h. Bulk spin-J one-point function. The conformal sym-

metry determines the bulk one-point function of a spin-J
operator in DCFT as:

hOδ;Jðx; zÞiDCFT ¼ a½δ;J�
½ðx⊥ · z⊥Þ2 − jz⊥j2jx⊥j2�J=2

jx⊥jδþJ ; ð14Þ

where x⊥ · z⊥ ≡ xi⊥z⊥;i This is indeed kinematically equiv-
alent to the following two-point function in CFT:

hOδ=2;J=2ðx; zÞOδ=2;J=2ðx̄; z̄ÞiCFT
¼ C½δ=2;J=2�;½δ=2;J=2�

×
fðz · z̄Þðx − x̄Þ2 − 2½z · ðx − x̄Þ�½z̄ · ðx − x̄Þ�gJ=2

jx − x̄jδþJ

¼ C½δ=2;J=2�;½δ=2;J=2�
½ðx⊥ · z⊥Þ2 − jz⊥j2jx⊥j2�J=2

2δ−J=2jx⊥jδþJ : ð15Þ

i. Discussion and future direction. Correlation functions
in DCFTs have attracted much attention in recent studies,
and have been explored extensively so far [27–30]. In this
letter, we proposed the novel method that can reproduce
correlation functions in DCFT by those in the ancillary
CFT. Our method is a complementary approach to the
existing method for DCFT correlators. It is free from
additional complications for handling defects, and we
believe our approach is more accessible to those who
are interested in DCFTs but only familiar with conven-
tional CFTs.
For comparison to ours, let us sketch the previous works

[27,28] which developed systematic methods to build
conformal invariants in DCFT based on the embedding
space formalism. To implement the breaking of conformal
symmetry to the subgroup that remains in DCFT, these
methods introduce either auxiliary vectors [28] or partial
inner products for the embedding space vectors [27]. While
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the two methods are different-looking at first sight, they are
equivalent and can be used interchangeably (see, e.g., [29]).
Hence, we focus on the latter description in the following.
Then, the construction of the DCFT correlators amounts to
enumerating conformal invariants built out of both ordinary
and partial inner products of the embedding vectors. This
procedure can be carried out in the same way as the CFT
correlators [39], but more invariants arise from the partial
inner products [27]. There is another possible complication
that some of the invariants are not independent due to the
lack of full conformal symmetry. This obstacle can be
circumvented in our method which reduces the construc-
tion to the mundane problem in CFT. On the other hand,
ours has a drawback that the number of operators is
doubled and higher-point correlators have to be dealt with.
It depends on one’s familiarity which method is favorable.
DCFT oriented readers may prefer the existing method
while others would find ours more intuitive and useful.
While we have mainly focused on bulk spinning local

primaries in this paper, one can consider spinning defect
local primaries carrying two types of spins associated with
the parallel and transverse rotational groups. In [37], we
will extend the method of images to include defect local
primaries with the parallel and transverse spins and
examine the correlation functions with these operators
systematically in terms of CFTwith the hope of uncovering
new structures and relations between correlation functions
in DCFT.
Some examples of lower-point functions [from Eq. (1)

to (4)] imply that the one-point coefficient aδ and the bulk-
to-defect coupling constant bδ;δ̂ in DCFT correspond to the
two-point Cδ=2;δ=2 and the three-point Cδ=2;δ=2;δ̂ coefficients
in the ancillary CFT, respectively, as

Cδ=2;δ=2 ¼ 2δaδ; Cδ=2;δ=2;δ̂ ¼ 2δ−δ̂bδ;δ̂: ð16Þ

These coefficients incorporate model-dependent informa-
tion that cannot be determined kinematically by the con-
formal symmetry. This non-kinematical correspondence is
not limited to lower-point functions. One can expand
higher-point correlation functions on both sides of (S) in
a particular basis given by conformally invariant structures
associated with its global symmetry and match the model-
dependent data of the two theories. Given the dictionary
between the data beyond kinematics in the two theories, the
method of images may shed light on new aspects of DCFTs
from the viewpoint of conventional CFTs. For example, it
will allow us to constrain the DCFT data by solving the
conformal bootstrap equations in DCFT, not directly, but by
reducing them to the corresponding equations in CFT and
leveraging the well-developed techniques in the past fifteen
years since [40]. While the DCFT crossing equations do not
necessarily have the positive coefficients for the conformal
block expansions in the bulk channel, one can perform the

conformal bootstrap by assuming solutions with positive
coefficients as in [10]. Within such a restricted parameter
space, combining the conformal bootstrap with the method
of images would be favorable to search for a new class of
nontrivial DCFT models.
One of the most fundamental issues in DCFTs is whether

an energy condition exists or not. A promising candidate is
the averaged null energy condition (ANEC), which has been
shown to hold in any relativistic unitary quantum field
theory [41,42]. ANEC has played a principal role in
restricting central charges of CFTs [43], and it imposes
new constraints for the types of defects if it holds in DCFTs
(see, e.g., [18,19,31]). In the presence of extended objects,
the existing proof of ANEC is no longer applicable, but even
in such a situation, our method would be beneficial to the
proof as it boils down to a statement of a CFT correlation
function.
In our prescription (S0), we used the encoding polynomial

techniques to handle the spin degrees of freedom as
homogeneity of the polynomial in the polarization vector
zμ. In a recent study [44], this flexibility has been exploited
to extend the notion of spin to a continuous variable, i.e.,
continuous spin. (See also [45,46] for related works.) One
realization of continuous spin is the light-ray operators that
can be defined only on Minkowski spacetime. Such
operators have attracted much attention recently due to
the close relation to the ANEC and its higher spin
generalizations (see, e.g., [42–44,47]). Throughout this
paper, we have restricted ourselves to correlators on
Euclidean space, and it would also be interesting to extend
the method of images to Minkowski spacetime. If there
exists a continuous spin operator in DCFT, their CFT
counterparts should be a pair of continuous spin operators
too. Hence, the method of images turns a correlation
function including a “light-ray operator” in DCFT into
the one with two light-ray operators on the CFT side, whose
structure might be revealed by the recent studies of [48–51].
We leave these intriguing problems for future works.

We are grateful to Chris Herzog for his useful comments
on the manuscript. We also thank Kohei Fukai for valuable
discussions. The work of T. N. was supported in part by
the JSPS Grant-in-Aid for Scientific Research (C)
No. 19K03863, Grant-in-Aid for Scientific Research (A)
No. 21H04469, and Grant-in-Aid for Transformative
Research Areas (A) “Extreme Universe” No. 21H05182
and No. 21H05190. The work of Y. O. was supported by
Forefront Physics and Mathematics Program to Drive
Transformation (FoPM), a World-leading Innovative
Graduate Study (WINGS) Program, the University of
Tokyo. The work of Y. O. was also supported by JSPS
fellowship for young students No. 21J20750, MEXT, and
by JSR fellowship, the University of Tokyo.
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