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We study the A¢* model in 0 + 2 dimensions at criticality, focusing on the scaling properties originating
from the UV and IR physics. We demonstrate that the entanglement entropy, the correlation length & and
order parameters ¢ and ¢ exhibit distinctive double scaling properties that prove a powerful tool in the
data analysis. The calculations are performed with boundary matrix product state methods on tensor
network representations of the partition function to which the entanglement scaling hypothesis is applied,
though the technique is equally applicable outside the realm of tensor networks. We find the value a, =
11.09698(31) for the critical point, improving on previous results.
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I. INTRODUCTION

Scaling is one of the most profound concepts in modern
day physics, as it plays a crucial role in the understanding and
simulation of many-body systems that exhibit critical infra-
red (IR) behavior [1-3]. Furthermore, for quantum field
theories (QFTs) defined through lattice regularization, the
continuum limit emerges precisely in the scaling behavior
towards the ultraviolet (UV) critical point [4-7]. In this
context, QFTs with a second-order phase transition—of
which D = 2 A¢* is the archetypal example—hold a par-
ticular place. They are subject to both types of scaling, with
the UV scaling defining the continuum limit, and the IR
scaling near the QFT phase transition, each characterized by
their own distinct CFT.

The typical procedure to study such a model with
double critical behavior is to choose some values of the
UV cutoff, for each of them determine the effective
critical point, and extrapolate. Calculating all these
critical points goes exactly as one would for any lattice
model, typically using the IR scaling properties, through
distinct power-laws or scaling hypotheses [8—11]. It
should thus be clear that each of those effective critical
points are expensive to calculate, requiring many different
values of the coupling and the IR cutoff (typically system
size L, or in tensor network studies a bond dimension y).
Further more, such an approach leaves questions about
the interplay between the UV and IR CFTs untouched
and all its possible benefits unused.
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In this paper we will investigate how one could go
about leveraging both the UV and IR scaling properties,
to simultaneously use all data points in one fit for the
continuum critical point. The technique builds and
improves upon a previous work [12] and entails con-
structing quantities that are scale invariant with respect
to both the IR and UV scaling, using them to effectuate
a double collapse of all the data. This proves an
effective way to fit the data and also captures and
visualizes the ways that the UV and IR CFTs manifest
themselves.

Numerical calculations are done within the tensor
network (TN) framework; the regularized model is
expressed as a square lattice TN that is contracted by
determining the approximate matrix product state [13]
(MPS) fixed point of the matrix product operator [14]
(MPO) transfer matrix, with the variational uniform
matrix product state [15] algorithm. The finite bond
dimension of the MPS introduces finite entanglement
effects similar to finite size effects [16-19]. In the
entanglement scaling hypothesis [12] for MPS, a quan-
tity, 9, is identified which acts as an inverse system size
L~" under scaling, and can be used as a substitute for y
to label the MPS results. The finite bond dimension
effects will thus be handled using the scaling properties,
in exactly the same way as one would for calculations
performed at finite size [3]. Our analysis can thus be
straightforwardly applied to Hamiltonian methods [20] or
approaches based on the corner transfer matrix method
(CTM) [21-23], for which the entanglement scaling
hypothesis also holds, and furthermore our method can
be trivially adapted to methods with finite lattice size
effects like Monte Carlo or exact diagonalization.

We will first review the model, then construct the
aforementioned scale invariant quantities, and finally, we
discuss the results obtained by optimizing the collapses.

Published by the American Physical Society


https://orcid.org/0000-0001-9557-1591
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.L071501&domain=pdf&date_stamp=2022-10-20
https://doi.org/10.1103/PhysRevD.106.L071501
https://doi.org/10.1103/PhysRevD.106.L071501
https://doi.org/10.1103/PhysRevD.106.L071501
https://doi.org/10.1103/PhysRevD.106.L071501
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

VANHECKE, VERSTRAETE, and VAN ACOLEYEN

PHYS. REV. D 106, L071501 (2022)

II. THE MODEL

We start from the Euclidean action

L) = 50,009+ 3138 + 2o, (1)
where ¢ is a real function of 2 — D space. This is a
superrenormalizable QFT at the perturbative level [24] and
it has been proven [25] that this model gives rise to a
nontrivial theory at the full nonperturbative level. The
model has a Z, symmetry-breaking phase transition in
the Ising universality class, at a coupling that is beyond the
reach of standard perturbation theory.

We study this model using lattice regularization, dis-
cretizing both space and time.
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The above partition function can be written as a tensor
network of finite bond dimension by discretizing ¢;, the
details of which are in the Supplemental Material [26].
Different than previous approaches [27,28], our approach is
distinguished by arbitrary precision, optimal-bond dimen-
sion, and minimal computational cost.

III. CONTINUUM LIMIT

To extract the continuum theory from this lattice model
one should vary the parameters x and A such that every
conceivable linear length scale (i.e., masses, scattering
lengths,...) becomes proportional to all others as they
diverge. From perturbation theory we get the precise
prescription for taking this QFT continuum limit [28],

W = da —3AA(Ja)
dydz
Alx _/ / x + 4sin(y)? + 4sin(z)?
a* =1, 3)

where a is the effective lattice spacing in real space units.
The function A(x) originates from the (one-loop) tadpole
diagram of the mass renormalization for our particular
lattice regularization. For each a the above expression
parametrizes a continuum limit, prescribing how u and 4
should be varied to take the effective lattice spacing a to
zero while preserving all correlations in real space units.
See the illustration in Fig. 1. It is important to realize that
the parameter a is universal, in the sense that it may be
compared across different regularization schemes, it is
usually denoted /2.

The presence of a second order phase transition of the
QFT implies that the continuum correlation length =
lim,_gaé(a, a) diverges as « is tuned to the critical value
a... For the lattice model of Eq. (2) this means there must be
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FIG. 1. Sketch of the phase diagram of the lattice model (2) in
the (—uz, 1) plane, with the critical line in red, and also some lines
describing different continuum limits [Eq. (3)]. The prime goal of
our simulations is to find the critical a,, for which the continuum
limit converges to the critical line for a — 0.

a critical line in the (2, A)-plane that is parametrized by a,,
up to leading order in a. However, at a > 0, there will be
finite cutoff effects that make this critical line deviate from
a curve of constant a, effectively causing the critical value
of a to shift with A. This is illustrated in Fig. 1.

This issue cannot be overcome by simply working with
small enough A as the gains in decreased finite cutoff effects
are vastly outweighed by the added computational cost. We
will thus work with small but reasonable A data and fit the
subleading corrections that should be added to the defi-
nition of a, in Eq. (3), that are required to make the critical
point constant with A.

First, though, we will ignore these complications and
build a scaling theory around a =~ 0 and a = a,, and later
add the necessary corrections. We will use the scaling
properties of the UV, which follow from the existence of a
continuum limit, and the scaling properties of the IR,
caused by the second order phase transition, to collapse 3D
data O(u?, 1, y) to a 1D curve O(a).

IV. DOUBLE SCALING: UV AND IR

To do a UV scale transformation one should imagine
doing a renormalization group transformation as generally
appearing in QFT; rescaling the cutoff, here the lattice
spacing a, while keeping the continuum quantities fixed.
The exponents of all the variables and observables are then
determined by their response to such a transformation (up
to leading order in a).

It thus follows from Eq. (3) that 4 has UV scaling
exponent 2, and a has exponent 0. The lattice-correlation
length £ has UV exponent —1, since a—the continuum
correlation length—must remain constant when varying a.
And, similarly the inverse linear system size L~! (in lattice
units), or its MPS counterpart §, has exponent 1.

Since there is no wave function renormalization needed
for ¢3 in the continuum limit, the UV exponent of the field
¢ is simply 0, corresponding to its canonical dimension. To
extend the number of observables, we have also considered
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the composite operator ¢°. As such this operator is not
properly defined for the QFT, as it has a UV divergence,
arising from the tadpole contribution to the disconnected
part, which evaluates to 3(¢?) x ¢ ~ —:=log(1)¢ (see
Supplemental Material [26]). We therefore subtract this
divergence to define a regularized ¢* = ¢° + i-log(2)¢.

This finite operator ¢° then scales according to its canoni-
cal dimension, which is again O.

Finally, we have also considered the entanglement
entropy S as a QFT observable [29]. From the diverging
lattice correlation length at fixed « in the a — 0 limit, and
the Cardy-Calabrese [31] entanglement law we can antici-
pate S ~ —“log(a), with ¢, the central charge of the free
boson CFT c,, = 1. By formally considering the quantity
eS, we can translate this logarithmic scaling to a UV-
exponent — <.

Next, we consider the IR scaling, which can be under-
stood as an renormalization group-flow of the continuum
theory. The IR exponent of 1 is 0 as the continuum theory is
independent of the lattice spacing a = v/A. The exponent
1/v of a — a, acts as temperature does in the Ising model.
Regular lengths have their usual exponent, so the correla-
tion length has IR exponent —1, and L' and & have
exponent 1. As was found for the UV scaling of e5, we
similarly find that the IR exponent of ¢ should be —%,
where c;. = 1/2 is the central charge of the Ising CFT.
Finally, the observables ¢ and ¢°, and thus also ¢°, act as
Z, order parameters with respect to the Ising critical point.
They therefore have IR exponent f, which in this case is
1/8. See Table I, for all UV and IR exponents.

We are now ready to construct scale invariant quantities
from our four observables O = ¢, ¢, (}53, e5. This is

achieved by compensating for the UV exponent with
appropriate factors of /4 (the lattice spacing) and similarly

for the IR exponent with factors of A = §/+/A (acting as an
inverse system size in physical units) to construct an IR and
UV scale invariant object O,

O = )~w/2 A= 0, (4)

Similarly we construct from o —a, a scale invariant
quantity: A™V¥(a - a,).

TABLE I. Summary of all the UV and IR scaling exponents.
UV exponent IR exponent

A 2 0

a—a,. 0 1/v=1

L' 1 1

13 -1 -1

¢ 0 p=1/8

- Llog(A)¢ 0 p=1/8

exp(S) _%:_% _%:_ﬁ

A general data point consists of variables: 2, A, and the
bond dimension y, that map to an observable O. We then do
a change of variable of y to § or A = §/+/A with improved
scaling properties [12]. Next, those four numbers are
transformed to A~"*(a —a,), 4, and a — a,, that map to
O, representing a function that, by construction, does not
have an explicit dependence on 4, or a — a,. If everything
works out, the 4D data can hence be collapsed to a 2D
curve,

W4y, 0] = [A™(a - a,), 27 /2A4r O] (5)

V. CORRECTIONS

The critical point depends strongly on 4 when simply
using the definition in Eq. (3), which is problematic for the
UV- and IR-scaling that we hope to impose. This can be
solved by adding corrections to « that make the lattice
critical point . approximately constant as a function of 4,
so that for the newly defined « the critical (red) line and a..
line in Fig. 1 become identical.

We provide a with A-corrections parametrized as
follows:

a — a+ Arlog(A) + BA
+ C2?log(A)> + DA?log(A) + EX> + ... (6)

The first two terms have been observed before, see e.g.,
[11,27], and in the Supplemental Material [26] we show
that the mass renormalization from the two-loop setting sun
diagram with the lattice regularization (2) indeed produces
terms of the form Alog /4. The subsequent terms in the
series are simply products of the first two.

We also expect corrections for the observables O, since
the above described scaling properties only hold true in the
limit A - 0 and @ —a. — 0. We give the same type of
corrections as we considered for «,

+ DpA?log(A)? + Egi*log(d) + Foi* +...).  (7)

These prefactors Ay, By, ... can be given an a — a,
dependence, to provide corrections to the IR behavior. In
practice, it will only be needed to give A, a linear
dependence on a — a,, and then only for the entanglement
entropy. This type of correction to the IR scaling can be
understood as compensating for the following generic form
of the power law,

O~ (a—a)!"(1+Ala—a)®+...). (8)

The point is now that we have to adjust the parameters
A, B, --- of Egs. (6) and (7) to make the scaling properties
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FIG. 2. A plot of the A and «a values used in the fits. The red bar
indicates the part of the data that is not included in the preliminary
fits and is used to estimate the out-of-sample error.

in Table I hold true in the entire data set; in other words,
they will be optimized such as to effectuate an optimal
collapse of the data.

VI. FITTING PROCEDURE

We plot the four rescaled observables &, ¢, (/7)3 and S
versus the rescaled parameter A™/*(a — a,) [see Eq. (5)],
and optimize the average orthogonal distance from those
data points to a fit function. The practical details of this
are straightforward and presented in the Supplemental
Material [26].

Our goal is to optimize the corrections [Egs. (6) and (7)]
discussed in the previous section, and use the 4 > 0.001
data to extrapolate to 4 = 0. There is, however, a clear
danger of including too many corrections that will over-
optimize the fit for 4 € [0.001,0.1], leading to a bad
extrapolation 1 — 0. Conversely, the same thing can
happen if not enough corrections are included.

To remedy this, we perform all our fits, with various
combinations of corrections included, using all but the
smallest 4 data, indicated in Fig. 2, allowing us to see which
fits permit extrapolation to smaller A. Specifically, our
criterion for a ‘good’ set of corrections is that they give a
smaller average out-of-sample error than in-sample, for all
observables simultaneously.

VII. RESULTS

We calculated 2081 data points, each with a random
A €[0.001,0.1], associated random a chosen close to the
expected critical point, and a random MPS bond dimen-
sion y € [100,200].

We considered 372 different combinations of corrections
(6) and (7), deemed reasonable from preliminary fits but
varied enough to be unbiased to any specific set of
corrections. From this we found 268 fits with a smaller
out-of-sample than in-sample error. For all these ‘good’ fits
we optimize again, this time using all the data, and plot the
values for a, versus the number of fitting parameters
in Fig. 3.

12 koo ssss w519
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FIG. 3. For the 268 ‘good’ fits (see text); the value of a, plotted
versus the number of fit parameters that were included (a.+ the
parameters in the scaling corrections). We use the median to
estimate the best value of @, = 11.09698(31) (indicated with a
red dot), and an error bar is estimated with the median distance
from that best value (yellow interval).

For a single fit, there is no clear way to estimate the error
on «, with this technique. However, we can use the fact that
there are many different fits to get an idea of the error bar,
but notice that these different results are not strictly
statistical independent. For our final value of «, we take
the median value of all good fits, while for the quoted error
bar we take the median distance from this median value of
a,. This final result is compared with previous results in
Table II and the collapse plots for the best fit is shown in
Fig. 4, and the specific parameters used may be found in the
Supplemental Material [26].

From this set of ‘good’ fits, we can conclude that we
absolutely need to include Alogl and A*logl terms
(those terms were not included in the previous work
[12] and are responsible for the suboptimal results
there), but it also became clear that the A?log(1)?,
23log(1)? and 2*log(1)? terms should not be included.
231log(4) and A% could help. but could not improve the
out-of-sample error with respect to the set of corrections
shown above.

It is interesting to check whether the fit would allow for
the calculation of the prefactors of the universal divergent
terms (as usually determined by Feynman diagrams). If we
fit the renormalization of the ¢3, we find a correction
—0.23888(65) log(4)¢, which should be compared with the
analytical % ~ (0.23873 used previously.

TABLE II. Comparison with some results from the literature.
Method Year a,

MPS [20] 2013 11.064(20)
Hamiltonian truncation [32] 2017 11.04(12)
Borel resummation [33] 2018 11.23(14)
Monte Carlo [10] 2018 11.055(20)
TRG [28] 2019 10.913(56)
gilt-TNR [27] 2020 11.0861(90)
This work 2021 11.09698(31)

LO71501-4



ENTANGLEMENT SCALING FOR ¢}

PHYS. REV. D 106, L071501 (2022)

3

¢

0 .
300 200 -100 0 100 200
(o — aC)A’l/”
g 02 ' ~ &
W :
= :
U:l@ 0 /“l
+ - .“
=
%0
L -0.2
M
Sl
4 -
0 -0.4 * + . .
-300 -200 -100 0 100 200
(o — o)A~V

1
0.8 -
é iy /
I
g 04r1 i
0.2 i
0 N I
-300 -200 -100 0 100 200
(a — aC)A’I/”
0.6
3 0.4
=
2
o2t
0 N I
-300 -200 -100 0 100 200
(a — A

FIG. 4. TOP-LEFT: The rescaled correlation length & vs the rescaled coupling a — a.. TOP-RIGHT: The order parameter ¢ vs the
rescaled coupling @ — .. BOTTOM-LEFT: The renormalized and rescaled order parameter ¢* vs the rescaled coupling a — a,.
BOTTOM-RIGHT: The logarithmically rescaled entanglement entropy S vs the rescaled coupling o — a,.. Note that the shifted singular
points of these functions imply a shift in location of the effective critical point by an amount proportional to A~'/, this is a general

feature found in scaling functions [12].

VIII. CONCLUSION

A critical QFT is something special. Like with any QFT
the regulated model becomes UV critical as the cutoff is
taken to infinity, but there is also an IR criticality due to the
continuum phase transition. It thus has a sort of double
criticality, each with a different CFT description. In this
work we have shown how, in the case of /1¢‘2‘, this feature
allows for a double scaling analysis, giving rise to collapse
plots for the different QFT observables, encapsulating both
scaling behaviors in one go. We stress that our approach is
general, in the sense that it can be applied to any method
that is confronted with both types of scaling, and is not

limited to tensor network based methods. Furthermore, the
double scaling approach is not restricted to D = 2 space-time
dimensions or zero temperature. In particular it would be
interesting to explore the double scaling also for D > 2 QFT's
that exhibit a purported continuous phase transition, e.g., for
Monte-Carlo simulations of the finite temperature chiral
symmetry breaking transition for Ny = 2 massless QCD.
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