
Standard Model estimate of K + → π + 4e branching ratio

Tomáš Husek *

Department ofAstronomyandTheoreticalPhysics, LundUniversity, Sölvegatan14A, SE223-62Lund, Sweden

(Received 22 July 2022; accepted 25 August 2022; published 10 October 2022)

The branching ratio of the Kþ → πþeþe−eþe− (Kþ → πþ4e) decay is calculated at leading order in
the Standard Model. The dominance of the neutral-pion pole determines the overall branching ratio to be
BðKþ → πþ4eÞ ¼ BðKþ → πþπ0ÞBðπ0 → 4eÞ ≈ 7.0ð3Þ × 10−6. The significance of this contribution is
very much concentrated in the context of thewhole available phase space, throughout most of which the one-
photon-exchange topology is prevalent in turn. It is thus interesting to present branching ratios for only parts of
the allowed kinematical region. We find, for instance, BðKþ → πþ4e;m4e > 150 MeVÞ ¼ 6.0ð6Þ × 10−11.
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I. INTRODUCTION AND SUMMARY

The flavor-changing (or, in particular, strangeness-
changing) neutral-current weak transitions are absent at
tree level in the Standard Model (SM). At the same time,
they are manifest, among others, in radiative nonleptonic
kaon decays like Kþ → πþlþl−ðγÞ, l ¼ e, μ, and have
become an interesting probe of SM quantum corrections
and beyond. The related underlying radiative modes
(transitions) Kþ → πþγ�ðγÞ have been studied before:
They have been calculated in chiral perturbation theory
(ChPT) [1–3], enriched with electroweak perturbations
[4,5], at leading order (LO) (at one-loop level) and beyond,
including the dominant unitarity corrections from K → 3π
[6,7]. The long-distance-dominated Kþ → πþγ� transition
turns out to be essential also for the decay mode to which
this work is dedicated: Kþ → πþ4e. Moreover, one needs
to consider the Kþ → πþγ�γ� transition, i.e., when both
photons are off shell, which entails a significant challenge.
Out of all possible contributions to Kþ → πþ4e, the

neutral-pion exchange clearly dominates when the π0

becomes on shell. The overall branching ratio for this
5-track decay is then saturated by the contribution of the
associated narrow π0 peak and can be directly determined
as BðKþ → πþ4eÞ ¼ BðKþ → πþπ0ÞBðπ0 → 4eÞ. (This
has also been checked here.) It then becomes challenging
to observe the Kþ → πþ4e process away from m4e ¼ Mπ0 ,
i.e., when the leptons do not originate from the decay of the
(nearly) on-shell π0. However, it is exactly the suppressed
decay rate that makes such reactions attractive to study, at

least from the point of view of beyond-Standard Model
(BSM) physics. It is clear that to identify a new-physics-
scenario contribution taking part in a decay, one should
have a rough estimate of the SM rate. Only then the
possible new-physics effects can be spotted and become
visible as deviations from such SM predictions.
Related to K → π4e decays, however, there has not

been any number presented in the literature which would
be more than an order-of-magnitude estimate. In particular,
for instance, it is naturally believed that it is unlikely
for these branching ratios to exceed the Oð10−10Þ bench-
mark [8], since they are suppressed with respect to, e.g.,
BðKþ→πþeþe−Þ≈3×10−7 or BðKþ → πþγγ; nonres:Þ ≈
1 × 10−6 simply due to phase-space factors and additional
QED vertices by Oðα2Þ. [Indeed, in the present work,
we find that the nonresonant topologies give rise to
BðKþ → πþ4e; nonres:Þ ¼ 7.2ð7Þ × 10−11.] This leads to
increasing attention of theorists, and possible BSM scenar-
ios are being explored. For example, in Ref. [8], a model is
introduced in which the K → π4e decays proceed via K →
πðX0 → XXÞ intermediate states, with a cascade of dark-
sector particles Xð0Þ and underlying dynamics potentially
significantly enhanced compared to the SM case. In turn,
the searches then follow in suitable experiments, and more
precise knowledge of SM background, ideally at the level
suited for Monte Carlo (MC) implementation, becomes
essential. This is the main motivation behind the present
work. Besides the expressions for the matrix elements, the
squares of which are the vital input for the MC event
generators, we also provide here the branching ratios
related to the respective contributions for reference.
At present, the Kþ → πþeþe− single-event sensitivity at

NA62 [9] is Oð10−11Þ [10]. The acceptance for the Kþ →
πþ4e channel is likely to be lower, leading to Oð10−10Þ or
even Oð10−9Þ expected sensitivity, i.e., up to 2 orders of
magnitude above the SM estimate presented here. Thus,
unless a possible BSM signal would manifest itself inside
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the detector, a SM signature of aKþ → πþ4e decay outside
the m4e ¼ Mπ0 kinematical region should not be observed
beyond statistical fluctuations.
Further work is currently in progress: It is planned to add

the neutral channel, i.e., to treat the branching ratios for
K0 → π04e, and to include the expressions for matrix
elements squared.
In Sec. II, we first present the contributions that appear

at LO in the Standard Model and then provide a brief
description of how the relevantmatrix elements are obtained.
Some suitable ChPT Lagrangians employed to calculate the
pion-pole contribution are included. Section III then com-
bines and compares all the terms, and provides numerical
results for respective contributions to the branching ratio,
obtained in terms of a simple Monte Carlo method. Some of
the details are deferred to the Supplemental Material [11]
so as not to interrupt the flow of the section. The one-fold
differential decay widths as functions of the 4-lepton
invariant mass m4e, as well as the branching ratios, are
presented in Fig. 3 and Table I, respectively.

II. THEORETICAL SETTING

At lowest order in the QED expansion [at Oðα2Þ] and in
ChPT [at OðGFÞ, or, equivalently, OðG8Þ and OðG27Þ],
there are 3 distinctive underlying topologies present on the
meson side of the amplitude:
(1) Kþ → πþγ� conversion, as shown in Fig. 1, which

we will call the single-photon exchange (between
the meson and lepton parts);

(2) Kþ → πþγ�γ� conversion, as shown in Fig. 2, which
we dub the two-photon exchange, manifesting itself
as two subtopologies:
(a) Kþ → πþγ� conversion with an extra radiative

photon coming either from the meson legs or
from the vertex itself, as shown in Fig. 2(a),

(b) Kþ→πþπ0�, π0� → γ�γ�, as shown in Fig. 2(b).
A few remarks are in place here. Regarding the topology
(2a), when one of the two photons becomes on shell,
such a contribution is an important part of the radiative
corrections in Kþ → πþlþl− decays [13,14] and is nat-
urally considered when the Kþ → πþγ� transition form
factor is measured. The topology (2b) might become
important for the Kþ → πþeþe−ðγÞ decay and the related
form-factor extraction, and as a background for the meas-
urement of the branching ratio of the rare decay
π0 → eþe−.
The most nontrivial ingredient of topology (1), the

Kþ → πþγ� conversion, has already been extensively
studied in the literature, as mentioned in the introduction.
Its contribution can be represented via a single form factor,
for which several parametrizations are being used. In what
follows, we denote this form factor simply as FðsÞ, with s
being the virtuality of the photon. It is related to the
standard WþðzÞ, introduced in Ref. [7], through

FðsÞ ¼ 2

ð4πÞ2M2
K
Wþðs=M2

KÞ; ð1Þ

WþðzÞ ¼ GFM2
Kðaþ þ bþzÞ þWππþ ðzÞ: ð2Þ

For the parameters in Eq. (2), we employ aþ ¼ −0.584ð8Þ
and bþ ¼ −0.700ð35Þ, the weighted average of available
experimental inputs [15–17]. For the (long-distance domi-
nated) transition matrix element, we can then simply write,
based on the gauge and Lorentz symmetries,

MρðKþðPÞ → πþðrÞγ�ρðkÞÞ

≡ i
Z

d4xeikxhπðrÞjT½JEMρ ðxÞLΔS¼1ð0Þ�jKðPÞi

¼ e
2
Fðk2Þ½ðP − rÞ2ðPþ rÞρ − ðP2 − r2ÞðP − rÞρ�; ð3Þ

note that P − r ¼ k was retained for the manifestly gauge-
invariant form. The Lorentz structure of the transition is
further simplified when coupled to a conserved current,
such as the lepton electromagnetic current:

MρðKþðPÞ → πþðrÞγ�ρðkÞÞ ¼eff: eFðk2Þk2rρ: ð4Þ
At tree level, the conversion γ� → 4e can be resolved by

drawing 8 diagrams in total: When the photon converts into
an electron and positron, each of these can radiate another
off-shell photon converting into another eþe− pair; see
Fig. 1. This accounts for 2 diagrams that form a gauge-
invariant building block. There are then 4 independent
ways how to assign momenta to the leptons (2 for electrons
and 2 for positrons). For every such interchange, one needs
to take into account a relative sign for crossing the electron

(a) (b)

FIG. 2. The two-photon-exchange topology. Each of the dia-
grams comes with one extra permutation of the momenta of the
same-charged leptons.

FIG. 1. The one-photon-exchange topology. There is a cross
diagram where the additional off-shell photon is radiated from
the positron line (obtained for instance by changing the direction of
the fermion-number flow).These two then serve as a gauge-invariant
building block that comes in 4 permutations of external legs.
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lines (anticommuting two fermion fields). The gauge-
invariant building block in question is

Mρ
γðp1; p2;p3; p4Þ
≡ e3ðIαρþ ðp1; p2;p2Þ − Iρα− ðp1; p2;p1ÞÞJαðp3; p4Þ; ð5Þ

with

Iαβ� ðp1; p2;pÞ≡ ūðp1Þγα
1

P − =r − p ∓ m
γβvðp2Þ; ð6Þ

and Jαðp; qÞ≡ ūðpÞγαvðqÞ
ðpþqÞ2 . The lepton part of the amplitude

then amounts to

Mρ
γ�→4e≡Mρðγ�ρ → e−ðp1Þeþðp2Þe−ðp3Þeþðp4ÞÞ

¼Mρ
γðp1;p2;p3;p4ÞþMρ

γðp3;p4;p1;p2Þ
−Mρ

γðp1;p4;p3;p2Þ−Mρ
γðp3;p2;p1;p4Þ; ð7Þ

and the overall amplitude for the topology (1) reads

Mð1Þ
K→π4e ¼ MρðKþðPÞ → πþðrÞγ�ρðkÞÞ

1

k2
Mρ

γ�→4e

¼ e4FððP − rÞ2ÞrρfMρ
γ�→4e; ð8Þ

where tilde denotes the matrix element with e ¼ 1.
In principle, the analogous techniques employed for the

calculation of theKþ → πþγ�γ within the ChPT framework
can be used to obtain the form factors accompanying the
Lorentz structures of the general two-photon-conversion
matrix element. In this work, only a simplified expression is
utilized, based on the approximate model used originally
mainly for the Kþ → πþγ�γ transition. The two-photon
transition of topology (2a) can thus be written as

MðaÞ
ρσ ðKðPÞ → πðrÞγ�ρðk1Þγ�σðk2ÞÞ

≃ e2Fðk21Þ
�
ðk21rρ − r · k1k1ρÞ

ð2P − k2Þσ
2P · k2 − k22

− ðk21Pρ − P · k1k1ρÞ
ð2rþ k2Þσ
2r · k2 þ k22

þ ðk21gρσ − k1ρk1σÞ þ κ½ðk1 · k2Þgρσ − k1σk2ρ�
�

þ fk1 ↔ k2; ρ ↔ σg: ð9Þ
This form, dependent on a single form factor [the same one
as in Eq. (3)], is particularly useful for the case when it
provides the contribution to radiative corrections for the
Kþ → πþlþl− decay as part of the process of measuring
FðsÞ. There, one takes one of the photons on shell. In the
soft-photon regime, such an approximation is justified. For
the hard photons, the free parameter jκj ≲ 1 is introduced to
cover the model uncertainty. In practice, the desired
physical results do not seem to be sensitive to this
parameter. Further details can be found in Ref. [14]. For
our purposes, we assume that the form in Eq. (9) is good

enough as an order-of-magnitude guess, at least. Since it
turns out to be numerically negligible compared to the
topology (1) (with a relative suppression of 1 order of
magnitude), we will not discuss it in greater detail here.
Finally, we look at the topology (2b). The Kþπþπ0

vertex can be obtained, in the framework of ChPT, from the
Lagrangian [18,19]1

LΔS¼1
G27p2 ¼ G27F4

�
Lμ23L

μ
11 þ

2

3
Lμ21L

μ
13

�
þ H:c:; ð10Þ

with F ≈ 92 MeV the pion decay constant, Lμ
ij ¼

iðU†
∂
μUÞij and U ¼ exp iΦ

F . Above, the mesons are repre-
sented by the matrix Φ ¼ P

8
a¼1 λaϕa, with ϕa being the

eight meson fields. The LO matrix element for the Kþ →
πþπ0�ðqÞ transition following from Lagrangian (10) is

MðKþ→πþπ0�ðqÞÞ¼−
i
3
FG27ð5M2

K−7M2
πþ2q2Þ: ð11Þ

On shell and in the isospin limit, this, of course, becomes
the standard result for the charged amplitude

MðKþ → πþπ0Þ ¼ −iFG27

5

3
ðM2

K −M2
πÞ: ð12Þ

Since BðKþ → πþπ0Þ ≈ 20.7% [12], ΓKþ
MKþ

≈ 1.08 × 10−16

and the phase-space amounts to nothing else than
1
8π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2

π

M2
K

q
, we find jG27j ≈ 0.53 TeV−2. It can also be

rewritten in terms of the SM parameters involved as
G27¼−1

2
1
v2VudV�

usg27, with jVudj ≈ 0.974, jVusj ≈ 0.224,
and v ≈ 0.246 TeV [12]. Hence, we get jg27j ≈ 0.29, in
agreement with Refs. [19–21]. For completeness, for the
virtual η we would have

MðKþ→πþη�ðqÞÞ¼−
iffiffiffi
3

p FG27ð3M2
K−M2

π−2q2Þ: ð13Þ

The π0γγ vertex stems from the Wess-Zumino-Witten
(WZW) term [22,23], which can be reduced for our
application to the form

Lπ0γγ
WZW ¼ −

Nce2

24π2F

�
π0 þ 1ffiffiffi

3
p η

�
ϵμναβð∂μAνÞð∂αAβÞ: ð14Þ

Above, we also include the η term and one thus have
[together with Eq. (13)] all the ingredients to include the
virtual-η-exchange contribution, too. However, this con-
tribution can be safely neglected compared to the π0 case
and we will not consider it from now on: It does not affect
the shape of the overwhelming π0 peak and the correction

1Besides the chiral SU(3) 27-plet contribution presented in
Eq.(10), there isalsotheoctetLagrangianLΔS¼1

G8p2 ¼G8F4ðLμLμÞ23þ
H:c:, which forKþ → πþπ0 leads at LO to (isospin-breaking) terms
proportional to ðM2

πþ −M2
π0
Þ or the π0–η mixing angle ϵð2Þ ≈ 1%.

Such a contribution is therefore numerically small compared to the
G27 term, as G8=G27 ≲ 20 [19], and it is neglected here.
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to the tail within the kinematically allowed region is rather
significant but only cosmetic in the global picture when it
comes to the branching-ratio estimate. In the pion case, the
Lagrangian (14) leads to the LO transition amplitude

Mρσðπ0� → γ�ρðk1Þγ�σðk2ÞÞ ¼ −
e2

4π2F
ϵρσαβkα1k

β
2; ð15Þ

the form of which is exact for on-shell pion and photons.
For off-shell photons, this can be further modulated by
the doubly off-shell neutral-pion electromagnetic transition
form factor F̂ ðk21; k22Þ, with F̂ ð0; 0Þ ¼ 1. In particular,

Mρσðπ0ðqÞ → γ�ρðkÞγ�σðq − kÞÞ

≡ i
Z

d4xeikxh0jT½JEMρ ðxÞJEMσ ð0Þ�jπ0ðqÞi

¼ −
e2

4π2F
F̂ ðk2; ðq − kÞ2Þϵρσαβkαqβ: ð16Þ

As an example, see, for instance, the model described in
Ref. [24]. Further complications arise for the off-shell pion,
but due to the pion pole enhancement, only the events
with neutral-pion invariant mass in the vicinity of Mπ0 will
matter. Hence, we could safely proceed with the on-shell
pion form factor and for the sake of simplicity, we will
actually only consider the LO formula (15) in what follows.
Combining Eqs. (11) and (15) with a π0-width-regulated
propagator, we find the matrix element for the two-photon
transition of the topology (2b)2:

MðbÞ
ρσ ðKðPÞ → πðrÞγ�ρðk1Þγ�σðk2ÞÞ

¼ −
ie2G27

12π2
2ðP − rÞ2 þ 5M2

K − 7M2
π

ðP − rÞ2 −M2
π0
þ iMπ0Γπ0

ϵρσðk1Þðk2Þ: ð17Þ

Above, we have used the notation ϵρσαβkα1k
β
2 ¼ ϵρσðk1Þðk2Þ.

The two-photon-exchange topology is then the sum of
the two subtopologies from Eqs. (9) and (17):

Mρσðk1; k2Þ≡MρσðKðPÞ → πðrÞγ�ρðk1Þγ�σðk2ÞÞ
¼ MðaÞ

ρσ þMðbÞ
ρσ : ð18Þ

Above, the repeating process labels were suppressed. The
two pairs of leptons are then coupled in the following way:

Mð2Þ
K→π4e

¼ e2Mρσ
K→π2γ� ðp1 þp2;p3 þp4ÞJρðp1;p2ÞJσðp3;p4Þ

− e2Mρσ
K→π2γ�ðp1 þp4; p3 þp2ÞJρðp1; p4ÞJσðp3; p2Þ:

ð19Þ
Finally, we add up the one- and two-photon-exchange

topologies:

MK→π4e ¼ Mð1Þ
K→π4e þMð2Þ

K→π4e: ð20Þ
As was already mentioned, it is observed that the topology
(2a) is rather suppressed compared to at least one of the
other two, depending on the kinematical region, and this
applies also to the (antisymmetric) interference term of
topologies (2a) and (1) which vanishes upon symmetric
integration3; the interference of (2a) and (2b) is exactly
zero. This means that, in particular, we can eventually write

MK→π4e ≃
�Mð1Þ

K→π4e; s ≉ M2
π0
;

Mð2bÞ
K→π4e; s ≈ M2

π0
;

ð21Þ

with s ¼ ðP − rÞ2 utilized also later on, and

Mð2bÞ
K→π4e ¼ −

ie4G27

12π2
2sþ 5M2

K − 7M2
π

s −M2
π0
þ iMπ0Γπ0

× ½ϵρσðp1þp2Þðp3þp4ÞJρðp1; p2ÞJσðp3; p4Þ
− ϵρσðp1þp4Þðp3þp2ÞJρðp1; p4ÞJσðp3; p2Þ�: ð22Þ

Moreover, the two amplitudes in Eq. (21) do not interfere
either, so, to ≈ 10% approximation of the branching-ratio
estimate, the square of the total LO matrix element is
obtained as a direct sum of the matrix elements squared
of topologies (1) and (2b). This simplifies the analytical
structure significantly. Nevertheless, for the numerical results
that followwe use the complete expression given by Eq. (20).

III. RESULTS

Having the squared matrix elements at hand, the
Monte Carlo simulations can easily compare relative sizes
of the respective contributions to the total branching ratio.
As expected, the topology (2b) is by far the most dominant,
thanks to the pion-pole enhancement. Its contribution to the
matrix element squared and hence the overall branching
ratio can be rather simply evaluated since it does not lead to
interference terms with the other two topologies. However,
right outside the narrow pole region the topology
(1) becomes prominent, so it is essential to retain it besides

2Let us note that instead of the LO expression (11) we could
have used a more sophisticated form factor to be on par with the
treatment of the other two topologies. However, enhanced by
the pole, the dominant part of Eq. (11) entering Eq. (17) is the
constant (12). And this number would just be slightly modified,
accounting for effects and higher-order corrections neglected here
in view of considered uncertainties.

3In other words, while the interference term is nonzero and
thus should not be neglected for general application in MC, it
does not contribute to the branching ratio.
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(2b); see Fig. 3 for the comparison of the individual
contributions to the differential decay width.
Establishing the absolute branching ratio and its con-

tributions without Monte Carlo methods requires, in the
case of a 5-body decay, e.g., knowledge of the differential
phase space in terms of at least 8 kinematical variables and
subsequent multidimensional integration. This can be a
pretty tedious job. At the same time, the spectra like those
in Fig. 3 can be rather easily obtained by generating events
flat distributed in themomentumspace andmodulating them
by thematrix element squared using, for instance, the accept

or reject procedure or assigning weights given by jMj2
to the events. After binning the (accepted or weighted)
events—effectively performing the phase-space integral—
and when properly normalized, this represents the differ-
ential decay width in the chosen kinematical variable (in

terms of Fig. 3, this would correspond to dΓð ffiffi
s

p Þ
d
ffiffi
s

p ). After the

integral over this distribution is performed, one gets the
branching ratio from the definition simply by normalizing
the resultingwidth toΓKþ .What remains is to find the proper
normalization so that, for instance, Fig. 3 is at scale, since the
information about the phase-space volume is lost during the
procedure described above; see the Supplemental Material
[11] for further details. Inserting the (rescaled) phase-space
volume Φ5 from (A8) into (A10) of Ref. [11] leads to an
intuitive formula for the branching ratio:

B ¼ 1

ΓKþ

1

4

1

2MK
Φ5

1

N

X
N events

jMj2 : ð23Þ

Taking the phase-space-averaged matrix element squared

1

N

X
N

jMð1Þ
K→π4e þMð2aÞ

K→π4ej2 ≈ 7.34ð44Þ × 10−26 MeV−4;

ð24Þ
we finally arrive at

Bð1Þþð2aÞðKþ → πþ4eÞ ¼ 7.2ð7Þ × 10−11: ð25Þ
Takingintoaccount thestatisticaluncertaintyof6%andmodel
uncertainty of 5%, the last number considers 10% relative
uncertainty as a conservative estimate of the final number for
the branching ratio when the topology (2b) is excluded. This
gets modified when only a limited kinematical region is
considered while including all the contributions. We find

BðKþ → πþ4e;
ffiffiffi
s

p
> 150 MeVÞ ¼ 6.0ð6Þ × 10−11: ð26Þ

A more exhaustive list is presented in Table I.
One can also check the overall consistency of the

procedures used in the present work in the following
way. The total branching ratio should be

BðKþ → πþ4eÞ
≃ BðKþ → πþπ0ÞBðπ0 → 4eÞ ¼ 7.0ð3Þ × 10−6; ð27Þ

since the pion-pole contribution greatly dominates; see also
Table I. The above expression relies on the fact thatZ

MþΔM

M−ΔM

d
ffiffiffi
s

p
js −M2 þ iMΓj2 ≃

π

2M
1

MΓ
; Γ ≪ M: ð28Þ

Establishing the contribution of topology (2b) to the
branching ratio using MC techniques directly is quite
difficult for the physical neutral-pion width Γπ0 ≈ 7.8 eV
[12], which makes the peak in Fig. 3 extremely high and
narrow: One would need a huge sample of events to start

FIG. 3. Monte Carlo-generated differential decay width based on
the squares of the respective matrix elements constituting Eq. (20),
comparing the topologies (listed from back to front) (1) (in blue),
(2b) (in red), and (2a) (in orange); in green we then show the square
of the κ term from Eq. (9) (setting κ ¼ 1) separated from (2a) to get
a handle on the uncertainty of the model leading to Eq. (9). The
sample used here contains 107 events. The areas below the curves
corresponddirectly to the respective branching ratios.As inEq. (21),
s ¼ ðp1 þ p2 þ p3 þ p4Þ2 denotes the invariant 4e mass squared.

TABLE I. Branching ratios excluding and including the pion-
pole region. The contributions of respective topologies are shown
separately. They were obtained in terms of Eq. (23) (restricting the
sum to the given subregions) and they correspond to the relevant
areas under the curves in Fig. 3. The κ term serves as a handle on
the model uncertainty; we set κ ¼ 1. The total branching ratio for
the topology (2b) is taken as a product of branching ratiosBðKþ→
πþπ0Þ¼20.67ð8Þ% and Bðπ0 → 4eÞ ¼ 3.38ð16Þ × 10−5 [12].
The last row is a sum of the first three rows, taking the fourth
row as a model uncertainty and 6% as the statistical uncertainty.
The rightmost value in the bottom line excludes the (2b) topology.

Bð ffiffiffi
s

p
< 120 MeVÞ Bð ffiffiffi

s
p

> 150 MeVÞ B

(1) 5.60 × 10−12 5.44 × 10−11 6.70 × 10−11

(2a) 3.11 × 10−13 3.85 × 10−12 4.60 × 10−12

(2b) 1.40 × 10−13 1.97 × 10−12 7.0ð3Þ × 10−6

κ 7.08 × 10−15 3.69 × 10−12 3.72 × 10−12P
6.1ð4Þ × 10−12 6.0ð6Þ × 10−11 7.2ð7Þ × 10−11
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with, or possibly adapt the algorithm. But since the integral
of the peak scales as 1

Γ [see Eq. (28)] and the tails are
negligible, one can generate a sample with many orders of
magnitude larger width, which still obeys the assumptions
of Eq. (28). In particular, if one chooses Γ̃π0 ¼ 105Γπ0 , one
can rather precisely determine the ratio

Γ̃ð2bÞ=Γð1Þ ¼ 1.09ð8Þ; ð29Þ

since now the MC event generator simulates the peak
shape rather easily. However, we already determined
Bð1ÞðKþ→πþ4eÞ¼6.70×10−11 in Table I using Eq. (23).
Multiplying by the ratio (29) and by the factor Γ̃π0=Γπ0 ¼105,
we find Bð2bÞðKþ→πþ4eÞ¼7.3ð7Þ×10−6, as it should be

based on Eq. (27).4 We thus see that the methods and values
seem consistent.
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