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The fixed area states are previously discussed in the quantum error-correction codes interpretation of
AdS=CFT. The dual bulk geometry is constructed by gravitational path integrals. In this paper we show the
fixed area states correspondence in conformal field theories (CFTs), which are associated with the spectrum
decomposition of reduced density matrix ρA for a subsystem A. For two-dimensional CFTs we directly
build the bulk metric, which is consistent with the expected geometry of the fixed area states. For arbitrary
pure state jψi with a geometric dual in the bulk we also find the consistency by using the gravity dual of
Rényi entropy. We also obtain the parameters relation between the bulk geometry and boundary state. The
pure state jψi can be expanded as a superposition of the fixed area states. Motivated by this, we propose an

area operator Âψ. The fixed area state is the eigenstate of Âψ , the associated eigenvalue is related to
the Rényi entropy of subsystem A in this state. The Ryu-Takayanagi formula can be expressed as the

expectation value hψ jÂψ jψi divided by 4G, where G is the Newton constant. We further show the
fluctuation of the area operator in the geometric state jψi is suppressed in the semiclassical limit G → 0.

DOI: 10.1103/PhysRevD.106.L061903

I. INTRODUCTION

AdS=CFT correspondence provides for us a way to
understand the nature of the bulk spacetime by the CFT
living on the boundary [1–3]. One of interesting topics in
AdS=CFT is the exact duality relation between quantum
states in the Hilbert space of the boundary CFTand the ones
in the bulk. Some states in the CFTs can be effectively
described by the classical geometries in the limit G → 0. In
this paper we will call them geometric states for short.
The geometry is associated with the entanglement

entropy (EE) SðρAÞ of a boundary subregion A by the
well-known Ryu-Takayanagi (RT) formula [4] for the bulk
metric with time reflection symmetry,

SðρAÞ ¼
AreaðγAÞ

4G
; ð1Þ

where γA is the minimal surface in the bulk that is
homology to A, ρA denotes the reduced density matrix
of A. For general bulk spacetime one should take γA to be
the Hubeny-Rangamani-Takayanagi surface [5]. The RT
formula shows the secret relation between spacetime and

intrinsic entanglement of underlying degrees of freedom of
quantum gravity [6].
The area lawlike relation is generalized to the holo-

graphic Rényi entropy by Dong [7]. The Rényi entropy,

defined as SnðρAÞ ≔ log trρnA
1−n , is one parameter generalization

of entanglement entropy. The gravity dual of Rényi entropy
is given by

n2∂n

�
n − 1

n
SnðρAÞ

�
¼ AreaðBnÞ

4G
; ð2Þ

where Bn denotes the cosmic brane with the tension
μn ¼ n−1

4nG. The cosmic brane backreacts on the geometry
by creating a conical defect with opening angle θ ¼ 2π

n .
In [8] the authors find the connections between the

quantum error-correction (QEC) code and AdS=CFT cor-
respondence. It has led to a better understanding of radial
commutativity and subregion duality in the correspondence
[9]. The RT formula (1) naturally appears in the QEC code
as shown in [10]. To explain the Rényi entropy formula (2)
in the same framework the code should satisfy certain
special properties [11,12]. It leads to new kinds of geo-
metric states named fixed area states, for which the Rényi
entropy are independent with n to the leading order in G.
Previous approaches are based on the holographic QEC
code and gravitational path integral. The geometry dual of
the fixed area state can be obtained by inserting a cosmic
brane fixed to be on the RT surface. More discussions on
the fixed area states can be found in [13–17]. Therefore, the
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fixed area states are very important to understand the
holographic QEC code as well as the AdS=CFT corre-
spondence. However, most of the studies are based on the
abstract QEC code or some simple tensor network models
[18,19]. In this paper we will work in the framework of
AdS=CFT and construct the fixed area states in the CFTs.
Our results provide a new way to investigate the holo-
graphic QEC code in the language of quantum field
theories.
Our construction of the fixed area states is related to the

spectrum decomposition of reduced density matrix ρA.
Actually one could obtain the decomposition once knowing
the Rényi entropy for all the indices n. For a given pure
state jψi the reduced density matrix of subsystem A is ρψA.
The modular Hamiltonian Hψ

A ≔ − log ρψA has the same
eigenvalues as ρψA. In general, assume Hψ

A has degenerate
eigenbasis jk; αiψ with Hψ

Ajk; αiψ ¼ ðtk þ bψ Þjk; αiψ with
tk ∈ ½0;þ∞Þ, where α are degeneracy labels, bψ is the
minimal eigenvalue of Hψ

A . It is not hard to show that bψ ¼
limn→∞SnðρψAÞ by using the definition of Rényi entropy.
For the pure state jψi by Schmidt decomposition we

have

jψi ¼
X
t

e−
bψþt
2

X
α

jk; αiψ jk̄; ᾱiψδtk;α;t; ð3Þ

where jk̄; ᾱiψ are the basis of Hψ
Ā
. We could construct the

state in the subspace associated with a fixed t,

jΦiψt ≔
1ffiffiffiffiffiffiffiffiffiffiffiffi
PψðtÞp X

α

jk; αiψ jk̄; ᾱiψδtk;α;t; ð4Þ

where PψðtÞ ≔ P
α δtk;α;t is the dimension of this subspace.

Therefore, jψi can be expressed as a superposition of the
states jΦiψt .
By definition of Rényi entropy we have the

relation trρnA≔
P

k;αe
−nðbψþtk;αÞ ¼P

t e
−nðbψþtÞP

α δtk;α;t¼P
t e

−nðbψþtÞPψ ðtÞ. For quantum field theory the spectra
ofHψ

A are expected to be continuous. We expectPψðtÞ has a
well-defined continuous limit, which can be taken as the
density of eigenstates at t. One could evaluate PψðtÞ
by approximating the summation over t by an integral,
that is

Z
∞

0

dtPψ ðtÞe−nðbψþtÞ ¼ eð1−nÞSnðρ
ψ
AÞ: ð5Þ

By an inverse Laplace transformation in the variable n we
can obtain Pψ ðtÞ [20], see also [21,22].
The reduced density matrix of A is ρψt;A ¼
1

Pψ ðtÞ
P

α jk; αiψ ψhk; αjδtk;α;t. It is obvious that ρψt;A has flat

spectra, thus the Rényi entropy is independent with n,
which is the key property of the fixed area states con-
structed in [11,12]. For any operatorOA located in region A
we have

ψ
t hΦjOAjΦiψt ¼ trðρψAOAÞ ¼ POA

ðtÞ=Pψ ðtÞ; ð6Þ

where POA
ðtÞ ≔ P

αhk; αjOAjk; αiδtk;α;t. One could also
evaluate POA

ðtÞ by the method in [22].
One of the results of this paper is that the state jΦiψt (4) is

exactly dual to the fixed area state for any t ∼OðcÞ or
Oð1=GÞ. We make this claim by using the information of
Pψ ðtÞ and Pψ

OA
ðtÞ withOA being the stress energy tensor T.

We also obtain the relation between the parameter t and the
area of the minimal surface associated with A. We should
stress most of our calculations are working in CFTs with
large central charge c. To find the parameters relation we
should use the holographic Rényi entropy formula (2).
Another important result of our paper is constructing the
area operator Âψ in CFTs. The expectation value of Âψ in
the geometric state jψi divided by 4G in the geometric state
gives the holographic EE. This can be seen as a quantum
version of the RT formula.

II. FIXED AREA STATES IN AdS3

Consider a two-dimensional CFT with central charge c
on a complex plane with the coordinate ðw; w̄Þ ≔
ðxþ iτ; x − iτÞ. In this section we will remove the super-
script “ψ” to indicate the quantities are defined for a
vacuum state. For an interval A ¼ ½−R;R� in the vacuum
state the Rényi entropy is universal for 2D CFTs [23], given
by SnðρAÞ ¼ ð1þ 1

nÞb with b ≔ limn→∞SnðρAÞ ¼ c
6
log 2R

ϵ .
We can obtain the density of eigenstates with respect
to t [20]:

PðtÞ ¼ δðtÞ þ
ffiffiffi
b
t

r
I1ð2

ffiffiffiffiffi
bt

p
ÞHðtÞ; ð7Þ

where InðzÞ is the modified Bessel function of the first
kind, HðtÞ is the Heaviside step function.
For the holographic CFT b ∼OðcÞ ≫ 1, taking t to be

the order of c. The density of state PðtÞ ≃ be2
ffiffiffi
bt

pffiffiffiffi
4π

p ðbtÞ3=4. In the

CFT side the EE of the state ρt;A is given by
logPðtÞ ≃ 2

ffiffiffiffiffi
bt

p þOðlog cÞ.
By construction, the Rényi entropy of the state ρt;A is the

same as the EE, which is an important feature of the fixed
area states [11]. In the following we would like to show the
state jΦit is a fixed area state by explicitly constructing the
bulk geometry.
Using a similar method as in [24], we can get the

expectation value of stress energy tensor TðwÞ in the state
jΦit [22]:

hTðwÞit ¼
cR2

6ðR2 − w2Þ2
�
1 −

t
b

�
: ð8Þ

Similarly, one could get hT̄ðw̄Þit by replacing w with w̄ in
the above expression. The singularity at the ending points
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of interval A is associated with the conical defect as we will
show soon. The bulk geometry is fixed by the one-point
function of TðwÞ, that is

ds2¼dy2

y2
þLt

2
dw2þ L̄t

2
dw̄2þ

�
1

y2
þy2

4
LtL̄t

�
dwdw̄; ð9Þ

where Lt ≔ − 12
c hTðwÞit, L̄t ≔ − 12

c hT̄ðwÞit. The above
solution has singularity in the coordinate ðy; w; w̄Þ. By a
conformal transformation ξ ¼ ðRþw

R−wÞα, ξ̄ ¼ ðRþw̄
R−w̄Þα with

α ≔
ffiffi
t
b

p
, we have hTðξÞi ¼ hT̄ðξ̄Þi ¼ 0. At the points ξ ¼

0;∞ has conical defect with opening angle θ ¼ 2πα. The

dual bulk solution is the Poincaré coordinate ds2 ¼ dη2þdξdξ̄
η2

with a conical defect line γ.
With the geometry (9) one could find the geodesic line γA

connecting the ending points of A and evaluate the holo-
graphic EE by using the RT formula (1). The details of the
calculations can be found in Supplemental Material [25].
The result is

SAðρt;AÞ ¼
LγA

4G
¼ αc

3
log

2R
ϵ

¼ 2
ffiffiffiffiffi
bt

p
; ð10Þ

where we have used the Brown-Henneaux relation c ¼ 3
2G

[26]. The result of EE is exactly consistent with the CFT
calculation to the leading order in 1=G.
In [11] the fixed area states are constructed by inserting a

cosmic brane (line in AdS3) and requiring that the location
of the cosmic brane coincides with the RT surface. Here we
would like to show the conical defect line γ the same as the
geodesic line γA by using Snðρt;AÞ ¼ Sðρt;AÞ for the state
jΦit. To show this, we need to evaluate the holographic
Rényi entropy.
Consider the n-replica state ρnt;A, the one-point function

trðρnt;ATðwÞÞ is given by the same formula as (8). Now w is
the coordinate on the n-sheet Riemann surface Rn.
Adopting polar coordinates near the ending points of A,
we have w − R ≃ reiθ with θ ∼ θ þ 2nπ. Using the same
conformal transformation w → ξ ¼ ðwþR

w−RÞα, Rn is mapped
to the ξ plane with the conical defect with opening angle
θn ¼ 2πnα. Therefore, the dual bulk geometry Mn for Rn
is the Poincaré coordinate with a conical defect line γ.
Moreover, Mn can be constructed by cyclically gluing
n-copy geometry (9) together along the defect line γ.
The conical defect line can be realized by inserting
codimension-2 cosmic branes (lines in AdS3). The tension
of the cosmic brane μn is associated with the parameter α by
the relation μn ¼ 1−nα

4G [27].
To evaluate the Rényi entropy Snðρt;AÞ we need to know

the bulk action IbulkðnÞ, which includes the on-shell action
IgðnÞ of the geometry Mn and the brane action IbðnÞ. We
show the details of the calculations in the Supplemental
Material [25]. The result is

Snðρt;AÞ ¼
IbulkðnÞ − nIbulkð1Þ

n − 1
¼ Lγ

4G
: ð11Þ

Comparing with the holographic EE result (10) we have
Lγ ¼ LγA . This means the defect line γ coincides with the
geodesic line γA.
We expect the states (4) are dual to the fixed area states

only for t ∼OðcÞ in the holographic CFTs. For t ∼Oð1Þ or
t ≪ c ∼ b, the one-point function of T is still given by (8).
It seems we could construct the geometry for these states,
but the density of state PðtÞ no longer scales as e2

ffiffiffi
bt

p
, thus

the EE logPðtÞ in these states is not of OðcÞ. We do not
expect they have well-defined bulk geometry.
The above results give us a new way to understand the

vacuum AdS3 by decomposing them into fixed area states.
To be more precise we have

j0i ¼
X
t

ffiffiffiffiffiffiffiffiffi
PðtÞ

p
e−

bþt
2 jΦit: ð12Þ

The reduced density matrix of A is

ρA ¼
X
t

e−b−tPðtÞρt;A: ð13Þ

Actually, (13) is just the spectrum decomposition of the
operator ρA, Pt ≔ PðtÞρt;A are projections into the Hilbert
subspace with respect to the spectrum e−b−t. The states jΦit
are fixed area states if t ∼OðcÞ. However, the contributions
from t ≪ c are usually exponentially suppressed in the
large c limit. We can safely take the vacuum state of a
holographic CFT as a superposition of fixed area states by
introducing a lower cutoff of the summation (12).

III. FIXED AREA STATES IN ANY DIMENSION

For arbitrary pure geometric state jψi, the reduced
density matrix of subsystem A can be expressed as

ρψA ¼
X
t

PψðtÞe−bψ−tρψt;A: ð14Þ

The density of eigenstates PψðtÞ is given by

Pψ ðtÞ ¼ L−1½enbþð1−nÞSnðρψAÞ�ðtÞ

¼ 1

2πi

Z
γ0þi∞

γ0−i∞
dnesn; ð15Þ

with

sn ≔ nðtþ bÞ þ ð1 − nÞSnðρψAÞ; ð16Þ

where L−1½� � �� denotes the inverse Laplace transformation
of the expression in the square brackets, γ0 is chosen for the
convergence of the integration, and SnðρψAÞ is the Rényi
entropy of subsystem A in the state jψi. In general, it is hard
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to evaluate the Rényi entropy for arbitrary states. For
holographic theories, SnðρψAÞ is expected to be of order
OðcÞ. For t ∼OðcÞ we can evaluate the integral (15) by
saddle point approximation. That is to solve the equation

∂nsn ¼ ðtþ bÞ þ ∂n½ð1 − nÞSnðρψAÞ� ¼ 0: ð17Þ

In general, (17) is a complicated equation for n. Assume the
solutions exist. If it gives more than one solution, we
should take the one that maximizes sn. With the solution
n� ¼ n�ðtÞ we have

sn� ¼ ½SnðρψAÞ þ nðn − 1Þ∂nSnðρψAÞ�n¼n� : ð18Þ

Using Dong’s formula of holographic Rényi entropy (2) we
have

sn� ¼
AreaðBn� Þ

4G
: ð19Þ

Therefore, the density of eigenstates is given by

PψðtÞ ∝ e
AreaðBn� Þ

4G : ð20Þ

By definition the Rényi entropy of the state ρψt;A is
independent with n, given by

Snðρψt;AÞ ¼ logPψðtÞ ≃ AreaðBn�Þ
4G

: ð21Þ

Our results show the states jΦiψt have the same property as
the fixed area state. Equations (17) and (21) give the dual
relation between the parameter t and the bulk fixed area,
that is the area of the cosmic brane AreaðBn� Þ. Suppose the
geometry dual to jψi is Mψ . According to Dong’s formula
of Rényi entropy the tension of the codimension-2 cosmic
brane Bn is μn ¼ n−1

4nG. To obtain the geometry dual to the
fixed area state jΦiψt one should insert a codimension-2
cosmic brane with tension μt ¼ n�−1

4n�G, where n� is the
solution of the equation (17). If the equation has more
than one solution, we should take the one that maximizes
the function sn (16). The cosmic brane backreacts on the
geometry Mψ and creates a conical defect with opening
angle θ ≔ 2παt ¼ 2π − 8πGμn� . The location of the cos-
mic brane coincides with the RT surface for subregion A in
the backreacted geometry. The role of the cosmic brane is
like a sharp projection that maps the original geometryMψ

to the fixed area geometry. The above results are consistent
with the discussion in [11] by using the gravitational path
integral. We illustrate the geometry dual to the fixed area
state jΦiψt in Fig. 1.
As a check of the above statement, let us consider the

vacuum state in AdS3. Taking the Rényi entropy SnðρAÞ ¼
ð1þ 1

nÞb into the equation (17), we have the solution

n� ¼ ffiffiffiffiffiffiffi
b=t

p
. The tension of the cosmic line is μt ¼ 1

4G ð1 −ffiffiffiffiffiffiffi
t=b

p Þ and the opening angle of the conical defect line is
θ ¼ 2π

ffiffiffiffiffiffiffi
t=b

p
. The results are exactly consistent with our

direct calculations in the last section.

IV. PROBABILITY OF THE FIXED AREA STATES

By using the expression of PψðtÞ, arbitrary pure geo-
metric state jψi can be seen as a superposition of a series of
the fixed area states,

jψi ¼
X
t

ffiffiffiffiffiffi
pψ
t

p
jΦiψt ; ð22Þ

where pψ
t ≔ e

AreaBn�
4G −bψ−t. Like the vacuum case we expect

the contributions from small t (t ≪ c) of the above
integration are negligible. The quantum error correction
code interpretation of AdS=CFT suggests the coefficients
pψ
t of (22) can be associated with the on-shell action Iψt of

the corresponding fixed area states jΦiψt [11,15]. The
expected relation is pψ

t ¼ e−I
ψ
t . Using the result (22), we

have

Iψt ¼ bψ þ t −
AreaBn�

4G
; ð23Þ

which depends on the parameter t. pψ
t can be explained as

the probability for the geometric state jψi to be the fixed
area state jΦiψt .
For the vacuum case j0i, bψ ¼ b and AreaBn�

4G ¼ 2
ffiffiffiffiffi
bt

p
, the

action It ¼ bð1 − ffiffi
t
b

p Þ2 ¼ bð1 − αÞ2, which is consistent
with IbulkðnÞ ([28] and the results in [15]). The probability
distribution pt ≔ e−It has maximal value at t ¼ b. In the
semiclassical limit G → 0, the distribution will approach a

(a) (b)

FIG. 1. Illustration of the gravity dual of Rényi entropy and
geometry dual of the fixed area state. The field theory lives on the
plane and is dual to gravitational theory in the bulk above the
plane. A (red) is the subsystem. (a) Dong’s formula for computing
the Rényi entropy of A. The plane denotes the manifold Rn,
defined by n copies of original space on which the theory lives
with singularity along the boundary of subsystem A. The bulk
geometry is realized by inserting a cosmic brane Bn (green) with
tension μn ¼ n−1

4nG. (b) Our proposal of the geometry dual to the
fixed area state jΦiψt . The cosmic brane Bn�ðtÞ (blue) is similar as
(a) but the tension of the brane is μt ¼ n�−1

4n�G, where n
� is a function

of t determined by the solution of (17). The RT surface of A
coincides with the location of the brane.
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delta function δðt − bÞ. Therefore, ρA can be approximated
by the fixed area state ρt¼b. One could check the EE
of ρA is the same as ρt¼b in the leading order of G. Taking
t ¼ b into (9) we get the same geometry as the vacuum
AdS3. However, we could find other probes that could
distinguish the two states, see more discussions in [22].
This means the superposition among the fixed area states is
important to understand the full properties of the geometry
dual to jψi. We can also consider the unnormalized n-copy
state,

ðρAÞn ¼
X
t

pn
t ðρt;AÞn ≃

X
t

ffiffiffi
b
t

r
e−nðbþtÞþ2

ffiffiffi
bt

p
ρt;A: ð24Þ

It can be shown ðρAÞn ≃ e−ðn−1
nÞbρt¼ b

n2
;A by approximating

the above summation by integral. This means the geometry
of the n-copy state is approximated by the fixed area state
with t ¼ b

n2, which is the spacetime inserting a cosmic brane
with tension n−1

4Gn. It is a consistent check with Dong’s
formula of holographic Rényi entropy.
In general, Iψt is proportional to 1=G. In the semiclassical

limit G → 0, we expect the probability pψ
t has maximal

value at t̄, which is fixed by the equation ∂tI
ψ
t jt¼t̄ ¼ 0. It is

not easy to find t̄ by solving (23) and (17). Motivated by the
vacuum case, we can fix t̄ by requiring the EE of ρψt¼t̄ is
equal to the EE of ρψA. This leads to n�ðt̄Þ ¼ 1. Using (17)
we find t̄ ¼ SðρψAÞ − bψ . In [22] we show the one-point
functions of local operators O in states ρψA are equal to the
ones in ρψt¼t̄ in the semiclassical limit G → 0. This leads to
the result

Z
∞

0

dtpψ
t →

Z
∞

0

dtδðt − t̄Þ; ð25Þ

in the semiclassical limit G → 0.

V. THE AREA OPERATOR

The fixed area states jΦiψt can be taken as the basis of a
given pure geometric state jψi. We may introduce an
operator Âψ , which is expected to satisfy the following
conditions:
(1) Positive semidefinite Hermitian and state-dependent

operator [29].
(2) Fixed area states are its eigenstates.
(3) Located in subsystem A or Ā.
(4) Its expectation value in geometric state jψi divided

by 4G gives the RT formula [30] and its fluctuation
in jψi is suppressed in the semiclassical limit
G → 0.

The area operator Âψ can be constructed by spectrum
decomposition. The modular Hamiltonian Hψ

A has the

spectrum decomposition as Hψ
A ¼ P

tðtþ bψ ÞPψ
t , where

Pψ
t ≔ PψðtÞρψt;A. According to the operator theory [31], we

can define the new operators,

FðHψ
AÞ ≔

X
t

Fðtþ bψÞPψ
t ; ð26Þ

where FðxÞ is the functions of x [32]. The operators satisfy
FðHψ

AÞjΦiψt ¼ Fðtþ bψ ÞjΦiψA. The area operator can be
defined as

Âψ ¼ sðHψ
A − bψÞ ¼

X
t

sðtÞPψ
t ; ð27Þ

where sðtÞ ≔ 6
c sn� , sn� is given by (18). If we further use

(19), the area operator is

Âψ ¼
X
t

AreaðBn� ÞPψ
t ; ð28Þ

where we used (19) and the Brown-Henneaux relation
c ¼ 3

2G. The area operator has the similar structure as the
one constructed in the holographic QEC code [10–12]. It is
obvious that Âψ jΦiψt ¼ AreaðBn� ÞjΦiψt , AreaðBn� Þ is the
area of the bulk RT surface for the geometry dual to the
fixed area state jΦiψt . The expectation value of Âψ in jψi is

hÂψ iψ ¼
Z

∞

0

dtpψ
t AreaðBn�Þ ¼

Z
∞

0

dte−I
ψ
t AreaðBn� Þ:

According to (25), we have

hÂψiψ →
Z

∞

0

dtδðt − t̄ÞAreaðBn� Þ ¼ AreaðB1Þ; ð29Þ

in the semiclassical limit G → 0. AreaðB1Þ is just the area
of the RT surface in the geometry dual to jψi. The RT
formula can be expressed by the area operator as

SðρψAÞ ¼
hÂψiψ
4G

: ð30Þ

By using the definition of the EE SðρψAÞ ¼
−trðρψA log ρψAÞ ¼ hψ jHAjψi, we have a nice result:

hψ jHψ
A −

Âψ

4G
jψi ¼

Z
∞

0

dte−I
ψ
t

�
tþ bψ −

AreaðBnÞ
4G

�

→

�
t̄þ bψ −

AreaðB1Þ
4G

�
¼ 0; ð31Þ

in the limit G → 0. This can seen as the bulk dual of the
modular Hamiltonian to the leading order in the 1=G
expansion [33].

AREA OPERATOR AND FIXED AREA STATES IN CONFORMAL … PHYS. REV. D 106, L061903 (2022)

L061903-5



To characterize the fluctuation of the area operator in the
state jψi, we can define the uncertainty of the area operator
hΔÂψ iψ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð̂AψÞ2iψ − hÂψi2ψ

q
. By using (25), we can

show hΔÂψiψ ¼ 0 in the limit G → 0. This is the expected
feature for the geometric state, for which the quantum
fluctuation should be suppressed. This property is similar
to the constraints of geometric states [34], which are
expressed as conditions for connected correlation functions
of stress energy tensor. We show the results for the vacuum
state in the Supplemental Material [25].

VI. DISCUSSION

The fixed area state plays a crucial role in the holo-
graphic QEC code. Our results serve as a bridge to
construct the code by CFT states. With this one could
have a more precise playground to better understand QEC
interpretation of AdS=CFT correspondence, as well as the
deep connection between quantum information theory and
holography.
Though we have constructed the fixed area states for a

given geometric state jψi, there are still some unsolved
problems on its relation to the holographic QEC code.
From our constructions the fixed area states and the area
operator are closely associated with the given geometric
state jψi, since our constructions are based on the Schmidt
decomposition of jψi. If one chooses another geometric
state, say jψ 0i, it seems the corresponding fixed area states
and area operator are different from the case of jψi. It is still
unclear what the relation is between different geometric
states. For the holographic QEC code we will expect the

duality is not only useful for some special states. However,
the vacuum state of quantum field theory (QFT) is cyclic
[35], which means one could construct any states of QFT
by only local operations on the vacuum. The cyclic
property of vacuum may help us to understand the relations
between different geometric states.
Our constructed area operator is expressed as a super-

position of projectors in CFTs. It may be possible to find its
bulk dual by reconstruction of the bulk operators in an
entanglement wedge [9,36].
In this paper we only focus on the pure geometric state.

Some important modifications are necessary to generalize
the results to the mixed states. We only consider the leading
order result in the expansion of gravitational coupling G.
The RT formula would receive correction at higher orders
in G [37]. That would be interesting to consider the higher
order corrections, which is important to understand the
relation between boundary and bulk modular Hamiltonian
[33]. Finally, it would be interesting to generalize
the quantum version of RT formula (30) with including
the higher order G correction. It is probably related to the
quantum extremal surface prescription [38], which plays an
important role understanding the information paradox of
black hole [39,40].
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