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Area operator and fixed area states in conformal field theories
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The fixed area states are previously discussed in the quantum error-correction codes interpretation of
AdS/CFT. The dual bulk geometry is constructed by gravitational path integrals. In this paper we show the
fixed area states correspondence in conformal field theories (CFTs), which are associated with the spectrum
decomposition of reduced density matrix p, for a subsystem A. For two-dimensional CFTs we directly
build the bulk metric, which is consistent with the expected geometry of the fixed area states. For arbitrary
pure state |y) with a geometric dual in the bulk we also find the consistency by using the gravity dual of
Rényi entropy. We also obtain the parameters relation between the bulk geometry and boundary state. The
pure state |y) can be expanded as a superposition of the fixed area states. Motivated by this, we propose an

area operator A”. The fixed area state is the eigenstate of A, the associated eigenvalue is related to
the Rényi entropy of subsystem A in this state. The Ryu-Takayanagi formula can be expressed as the

expectation value (y|A”|y) divided by 4G, where G is the Newton constant. We further show the
fluctuation of the area operator in the geometric state |y) is suppressed in the semiclassical limit G — 0.

DOI: 10.1103/PhysRevD.106.L061903

I. INTRODUCTION

AdS/CFT correspondence provides for us a way to
understand the nature of the bulk spacetime by the CFT
living on the boundary [1-3]. One of interesting topics in
AdS/CFT is the exact duality relation between quantum
states in the Hilbert space of the boundary CFT and the ones
in the bulk. Some states in the CFTs can be effectively
described by the classical geometries in the limit G — 0. In
this paper we will call them geometric states for short.

The geometry is associated with the entanglement
entropy (EE) S(p,) of a boundary subregion A by the
well-known Ryu-Takayanagi (RT) formula [4] for the bulk
metric with time reflection symmetry,

Area(y
S(py) = S1o28),

(1)
where y, is the minimal surface in the bulk that is
homology to A, p, denotes the reduced density matrix
of A. For general bulk spacetime one should take y, to be
the Hubeny-Rangamani-Takayanagi surface [5]. The RT
formula shows the secret relation between spacetime and
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intrinsic entanglement of underlying degrees of freedom of
quantum gravity [6].

The area lawlike relation is generalized to the holo-
graphic Rényi entropy by Dong [7]. The Rényi entropy,

log trp”t . . .
defined as S, (p4) = %_ f 4, is one parameter generalization

of entanglement entropy. The gravity dual of Rényi entropy
is given by

"o, ( = sn<pA>) _ Arca(5,) )

4G

where B, denotes the cosmic brane with the tension

U, = %. The cosmic brane backreacts on the geometry

by creating a conical defect with opening angle 6 = 27”
In [8] the authors find the connections between the
quantum error-correction (QEC) code and AdS/CFT cor-
respondence. It has led to a better understanding of radial
commutativity and subregion duality in the correspondence
[9]. The RT formula (1) naturally appears in the QEC code
as shown in [10]. To explain the Rényi entropy formula (2)
in the same framework the code should satisfy certain
special properties [11,12]. It leads to new kinds of geo-
metric states named fixed area states, for which the Rényi
entropy are independent with n to the leading order in G.
Previous approaches are based on the holographic QEC
code and gravitational path integral. The geometry dual of
the fixed area state can be obtained by inserting a cosmic
brane fixed to be on the RT surface. More discussions on
the fixed area states can be found in [13—17]. Therefore, the

Published by the American Physical Society


https://orcid.org/0000-0002-9353-1075
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.L061903&domain=pdf&date_stamp=2022-09-15
https://doi.org/10.1103/PhysRevD.106.L061903
https://doi.org/10.1103/PhysRevD.106.L061903
https://doi.org/10.1103/PhysRevD.106.L061903
https://doi.org/10.1103/PhysRevD.106.L061903
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

WU-ZHONG GUO

PHYS. REV. D 106, L061903 (2022)

fixed area states are very important to understand the
holographic QEC code as well as the AdS/CFT corre-
spondence. However, most of the studies are based on the
abstract QEC code or some simple tensor network models
[18,19]. In this paper we will work in the framework of
AdS/CFT and construct the fixed area states in the CFTs.
Our results provide a new way to investigate the holo-
graphic QEC code in the language of quantum field
theories.

Our construction of the fixed area states is related to the
spectrum decomposition of reduced density matrix pg.
Actually one could obtain the decomposition once knowing
the Rényi entropy for all the indices n. For a given pure
state |y) the reduced density matrix of subsystem A is pY.
The modular Hamiltonian HY := —logp" has the same
eigenvalues as p. In general, assume H', has degenerate
eigenbasis |k, a)¥ with HY |k, @)V = (t; + bY)|k, a)¥ with
ty € [0,4+00), where a are degeneracy labels, b is the
minimal eigenvalue of HY. It is not hard to show that b¥ =
lim,_, .S, (") by using the definition of Rényi entropy.

For the pure state |w) by Schmidt decomposition we

have
w) =YY kv are, . ()
t a
where |k, @)¥ are the basis of HY. We could construct the

state in the subspace associated with a fixed t,

1

oV =
o T
where P¥(t) =), 6, ., is the dimension of this subspace.
Therefore, |w) can be expressed as a superposition of the
states | @)Y

By definition of Rényi entropy we have the
relation  trp =", eV ia) =37 IR 5, =
>, e PPV (f), For quantum field theory the spectra
of HY, are expected to be continuous. We expect PV (¢) has a
well-defined continuous limit, which can be taken as the
density of eigenstates at ¢t. One could evaluate PY(t)
by approximating the summation over ¢ by an integral,
that is

k,a)¥

_7 a>l,/51‘](.(l.t’ (4)

/00 dtPV/(t)e—"(hV/+t) = e(l_n)sn<plv;). (5)
0

By an inverse Laplace transformation in the variable n we
can obtain P¥(t) [20], see also [21,22].

The reduced density matrix of A is p¥, =
@ a |k @) V{k, al8, . It is obvious that py; has flat
spectra, thus the Rényi entropy is independent with n,
which is the key property of the fixed area states con-
structed in [11,12]. For any operator O, located in region A
we have

1{@OA| @)1 = tr(p}On) = Po, (1)/P¥(1).  (6)

where P (1) =, (k. a|O4|k, @), .. One could also
evaluate Py (¢) by the method in [22].

One of the results of this paper is that the state |®)? (4) is
exactly dual to the fixed area state for any r~ O(c) or
O(1/G). We make this claim by using the information of
PY (1) and PP, (1) with O, being the stress energy tensor 7.

We also obtain the relation between the parameter ¢ and the
area of the minimal surface associated with A. We should
stress most of our calculations are working in CFTs with
large central charge c. To find the parameters relation we
should use the holographic Rényi entropy formula (2).
Another important result of our paper is constructing the
area operator AY in CFTs. The expectation value of A" in
the geometric state |y) divided by 4G in the geometric state
gives the holographic EE. This can be seen as a quantum
version of the RT formula.

II. FIXED AREA STATES IN AdS;

Consider a two-dimensional CFT with central charge ¢
on a complex plane with the coordinate (w,w) :=
(x 4+ it,x — it). In this section we will remove the super-
script “w” to indicate the quantities are defined for a
vacuum state. For an interval A = [-R, R] in the vacuum
state the Rényi entropy is universal for 2D CFTs [23], given
by S,(pa) = (1+1)b with b :=lim,_ .S, (ps) = Slog 2.
We can obtain the density of eigenstates with respect
to ¢ [20]:

P(r) = 8(t) + \/§II<2\/E)H(t>, (7)

where 1,(z) is the modified Bessel function of the first
kind, H(¢) is the Heaviside step function.
For the holographic CFT b ~ O(c¢) > 1, taking ¢ to be

the order of ¢. The density of state P(r) ~ ¢55£3 - In the

CFT side the EE of the state p,, is given by
log P(t) =~ 2v/bt + O(log ¢).

By construction, the Rényi entropy of the state p, 4 is the
same as the EE, which is an important feature of the fixed
area states [11]. In the following we would like to show the
state |®), is a fixed area state by explicitly constructing the
bulk geometry.

Using a similar method as in [24], we can get the
expectation value of stress energy tensor 7'(w) in the state

|q)>r [22]:
()

Similarly, one could get (T(#w)), by replacing w with W in
the above expression. The singularity at the ending points

(T(w)),
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of interval A is associated with the conical defect as we will
show soon. The bulk geometry is fixed by the one-point
function of T(w), that is

dy* L, 1y
ds 2:— Ldw? Ldw? L,L, |dwdw 9
i +—= > —l— > (y —|—4 ) wdw, (9)
where L, = —12(T(w)),, L,:=—12(T(w)),. The above

solution has singularity in the coordinate (y,w,w). By a
conformal transformation ¢ = _(%)“, &= (Bt with
a:= /I, we have (T(¢)) = (T(£)) = 0. At the points & =
0, oo has conical defect with opening angle 6 = 2za. The

dual bulk solution is the Poincaré coordinate ds? = — d+dedd +d§d§

with a conical defect line y.

With the geometry (9) one could find the geodesic line y 4
connecting the ending points of A and evaluate the holo-
graphic EE by using the RT formula (1). The details of the
calculations can be found in Supplemental Material [25].
The result is

L, 2R
l —:2 1
4G 3 log Vbt, (10)

Salpia) =

where we have used the Brown-Henneaux relation ¢ = %
[26]. The result of EE is exactly consistent with the CFT
calculation to the leading order in 1/G.

In [11] the fixed area states are constructed by inserting a
cosmic brane (line in AdS;) and requiring that the location
of the cosmic brane coincides with the RT surface. Here we
would like to show the conical defect line y the same as the
geodesic line y, by using S, (p,4) = S(p,4) for the state
|@),. To show this, we need to evaluate the holographic
Rényi entropy.

Consider the n-replica state pf ,, the one-point function
tr(pf 4 T(w)) is given by the same formula as (8). Now w is
the coordinate on the n-sheet Riemann surface R,.
Adopting polar coordinates near the ending points of A,
we have w — R ~ re’® with @ ~ @ + 2nx. Using the same
conformal transformation w — & = (x%,’g)“, ‘R, is mapped
to the & plane with the conical defect with opening angle
0, = 2zna. Therefore, the dual bulk geometry M, for R,
is the Poincaré coordinate with a conical defect line y.
Moreover, M, can be constructed by cyclically gluing
n-copy geometry (9) together along the defect line y.
The conical defect line can be realized by inserting
codimension-2 cosmic branes (lines in AdS53). The tension
of the cosmic brane y,, is associated with the parameter a by
the relation p, = 1 e [27].

To evaluate the Renyl entropy S,(p;4) we need to know
the bulk action Iy, (1), which includes the on-shell action
1,(n) of the geometry M, and the brane action I, (n). We
show the details of the calculations in the Supplemental
Material [25]. The result is

Toui(n) — nlyak(1) Ly
n—1 4G’

Su(pra) = (11)
Comparing with the holographic EE result (10) we have
L, =L, . This means the defect line y coincides with the
geodesic line y4.

We expect the states (4) are dual to the fixed area states
only for ¢ ~ O(c) in the holographic CFTs. For t ~ O(1) or
t < ¢ ~ b, the one-point function of 7 is still given by (8).
It seems we could construct the geometry for these states,
but the density of state P(¢) no longer scales as ¢2V?! | thus
the EE log P(7) in these states is not of O(c). We do not
expect they have well-defined bulk geometry.

The above results give us a new way to understand the
vacuum AdS; by decomposing them into fixed area states.
To be more precise we have

Z VP(t) e 7| @), (12)
The reduced density matrix of A is

pa= S e P(t)p,a. (13)

t

Actually, (13) is just the spectrum decomposition of the
operator p,, P, := P(t)p, 4 are projections into the Hilbert
subspace with respect to the spectrum e~>~!. The states |®),
are fixed area states if  ~ O(c). However, the contributions
from 7 < ¢ are usually exponentially suppressed in the
large ¢ limit. We can safely take the vacuum state of a
holographic CFT as a superposition of fixed area states by
introducing a lower cutoff of the summation (12).

III. FIXED AREA STATES IN ANY DIMENSION

For arbitrary pure geometric state |y), the reduced
density matrix of subsystem A can be expressed as

ph = ZP"’(Z‘)e‘bW_’pll’fA. (14)
t

The density of eigenstates P¥(7) is given by

Pr(r) = L] [enb+(1—n>5n<pﬁ>](t)

- % y:m dne, (15)

with
sp=n(t+b) + (1 —-n)S,(pY), (16)
where £7![- - -] denotes the inverse Laplace transformation

of the expression in the square brackets, y is chosen for the
convergence of the integration, and S,(p%) is the Rényi
entropy of subsystem A in the state |y). In general, it is hard
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to evaluate the Rényi entropy for arbitrary states. For
holographic theories, S, (pY) is expected to be of order
O(c). For t ~ O(c) we can evaluate the integral (15) by
saddle point approximation. That is to solve the equation

Ousy = (1 +b) +0,[(1 = n)Su(py)] = 0. (17)

In general, (17) is a complicated equation for n. Assume the
solutions exist. If it gives more than one solution, we
should take the one that maximizes s,. With the solution
n* = n*(t) we have

Spe = [S.(P%) + n(n—1)0,8,(p%)],—re- (18)

Using Dong’s formula of holographic Rényi entropy (2) we
have

_ Area(B,)
Syr = T . (19)

Therefore, the density of eigenstates is given by

Area(B +)

PV(t) x e . (20)

By definition the Rényi entropy of the state pl;fA is
independent with n, given by

_Area(B,)

Sn(ﬂl;,fA) = 10g PW([) ad T (21)

Our results show the states |®)? have the same property as
the fixed area state. Equations (17) and (21) give the dual
relation between the parameter ¢ and the bulk fixed area,
that is the area of the cosmic brane Area(3,- ). Suppose the
geometry dual to |yr) is M,,. According to Dong’s formula
of Rényi entropy the tension of the codimension-2 cosmic
brane B, is u, = %. To obtain the geometry dual to the
fixed area state |®)? one should insert a codimension-2
cosmic brane with tension y, = j{”—‘é where n* is the
solution of the equation (17). If the equation has more
than one solution, we should take the one that maximizes
the function s, (16). The cosmic brane backreacts on the
geometry M,, and creates a conical defect with opening
angle 0 = 2za;, = 27 — 8xGu,-. The location of the cos-
mic brane coincides with the RT surface for subregion A in
the backreacted geometry. The role of the cosmic brane is
like a sharp projection that maps the original geometry M,,
to the fixed area geometry. The above results are consistent
with the discussion in [11] by using the gravitational path
integral. We illustrate the geometry dual to the fixed area
state |®)? in Fig. 1.

As a check of the above statement, let us consider the
vacuum state in AdS;. Taking the Rényi entropy S, (p4) =
(1+ %)b into the equation (17), we have the solution

By
/\ P
A ‘ A
R, @)
(b)

(a)

FIG. 1. Tlustration of the gravity dual of Rényi entropy and
geometry dual of the fixed area state. The field theory lives on the
plane and is dual to gravitational theory in the bulk above the
plane. A (red) is the subsystem. (a) Dong’s formula for computing
the Rényi entropy of A. The plane denotes the manifold R,
defined by n copies of original space on which the theory lives
with singularity along the boundary of subsystem A. The bulk
geometry is realized by inserting a cosmic brane B,, (green) with
tension p, = %. (b) Our proposal of the geometry dual to the
fixed area state |®). The cosmic brane B, (,) (blue) is similar as
(a) but the tension of the brane is y, = % where n* is a function
of ¢ determined by the solution of (17). The RT surface of A
coincides with the location of the brane.

n* = \/b/t. The tension of the cosmic line is s, = 7= (1 —
\/t/D) and the opening angle of the conical defect line is

60 = 2m+/t/b. The results are exactly consistent with our
direct calculations in the last section.

IV. PROBABILITY OF THE FIXED AREA STATES

By using the expression of P¥(r), arbitrary pure geo-
metric state |y) can be seen as a superposition of a series of
the fixed area states,

w) = Vol @), (22)

ArealB s«
where p? = e —?"~!, Like the vacuum case we expect

the contributions from small ¢ (r < c) of the above
integration are negligible. The quantum error correction
code interpretation of AdS/CFT suggests the coefficients
pV of (22) can be associated with the on-shell action 1! of
the corresponding fixed area states |®)? [11,15]. The
expected relation is p¥ = e ! Using the result (22), we
have

Areal3,,:

I =bV 41— ,
! + 4G

(23)
which depends on the parameter 7. p? can be explained as
the probability for the geometric state |w) to be the fixed
area state |®)Y.

For the vacuum case |0), b, = b and Ar%f"* = 2v/bt, the
action I, = b(1 — \/})* = b(1 — a)?, which is consistent
with Ty () ([28] and the results in [15]). The probability
distribution p, := e~ has maximal value at ¢ = b. In the
semiclassical limit G — 0, the distribution will approach a

L061903-4
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delta function §(¢ — b). Therefore, p, can be approximated
by the fixed area state p,_,. One could check the EE
of p, is the same as p,_,, in the leading order of G. Taking
t = b into (9) we get the same geometry as the vacuum
AdS;. However, we could find other probes that could
distinguish the two states, see more discussions in [22].
This means the superposition among the fixed area states is
important to understand the full properties of the geometry
dual to |y). We can also consider the unnormalized n-copy
state,

b
(P)" = _prpa) =Y \/76‘"(”“)*2@,0,,A- (24)
t t

It can be shown (p, )" =~ e~("=)bp 1+ 4 by approximating

the above summation by integral. This means the geometry
of the n-copy state is approximated by the fixed area state
with 1 = n—bz, which is the spacetime inserting a cosmic brane

with tension %. It is a consistent check with Dong’s
formula of holographic Rényi entropy.

In general, 1!’ is proportional to 1/G. In the semiclassical
limit G — 0, we expect the probability p? has maximal
value at 7, which is fixed by the equation 0,I7|,_; = 0. It is
not easy to find 7 by solving (23) and (17). Motivated by the
vacuum case, we can fix 7 by requiring the EE of p?_. is
equal to the EE of pY. This leads to n*(7) = 1. Using (17)
we find 7 = S(p%) — b¥. In [22] we show the one-point
functions of local operators O in states pY are equal to the
ones in p”_- in the semiclassical limit G — 0. This leads to

the result

/oo dip? — /00 dis(t —1), (25)
0 0

in the semiclassical limit G — 0.

V. THE AREA OPERATOR

The fixed area states |®)? can be taken as the basis of a
given pure geometric state |y). We may introduce an
operator A¥, which is expected to satisfy the following
conditions:

(1) Positive semidefinite Hermitian and state-dependent

operator [29].

(2) Fixed area states are its eigenstates.

(3) Located in subsystem A or A.

(4) Its expectation value in geometric state |y) divided
by 4G gives the RT formula [30] and its fluctuation
in |y) is suppressed in the semiclassical limit
G-—0.

The area operator AY can be constructed by spectrum
decomposition. The modular Hamiltonian HY has the

spectrum decomposition as HY = >_,(r + b¥)PY, where
P} :=P¥(t)pY . According to the operator theory [31], we
can define the new operators,

F(HY) = F(1+b")PY, (26)

where F(x) is the functions of x [32]. The operators satisfy
F(HY)|®) = F(r+ b”)|®)%. The area operator can be
defined as

A

AV = s(HY = b¥) =) s(t)PY, (27)

where s(t) :=%5,., s, is given by (18). If we further use
(19), the area operator is

AV = ZArea(Bn*)P‘,”, (28)
t

where we used (19) and the Brown-Henneaux relation
c= % The area operator has the similar structure as the
one constructed in the holographic QEC code [10-12]. It is
obvious that A¥|®)Y = Area(B,.)|®)", Area(B,.) is the
area of the bulk RT surface for the geometry dual to the
fixed area state |®)”. The expectation value of A in |y) is

(A),, = Aw dtp! Area(B,) = Aoo dre™!7 Area(B,.).

According to (25), we have
<2\"’)W - /oo dis(t — 7)Area(B,) = Area(B;), (29)
0

in the semiclassical limit G — 0. Area(B3,) is just the area
of the RT surface in the geometry dual to |w). The RT
formula can be expressed by the area operator as

(AY)
4G

S(py) =—=~. (30)

By using the definition of the EE S(p%) =
—tr(pY logp") = (w|H,ly), we have a nice result:

AV o v Area(B,)
HY — — dte i [t + pVY — ————"/
(wIH3 4G|W> /) ¢ ( 4G )

> <E+b‘/’—m234((;61)) =0, (31

in the limit G — 0. This can seen as the bulk dual of the
modular Hamiltonian to the leading order in the 1/G
expansion [33].

L061903-5
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To characterize the fluctuation of the area operator in the
state |y), we can define the uncertainty of the area operator

(AAY),, = \/<(;\‘/’)2>W— (A¥)2. By using (25), we can
show (AA"”)W = 0 in the limit G — 0. This is the expected
feature for the geometric state, for which the quantum
fluctuation should be suppressed. This property is similar
to the constraints of geometric states [34], which are
expressed as conditions for connected correlation functions

of stress energy tensor. We show the results for the vacuum
state in the Supplemental Material [25].

VI. DISCUSSION

The fixed area state plays a crucial role in the holo-
graphic QEC code. Our results serve as a bridge to
construct the code by CFT states. With this one could
have a more precise playground to better understand QEC
interpretation of AdS/CFT correspondence, as well as the
deep connection between quantum information theory and
holography.

Though we have constructed the fixed area states for a
given geometric state |y), there are still some unsolved
problems on its relation to the holographic QEC code.
From our constructions the fixed area states and the area
operator are closely associated with the given geometric
state |y), since our constructions are based on the Schmidt
decomposition of |y). If one chooses another geometric
state, say |y’), it seems the corresponding fixed area states
and area operator are different from the case of |y). It is still
unclear what the relation is between different geometric
states. For the holographic QEC code we will expect the

duality is not only useful for some special states. However,
the vacuum state of quantum field theory (QFT) is cyclic
[35], which means one could construct any states of QFT
by only local operations on the vacuum. The cyclic
property of vacuum may help us to understand the relations
between different geometric states.

Our constructed area operator is expressed as a super-
position of projectors in CFTs. It may be possible to find its
bulk dual by reconstruction of the bulk operators in an
entanglement wedge [9,36].

In this paper we only focus on the pure geometric state.
Some important modifications are necessary to generalize
the results to the mixed states. We only consider the leading
order result in the expansion of gravitational coupling G.
The RT formula would receive correction at higher orders
in G [37]. That would be interesting to consider the higher
order corrections, which is important to understand the
relation between boundary and bulk modular Hamiltonian
[33]. Finally, it would be interesting to generalize
the quantum version of RT formula (30) with including
the higher order G correction. It is probably related to the
quantum extremal surface prescription [38], which plays an
important role understanding the information paradox of
black hole [39,40].
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