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We describe a broad class of 4D F-theory models in which an E5 gauge group is broken through fluxes to
the standard model gauge group. These models are ubiquitous in the 4D F-theory landscape and can arise
from flux breaking of most models with E factors. While in many cases the E; breaking leads to exotic
matter, there are large families of models in which the standard model gauge group and chiral matter
representations are obtained through an intermediate SU(5) group. The number of generations of matter
appearing in these models can easily be small. We demonstrate the possibility of getting three generations

of chiral matter as the preferred matter content.
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I. INTRODUCTION

To describe the real world with string theory as a unified
theory, it has been a long-standing and primary goal to find
the structure of the standard model (SM) of particle physics
in string theory. In particular, we would like to identify the
SM as a natural solution to string theory. F theory [1-3], a
strongly coupled version of type IIB string theory, is a
particularly promising framework for this purpose as it gives
a global description of a large connected class of theories
(see [4] for a review). F theory gives 4D low-energy
supergravity models when compactified on elliptically
fibered Calabi-Yau (CY) fourfolds, which conveniently
encode nonperturbative brane physics into geometrical
language. Combined with flux data, the gauge symmetries
and chiral matter content of any model can be easily
determined. Moreover, F theory is dual to many other types
of string compactifications (such as heterotic). We focus
here on a novel class of F-theory models that naturally give
the SM gauge group and chiral matter content.

There have been many attempts to build models with the
SM gauge group Ggy = SU(3) x SU(2) x U(1)/Z¢ in F
theory. Starting from [5-8], F-theory grand unified theories
(GUTs) have been constructed, using gauge groups of
SU) [9-13], SO(10) [14], etc. (see [15] for review).
Recently, 10" explicit solutions of directly tuned Ggy; were
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found in the string landscape [16]. It has also been argued
that the SM matter representations generically appear when
Ggy is directly tuned [17,18]. These results signal that a
considerable portion of the landscape may contain SM-like
models.

These models cannot be the most generic or natural
SMs in the landscape, however. All the preceding gauge
groups arise from fine-tuning many moduli. In contrast,
most F-theory compactification bases have strong curva-
ture that enforces rigid (also known as “geometrically non-
Higgsable” [19]) gauge symmetries, which are present
throughout the whole branch of moduli space [20-22].
Furthermore, on many bases, these rigid gauge factors
forbid tuning additional factors like Ggyy.

A generic SM in the landscape can arise more naturally
from the geometric rigid gauge symmetries than through
tuning moduli. The rigid gauge groups containing Ggy are
Eg, E;, and Eg, but not most other traditional GUT groups
[19]. [While the non-Abelian SU(3) x SU(2) of Ggy can
arise as a rigid structure [23], including the Abelian factor
is much more subtle [24,25] ]. In 4D, it seems that, of these
rigid GUT groups, Eg appears the most frequently in the
landscape, while E5 and Ej are also quite abundant [20-22].
While E¢ has been one of the traditional GUT groups, little
attention has been paid to E5 since it does not support chiral
matter. We find here that, nevertheless, SM-like solutions
can be realized in F theory by breaking rigid (or even
nonrigid, tuned) £; models.

An economic way to tackle the above issues in F theory
is to turn on Gy flux inside a larger rigid group. This can
break the larger group down to Ggy, while inducing chiral
matter in the broken gauge group. In this paper, we describe
F-theory models with rigid E; and G, flux that leads to SM
gauge group and chiral matter spectrum with minimal
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supersymmetry. Compared with other SM-like construc-
tions in the past, our models have the following novelties:

(i) These models can be built using generic bases. Little
fine-tuning is required to get the desired gauge group
and chiral matter spectrum. They are thus more
natural in the landscape.

(ii) Gauge groups with no chiral matter like £, can also
be used as GUT groups. Noncomplex representa-
tions in the unbroken gauge group can contribute to
chiral matter in the broken group.

(iii) Chiral exotics are easily avoided, even when we start
with large GUT groups, although the models we
have identified without exotics involve an inter-
mediate SU(5).

(iv) The resulting chiral multiplicities can easily be very
small. It is natural, and sometimes preferred, to have
three generations of chiral matter.

Although we focus here on E;, there is a similar con-
struction for the similarly abundant rigid Es. The gener-
alization is nontrivial since Eg itself already supports chiral
matter.

The rest of this paper is organized as follows. We first
discuss some general features of 4D F-theory compactifi-
cations. We describe the geometry of the rigid £; model
without assuming a specific base. We then review vertical
and remainder fluxes and the flux constraints that lead to
consistent solutions. We show how models with SM gauge
group and chiral matter spectrum can arise from a combi-
nation of vertical breaking to SU(5) and hypercharge
breaking from remainder flux. We give a simple explicit
example of vertical flux breaking to SU(5) with three
generations of chiral matter as the preferred matter content.
We conclude with some remarks and future directions.

The arguments presented in this paper are minimal and
aim at describing our new class of SM-like models
succinctly. We leave the more general formalism and
various technical subtleties to a longer follow-up [26].

II. E; GAUGE GROUPS IN F THEORY

A 4D F-theory model is defined by an elliptically fibered
CY fourfold Y over a threefold base B; this can be
considered as a nonperturbative type IIB string compacti-
fication on B. An E; gauge factor arises in the 4D
supergravity theory when Y is described by a certain form
of Weierstrass model [27-29]. Treating the elliptic curve as
the CY hypersurface in P>3! with homogeneous coordi-
nates [x:y:z|], Y is given by the locus of

¥ = x4 57 frxzt + 579528, (1)

where s, f3, and g5 are functions on B [more technically,
sections of line bundles O(X), O(-4Kjp —3X), and
O(-6Kp —5%), with K the canonical class of B] and
the seven-brane locus X supporting the E- factor is given by
s = 0. There is adjoint matter 133 on the bulk of X. There is

also fundamental matter 56 localized on the curve s =
f3=0, 0r Cs56 = —X- (4Kp + 3%) in terms of the inter-
section product, when the curve is nontrivial in homology.

E; gauge factors can either be tuned by hand in the
Weierstrass model (1) or can be forced from the geometry
of B. When a divisor (algebraic codimension-1 locus) X on
B has a sufficiently negative normal bundle Ny, singular-
ities of the elliptic fibration are forced to appear on X so
that any elliptic fibration over B automatically takes the
restricted form (1), and there is a rigid (geometrically non-
Higgsable) E; gauge factor supported on X [19].

The conditions for a rigid E; factor are satisfied for a
large set of typical F-theory bases. For 6D F-theory models,
the toric bases have been completely classified [30] and
60% of the 61539 allowed F-theory bases have rigid E;
factors. The total number of toric bases for 4D F-theory
models is O(103%%) [21,22], which is too large for explicit
analysis. A Monte Carlo estimate on a subset of these bases
[those without Ey factors or codimension-2 (4,6) singular-
ities] gives roughly 18% with rigid E;’s [20], although the
fraction for all bases may be smaller (the analogous subset
for 6D bases contains 24483 bases of which 75% have
rigid E, factors). Similar statistics may also apply to
nontoric bases, but this question has not been addressed
in the literature.

III. FLUXES AND GAUGE
SYMMETRY BREAKING

The elliptic fibration Y with an E; factor over X is
singular. We need to consider its resolution ¥ to study flux
breaking using cohomology and intersection theory on ¥.
The resolution results in exceptional divisors D;, 1 <i <7,
corresponding to the Dynkin nodes of E; (Fig. 1). The
divisors D; on ¥ are spanned by the zero section (z = 0)
D, pullbacks of the base divisors 7*D,, (which we also call
D, depending on context), and exceptional divisors D,
[31,32]. Note that, while the choice of resolution is not
unique, our analysis and results are manifestly resolution
independent [33].

To break the E factor, we first turn on vertical G4 flux
(see, e.g., [4]). This lives in the space of (2,2)-forms
spanned by products of harmonic (1,1)-forms (which are
Poincaré dual to divisors [D;)),

O
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FIG. 1. The Dynkin diagram of E;. The Dynkin node labeled i
corresponds to the exceptional divisor D;. The solid nodes are the
ones we break to get Ggy. Node 3 (in gray) is broken by
remainder flux, while the others are broken by vertical flux.
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HZ2(Y,C) = span(H"1(¥,C) A H'L(P,C)).  (2)

We expand G} = ¢;;[D;] A [D,] and work with flux
parameters ¢;;. We denote integrated flux as

0= [ GealD) A D) = [ G D A D). (3)
We then have the resolution-independent relation [33,34]
®ia =-X- Da : D[)’Cllqﬁ]/}’ (4)

where C¥ is the Cartan matrix of E;.

While E; can be broken directly to Ggy by vertical flux,
this generally produces exotics. To obtain models with only
chiral SM matter, we also turn on the following form of
remainder flux [7,35,36],

Gy € span((Djl.._.)). ()
where C,., is a curve on X but becomes homologically
trivial on B. Some nontoric bases have rigid £ with such
curves, so that X supports both rigid E; and the remainder
flux [26,37].

G, satisfies certain constraints. To preserve Poincaré
symmetry, we need ©y, = 0,5 = 0 [38]; this condition is
unaffected by ¢;, # 0. The flux quantization condition is [39]

| A . .
G4—|—§c2(Y) € H**(Y,R) n H*(Y, Z), (6)

where ¢, (¥) is the second Chern class of ¥. We will choose
Y with even ¢,(¥) and consider the simple case where
¢;; 1s integral. To preserve supersymmetry, we require
primitivity [40,41],

J/\G4:O, (7)

where J is the Kihler form of ¥. This condition stabilizes
some Kihler moduli when the gauge group is broken by
vertical flux. Not all choices of gauge-breaking flux can
stabilize J within the Kéhler cone, however. Finally, we
have the D3-tadpole condition [42]

)(? 1
%_E/yGélAGA;—NDanzO’ (8)

where y(Y) is the Euler characteristic of ¥. In general,
W22 > 2y4(Y)/3 > y(¥)/24. If if we randomly turn on flux
in the whole middle cohomology such that the tadpole
constraint is satisfied, a generic flux configuration vanishes
or has small magnitude in most of the h>2-independent
directions.

We can now identify fluxes that break the model into
Ggy with SM chiral matter. If ®;, # 0 for some roots i, the

corresponding gauge bosons become massive; similarly,
the appropriate linear combinations of Cartan gauge bosons
get masses through the Stiickelberg mechanism [43,44]. To
get the SM gauge group and exact chiral matter spectrum,
we proceed in two steps. First we break (uniquely up to E;
automorphism) E5 to SU(5) by turning on vertical flux with
®;, # 0 for i/ =4, 5, 6 (see Fig. 1). This can be done by
turning on appropriate ¢;, using Eq. (4). In the second step,
in parallel with earlier work on tuned SU(5) GUT models
[5-13], we also turn on a remainder hypercharge flux

Conl’ ©)

where Dy = 2D, 4+ 4D, + 6D; + 3D is the exceptional
divisor corresponding to the hypercharge generator. This
breaks SU(S) to Ggy;. Both 56 and 133 are then broken into
SM matter,

(3.2) 16
(1, 2)1/2’

along with an exotic (3,2)_s /6 from 133, which is non-
chiral since it directly descends from the SU(5) adjoint.

The above vertical flux also induces chiral matter. To
calculate the multiplicities, we first need to locate the
matter surfaces (the fibration over matter curves). A weight
f in a representation R of E5 can be expressed in the basis
of simple roots «;,

G = Dy

(3.1
(L1),, (10)

p= —Zb,-a,-. (11)

When localized on a matter curve Cg, we can decompose
the matter surface S(f) into [45]

S(B) = So(R) + D _biDilc,. (12)

where Sy(R) only depends on R and does not contain any
D;|¢, components. Since E7 itself does not support any
chiral matter, So(R) does not contribute to chiral multi-
plicities in the broken gauge group.

We now turn to the broken gauge group. Each set of
values of b; for fixed R give an irreducible representation
R’ in the broken gauge group, while the weights in R’ are
spanned by «; for unbroken i. Different R and different sets
of by can give the same R’, however. The chiral multiplicity
of R’ is then (generalizing [12,34,46,47])

) = Gy, 13
e ;,%Am : (13)

which can be easily computed using group theory data and
0,,, thanks to the absence of Sy(R). For R = 133, which
lives on the bulk of the gauge divisor X instead of a matter
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curve, the chiral multiplicity can be computed by
replacing Cp with the canonical class Ky [45], where
Ky =X (Kp+ZXZ) by adjunction. The above formula
ensures that yp computed from different weights in R’
are all the same. Moreover, we have yp = —yz, and
anomaly cancellation is guaranteed [26]. In particular,
the above flux constraints imply y32) . o= 0 regardless
of solutions.

IV. SMALL NUMBER OF GENERATIONS

This class of SM-like models, combining vertical and
remainder fluxes, can be realized on a large class of bases
with rigid (or tuned) E; but cannot be constructed com-
pletely in simple toric geometries. Here, for simplicity, to
illustrate the multiplicity of generations, we focus on
vertical flux breaking to SU(5) and give an oversimplified
example, using the Hirzebruch surface F; as the gauge
divisor £." When further breaking to Gg); through remain-
der flux is possible on more complicated surfaces, this
further breaking does not affect multiplicities.

F, is a P! bundle over another P'. We denote S as the
section P! and F as the fiber P'. Then the intersection
numbers are F2 =0, F-S =1, and §? = —1. Its antica-
nonical class is —Ky = 25 + 3F. Now embed [F; into B
with normal bundle Ny = —aS — bF. Let Fg and F be
divisors with X - Fg and X - Fy being pushforwards of §
and F into B, respectively. Without remainder flux, we can
assume X - Fg and X - Fy are independent. By choosing
N > = —SS - 7F N

Fk - —4K2 + (4 - k)Nz,
Gl = —6K2 + (6 - I)Nz (14)

are both effective only when k > 3 and / > 5, so we have a
rigid E; supported on X [19]. The nonzero intersection
numbers are then £-Fg-Fp=1,%>-Fp=-8,%- F} = —1,
¥?.Fg =1, and X* = 48.

We claim that all the above constraints on vertical flux
can be solved inside the Kéhler cone by turning on nonzero
but sufficiently small integer ¢z, and ¢;r, with opposite
signs. We require the ratio ¢z /¢;r, to be the same for all
i. To break the gauge group, we turn on integer ¢sp, Per,
freely and

(¢1F57¢2F5’¢3F5v¢4F57¢7Fs) = (2,4,6,5,3)715, (15)

and similar for ¢;r , where ng and ny are integers with
opposite signs. Equation (13) then gives a simple formula
for the number of generations of SU(5) GUT matter,

"This oversimplification also leads to exotic U(1) gauge factors
along with the SU(5) [26]. Here, as a mere demonstration, we
focus on the SU(5) representations and ignore the U(1) charges
when calculating chiral indices.

X10 = —xs = —Tng —4np. (16)

This is a linear Diophantine equation and the number of
generations can be any sufficiently small integer. As
explained above, it is natural to consider small ¢;r  and
®ir,. The minimal flux configuration has ng = —1 and
nrp =1, hence y = 3 appears to be preferred. This is an
example of an F-theory model with exactly three gener-
ations of chiral matter, with minimal fine-tuning.

The above is the most general vertical flux we can turn
on given the flux constraints and conditions on ®,,. All
other ¢, are equivalent to a combination of ¢;r, and ¢;p,
by homology relations.

The above construction can be easily generalized to
incorporate hypercharge flux by using more complicated
2’s on nontoric bases [36,37] (with different multiplicities
in each case). We provide such explicit constructions
in [26].

V. CONCLUSION AND REMARKS

Within the framework of F-theory compactifications, we
have described a large class of SM-like models with the
right gauge group and chiral matter spectrum. These can
originate from rigid E; gauge symmetry, which is ubiqui-
tous in the landscape. String theory methods allow us to go
beyond the limit of field theories and use E; as a GUT
group. Remarkably, a subset of these models prefer three
generations of SM chiral matter. Although we lack an exact
quantification, we believe that these models are more
generic than tuned SM-like models in the landscape.

Some remarks and future directions are as follows:

(i) Although we only give an oversimplified example of
the models, the same construction giving SM gauge
group and chiral matter can be done on most bases
containing rigid (or tunable) E; factors. In general,
for other local geometries supporting E5, the number
of generations may be different. In some cases, the
chiral multiplicity is a multiple of integers other than
3 and y = 3 is forbidden. In most cases, y = 3 is still
allowed and generically natural because of small ¢,
and the Diophantine structure, but this may not be
the most preferred chiral matter content. In special
cases, y is a multiple of 3 and y = 3 is both the
minimal and preferred matter content.

(i) A generic base has many other rigid gauge factors
apart from E;’s. We can apply our SM-like con-
struction on one of the E;’s, while other gauge
factors can serve as hidden sectors such as dark
matter [19,48].

(iii) One interesting feature of this construction of E;
breaking is that it relies intrinsically on nonpertur-
bative physics of F theory and does not have any
immediately obvious description in the low-energy
field theory. It would be interesting to understand the
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structure of these models better from the low-energy
and/or dual heterotic pictures.

(iv) We have chosen a subset of embeddings of Ggy
into £7 which lead to SM chiral matter. The root
embedding of SU(3) x SU(2) is unique up to auto-
morphisms; however, there are other embeddings of
the U(1) factor that give various kinds of exotic
chiral matter.

(v) Tt is clear that a similar construction as above also
works for E¢. To get SM gauge group and chiral
matter, we can use the same breaking pattern as in
Fig. 1 but without the rightmost node. Calculating
chiral multiplicities becomes more nontrivial, how-
ever, since Eg itself supports chiral matter. There are
more flux parameters ¢;; to turn on, and the matter
surface So(R) also contributes nontrivially. This
generalization is done in [26].

(vi) We have been working with E;, while the most
generic rigid gauge group supporting Ggy is likely
Eg. A rigid Eg generically contains codimension-2
(4,6) singularities, however, which signal the pres-
ence of strongly coupled superconformal sectors
[49,50] and cannot be analyzed using our formalism.
If we apply the same formalism to rigid Eg without
this kind of singularity, we can break it into Ggy, but
surprisingly no chiral matter is induced. In particu-
lar, the F-theory geometry with the most flux vacua
[51] contains Ejy instead of E; and does not support
our formalism. Meanwhile, there have been similar
attempts working with rigid Eg using other formal-
isms like E-string theory [52].

(vii) We have been focusing on the chiral matter spec-
trum, while knowledge of the vectorlike spectrum is
required for analyzing the Higgs sector and avoiding
the exotic (3,2)_s/6- This requires explicit coho-
mology data from topologically nontrivial 3-form

potential backgrounds [53-55]. Such data are much
harder to analyze than G4 flux and are beyond the
scope of this paper.

(viii)) Comparing with other tuned SM-like or GUT
models, the origin of Yukawa couplings in our
models is less clear due to several reasons. First,
matter on both the bulk of £ and curve Csq are
involved. It was argued that the Yukawa couplings
between three bulk fields on X always vanish if —Ky
is effective [6]. In contrast, we see no obstruction to
having SM Yukawa couplings between the Higgs on
2~ and chiral matter on Cs¢ [6], but a rigorous
construction is still lacking. Besides, the Yukawa
couplings between matter localized on curves are
usually extracted from codimension-3 singularities
on the base. Instead, the codimension-3 singularity
on Cs has degree (4,6), which goes beyond the
Kodaira classification and may not be simply in-
terpreted as Yukawa couplings. These (4,6) points
are associated with nonflat fibers, which possibly
encode extra flux backgrounds and strongly coupled
(chiral) degrees of freedom [33,56,57]. These will be
studied in a future publication [58].

We hope to address some of these issues in future studies,

and some of them will be explored in the follow-up paper

[26]. With this large class of SM-like constructions, we

hope to shed some light on where our Universe sits in the

string theory landscape and whether it is a natural solution
in the landscape.
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