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Black holes in scalar-Gauss-Bonnet gravity are prone to scalarization, that is a spontaneous development
of scalar hair for strong enough spacetime curvature. Since large spacetime curvature is associated with
smaller black hole masses, the merging of black holes can lead to dynamical descalarization. This is a
spontaneous release of the scalar hair of the newly formed black hole in case its mass is above the
scalarization threshold. Depending on the exact form of the Gauss-Bonnet coupling function, the stable
scalarized solutions can be either continuously connected to the Schwarzschild black hole, or the transitions
between the two can happen with a jump. By performing simulations of black hole head-on collisions in
scalar-Gauss-Bonnet gravity prone to dynamical descalization we have demonstrated that such a jump can
be clearly observed in the accumulated gravitational wave data of multiple merger events with different
masses. The simulations were performed in the decoupling limit approximation, where the backreaction of
the scalar field on the metric is neglected. This is a reasonable assumption for weak enough scalar fields.
The distinct signature in the gravitational wave signal will share similarities with the effects expected from
first order matter phase transitions happening during neutron star binary mergers.
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I. INTRODUCTION

The rapid advance of the gravitational wave detectors
gives us hope that soon gravity will be better understood in
the realm of large spacetime curvature. Among the best
candidates in this respect are binary black hole mergers [1].
Due to their complexity, the numerical merger simulations
in modified gravity were performed only in a handful of
cases [2–7]. They demonstrated, though, the big potential
in using merger events for constraining alternative theories
of gravity.
A class of theories, offering a natural built-in screening

mechanism [8,9] are the theories of gravity allowing for the
so-called spontaneous scalarization [10]. It was recently
shown that black holes can also scalarize in scalar-Gauss-
Bonnet (sGB) gravity [11–13] that made them an interest-
ing candidate for exploring astrophysical implications.
Subsequently, the topic was largely developed to include
different types of coupling [14–16], scalar field potential
[17,18], rapid rotation [19,20]. The strongest constraints on
these theories come from the binary pulsar observations
[21] as well as the binary mergers [22]. It was also
demonstrated that black holes can scalarize in a wider
variety of extended scalar-tensor theories [23–29].
The dynamics of the scalar field within sGB gravity

around isolated black holes was considered in [30–37].

Binary black hole merger in GB gravity was studied in the
decoupling limit [7], i.e., when the scalar field backreaction
on the metric is neglected. This is also the approach we
adopt in the present paper. Dynamical descalarization,
which is the spontaneous “release” of the scalar field,
was observed after the merger when the mass of the newly
formed black hole was beyond the scalarization window.
The full problem without approximation was simulated
in [6] where more light was shed on the loss of hyper-
bolicity for such systems.
All studies of black hole scalarization dynamics in sGB

gravity until now considered the standard case when the
stable scalarized black hole branch is continuously con-
nected to the GR one. Allowing for a more general form of
the coupling we can even have a region in the parameter
space where both the Schwarzschild solution and the
scalarized ones are linearly stable. The properties of such
static black holes were considered in [36] and their stability
was examined later in [38]. Similar behavior is observed
also in other modified theories of gravity for charged black
holes [39,40]. In the present paper we study their astro-
physical implications by simulating the merger of two
black holes in sGB gravity for a coupling function allowing
for such a jump. Interestingly, the presence of a gap
between two stable branches of solutions is also observed
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for neutron stars possessing first-order matter phase
transition from confined hadronic to deconfined quark
matter [41–44]. Even though we consider here quite
distinct compact objects, the merger will possess certain
clear similarities with [45–47].

II. SCALARIZED BLACK HOLES IN
GAUSS-BONNET GRAVITY

The action in sGB gravity has the following form:

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 2∇μφ∇μφþ λ2fðφÞR2
GB�; ð1Þ

where R is the Ricci scalar with respect to the spacetime
metric gμν, φ denotes the scalar field, fðφÞ is the coupling
between the scalar field and the Gauss-Bonnet invariant, λ is
the so-called Gauss-Bonnet coupling constant having dimen-
sion of length and R2

GB¼R2−4RμνRμνþRμναβRμναβ.
In order to have spontaneous (de)scalarization we

must require that ðdf=dφÞðφ ¼ 0Þ ¼ 0 and ðdf2=dφ2Þ
ðφ ¼ 0Þ ≠ 0. The simplest function satisfying these con-
ditions is fðφÞ ¼ φ2. It leads, though, to unstable scalar-
ized black hole solutions [48]. One can go one step further
and add a quartic scalar field term to the coupling that can
potentially stabilize the solutions [15,16]. From a numerical
perspective, it has proven much more convenient to work
with a coupling being an exponential function of the scalar
field. A common choice is fðφÞ ¼ 1

2β ð1 − expð−βφ2ÞÞ [11]
that leads to stable and well behaved solutions from a
numerical point of view (see e.g., Refs. [14,19,38,49]).
Allowing for a bit more complex form of the coupling

leads to the existence of a qualitatively different strong field
effect: nonlinear scalarization. In this case, the GR black
hole is linearly stable and for a certain range of parameters
scalarized black holes exist as well. The latter can be
formed by imposing a strong enough nonlinear perturbation
onto the GR black hole. One of the simplest ways to
achieve this is to introduce a quartic scalar field term in the
exponent, namely

fðφÞ ¼ 1

2β
ð1 − expð−βðφ2 þ κφ4ÞÞÞ; ð2Þ

with two independent parameters β and κ. For a small scalar
field this coupling resembles the form fðφÞ ¼ βφ2 þ ηφ4

considered in [15,16]. We find, though, the exponential
function more convenient numerically and that is why we
employ it. Our tests suggest, though, that the effects
reported here are generic, qualitatively very similar for a
much larger class of couplings, as long as a jump between
the GR and sGB black hole branches is present.
The scalar charge as a function of the normalized

parameter λ=M is shown in Fig. 1 for branches of scalarized
static black holes with coupling (2), β ¼ 6 and two values

of κ. Here the scalar charge D is defined through the
asymptotic φðr → ∞Þ ∼D=r. The Schwarzschild black
hole in our case is always a solution of the field equations
corresponding to the x axis with D ¼ 0. It destabilizes for
λ=M larger than the point of bifurcation λbif . The first
choice κ ¼ 0 in the figure is the standard scalarization
considered for the first time in [11] where we have the
scalarized black holes branching out at a certain λbif with
the scalar charge increasing as λ=M increases. If κ is
sufficiently large, e.g., the case of κ ¼ 16 in Fig. 1, after the
bifurcation point the branch first moves to the left and, after
reaching a minimum λmin, it turns right. This small portion
of the branch after the bifurcation is unstable [38] and
thus the last stable scalarized solution is not continuously
connected to Schwarzschild. Even more, there is a range
of λ=M, namely ðλmin; λbifÞ, where both the scalarized
solutions and the Schwarzschild black hole are linearly
stable resembling closely the nonlinear black hole scala-
rization [36]. Thus the transition between the two classes
of solutions will happen with a jump that will have a very
interesting effect on the binary black hole mergers dis-
cussed below.
In Fig. 1, λbif ¼ 1.70 M and λmin ¼ 1.32 M. Note that if

we vary β and κ, only λmin changes while λbif remains the
same. The quantities presented here are expressed in units
of M. One can normalize to λ instead and then the point of
bifurcation will be located at Mbif=λ ¼ 0.587 and λmin will
correspond to a maximum mass for which κ ¼ 16 solutions
exist, that is Mmax=λ ¼ 0.756.

III. 3 + 1 DECOMPOSITION AND
NUMERICAL APPROACH

We will work with the 3þ 1 decomposition of the
field equations adopting Brown’s covariant form [50] of
the BSSN formalism [51–53] in curvilinear coordinates
[54–57]. The general form of the spacetime metric in the
3þ 1 formalism is
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FIG. 1. The normalized scalar charge D=M as a function of the
normalized GB coupling parameter λ=M for sequences of
scalarized black holes with β ¼ 6 and two values of κ. The
unstable part of the κ ¼ 16 branch is marked with a dotted line.
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ds2 ¼ gμνdxμdxν ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ;
ð3Þ

where α is the lapse function, βi is the shift vector, and γij
is the three-dimensional spacial metric. We introduce a
conformally related spatial metric γ̄ij via the relation
γ̄ij ¼ e−4ϕγij, where the conformal factor is e−4ϕ. In
contrast to the original BSSN formulation, the determinant
γ̄ is not required to be unity, but instead, its time derivative
vanishes.
In our simulations, we will adopt the decoupling limit

approximation similar to [7]. It captures very well the scalar
field dynamics and can be quantitatively quite accurate for
relatively weak scalar fields [34]. Thus it can perfectly
serve our purpose to study the qualitative effect of the
presence of a jump in the solution space visible in Fig. 1.
The pure GR BSSN formalism in spherical coordinates has
been developed in a series of papers [50,54–57]. Since we
neglect the scalar field contribution to metric field equa-
tions they remain unchanged and we will not comment on
them in detail but instead refer the reader to [57,58]. Below
we will discuss only the scalar field equation written within
the considered formalism.
The 3þ 1 decomposition of the scalar field equation,

written with respect to the barred conformal metric is
given by

ð∂t − βi∂iÞφ ¼ −αKφ; ð4Þ

ð∂t − βi∂iÞKφ ¼ −e−4ϕD̄iαD̄iα − α

�
e−6ϕD̄iðe2ϕD̄iÞ

− KKφ þ
1

4
λ2

df
dφ

R2
GB

�
; ð5Þ

where the covariant derivatives D̄ are taken with respect of
the conformal metric γ̄ij and K is the trace of the extrinsic
curvature. For the solution of the above equations on top of
the GR evolution we have developed an extension of the
NRPyþ code [58].
In our calculations we have adopted a grid with reso-

lution 400 × 96 × 2 in the radial and the two angular
directions. Taking only 2 points in the φ direction reduces
the evolution to axial symmetry, suited to our simulations.
The two black holes collide starting at rest from a
separation of 5 M. Due to limitations of the grid con-
struction in NRPy+, that was the maximum we could
achieve assuming a reasonable computation time while
being able to observe the physically interesting phenomena.
In the Supplemental Material [59] we show that the
dynamics after the merger is weakly affected and the
qualitative conclusions remain unchanged for larger initial
separation. We have used Kreiss-Oliger numerical dissi-
pation [60] for the scalar field equations similar to [61],
with a dissipation strength of 0.01.

The extension of the NRPyþ code developed for the
purpose of the present study was verified in the following
way. First, we have confirmed that the scalar field has a
4th order convergence that is the same as for the evolution
of the metric quantities. In addition, we have verified that
the scalar charge of the newly formed black hole and the
transition point from scalarized to GR solutions coincide
within a few percent with the results from the scalar field
evolution around isolated black holes [34].

IV. BLACK HOLE HEAD-ON COLLISION

We have considered the head-on collision of two equal
mass black holes with mass 0.5M located at a distance of
5M, adopting the decoupling limit approximation. As for
the sGB theory, we have fixed β ¼ 6 in the coupling (2).
The time evolution of the scalar charge for κ ¼ 0 (that is
similar to [7]) is presented in Fig. 2 while the κ ¼ 16 case
is plotted in Fig. 3. In the lower panels of both figures
the dominant l ¼ 2, m ¼ 0 mode of ψ4 multiplied by the
extraction radius is shown for comparison. The extraction
radius is at rex ¼ 12.5 M and we have verified that at this
distance the scalar charge is already saturated to a constant
with a relatively good accuracy. All values of λ=M are
chosen around λmin and λbif (see Fig. 1) so that the two
individual black holes with mass 0.5 M are well within the
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FIG. 2. (Top) The evolution of the scalar charge rexφ as the
head-on collision proceeds for β ¼ 6, κ ¼ 0 and several λ=M
close to the bifurcation point, where rex ¼ 12.5 M. (Botton)
Dominant (l ¼ 2, m ¼ 0) mode of ψ4 times rex for a comparison,
extracted at the same rex.
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FIG. 3. Same as Fig. 2 but for κ ¼ 16.

DYNAMICAL DESCALARIZATION WITH A JUMP DURING A … PHYS. REV. D 106, L061502 (2022)

L061502-3



scalarization window, while the newly formed black hole
after the merger is on the border of scalarization.
In our simulations we used Brill-Lindquist initial data for

the metric quantities. The initial black hole momentum is
zero, thus the black holes are initially at rest. The scalar
field evolution starts from a small perturbation and as time
proceeds, the two individual black holes quickly develop
scalar hair. In both Figs. 2 and 3 one can observe the
exponential growth of the scalar field at early times. After a
certain point, this exponential growth starts saturating.
However, it cannot reach proper equilibrium due to
the short time until the merger that is a consequence of
the limited initial separation between the black holes.
The evolution after the merger differs qualitatively for
κ ¼ 0 and κ ¼ 16.
Let us first focus on the κ ¼ 0 case depicted in Fig. 2. As

the black holes merge, the scalar field starts to decrease
until it either reaches a new equilibrium for larger λ=M or it
starts decreasing exponentially for smaller λ=M lower than
λbif . Close enough to the bifurcation point both the real
and the imaginary parts of the scalar quasi-normal mode
(QNM) frequency tend to zero and practically no oscil-
lations can be observed in the case of descalarization and
scalar field emission. Instead, one can see only a slow
exponential decay for λ=M smaller but close to λbif . The
well-known form of the QNMs with oscillations and a
subsequent tail is recovered only for λ=M sufficiently
smaller than λbif (e.g., λ=M < 1.5 in Fig. 2).
It is clear that for κ ¼ 0 the transition between the two

regimes of scalarized and nonscalarized black hole remnant
is continuous with the scalar field being decreasingly small
as the bifurcation point is approached. In addition, the small
damping/growth time of the scalar field close to that point
will lead to a continuous and gradient effect on the overall
evolution of the system in case the full coupled system of
the metric and scalar field evolution is considered. Thus, it
might be difficult to discriminate between these two
regimes in the gravitational wave data.
The picture changes qualitatively for large enough κ.

From the results resented in Fig. 3 one can easily see that
there is an abrupt change of the scalar field evolution/
emission as λ=M passes below the minimum one λmin for
which scalarized solutions exist. Note that this point is
different from the point of bifurcation λmin < λbif . The main
differences with the κ ¼ 0 case are the following. First, as
λ=M decreases and passes through λmin, the scalar charge
changes with a jump that can have a clear signature in the
GW observations of the merger itself and the subsequent
QNM ringing. Even more importantly, for any value of
λ=M lower than λmin, the real and imaginary parts of the
Schwarzschild scalar field QNM frequency are already
substantially different from zero that results in a rapid
descalarization of the new BH. If one considers the coupled
evolution of the scalar field and the metric, then the rapid
scalar field decrease that carries energy away to infinity will

certainly have also influence on the emitted gravitational
wave signal. Estimating this effect is beyond the scope of
the present paper since we are considering the evolution in
the decoupling limit approximation. If such information is
available from full numerical simulations beyond the
decoupling limit, though, and a large enough number of
binary merging events are observed, one will be able to tell
apart the different behavior of the system observed in
Figs. 2 and 3. This will naturally lead to strong constraints
on the parameter space of the theory and even more
generally—it can potentially even completely discard
certain types of couplings in sGB gravity.
Note that we have normalized all quantities with respect to

M for convenience. One can normalize with respect to λ
instead. Then the different simulations for different λ=M we
have performed will be equivalent to simulations with a fixed
λ but different initial black hole masses. For example, the
range of explored λ=M in Figs. 2 and 3 can be translated
to different initial masses of the merging black holes if the
quantities are normalized with respect to λ. Taking into
account that we have worked with Mb ¼ 0.5 M, the range
of explored λ=M in Figs. 2 translates to a mass range from
Mb min=λ ¼ 0.270 to Mb max=λ ¼ 0.357, while in Fig. 3:
from Mb min=λ ¼ 0.303 to Mb max=λ ¼ 0.385. A fixed sGB
theorymeans fixing theparameter λ andmultiplegravitational
wave observations will provide us with the opportunity to
observe mergers with different black hole masses. In the
discussion below we will consider exactly this scenario.

V. DISCUSSION AND OBSERVATIONAL
PROSPECTS

We have performed simulations of black hole head-on
collision of equal mass black holes in the decoupling limit
approximation in sGB gravity observing the process of
descalarization. This allows us to capture qualitatively the
main features of descalarization and make predictions for the
possible observational manifestations. In contrast to previous
works, we have focused on the case when the coupling
function has both quadratic and quartic terms in the scalar
field. This changes the picture of scalarization not only
quantitatively but also qualitatively. Namely, the branch of
stable scalarized solutions is not continuously connected to
Schwarzschild and there is a jump between both. In addition,
there is a region of the parameter space where both the GR
and the scalarized branches are linearly stable.
This property of the solutions leads to a very interesting

phenomenology of the black hole mergers. In order to
demonstrate it, we have considered a set of parameters for
which the individual binary black holes are well within
the scalarization window. The newly formed black hole,
though, is on the border of scalarization. Namely, for a
fixed coupling parameter λ and as the black hole mass is
varied, we make a transition between the regimes where the
resulting black hole with massMf is either scalarized orMf
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is large enough and only the GR solution exists. The
limiting value of the mass dividing the two regimes is
different for the case of standard scalarization with zero
quartic term and κ ¼ 0 (denoted byMbif that coincides with
the point of bifurcation of the scalarized branch from
Schwarzschild) and the case when the quartic term is strong
enough with κ > 0 (denoted by Mmax > Mbif ).
We clearly observed that for κ ¼ 0 the scalar charge of

the resulting black hole after the merger goes to zero
continuously as Mf approaches Mbif . If we thus observe a
number of merger events with a dense distribution of their
total mass, and take a series of such events with increasing
total mass, we will observe the following. The newly
formed black hole will slowly decrease its scalar charge
as the mass Mf increases. At a certain point the initial
binary masses will become such thatMf surpassesMbif that
will result in a descalarization after the merger. For Mf

close to the bifurcation point Mbif the scalar charge is very
weak and it will have a small influence on the black hole
dynamics after the merger. Moreover, the damping time of
the scalar field tends to zero at the bifurcation point leading
to a slow emission of the remaining scalar field. Such a
slow energy release is unlikely to have a strong influence
on the binary dynamics and GW emission. That is why the
transition between the two regimes before and after Mbif
will not be easily seen in the GW signal. Of course, the
presence of scalar charge of the individual merging black
holes can be detected through other methods, especially in
the inspiral phase of an actual merger (see e.g., Ref. [62]).
For a strong enough quartic term in the coupling with

κ > 0 there is a jump between the last stable scalarized
solution and Schwarzschild. That is why we observed that
the scalar charge of the merger remnant saturates to a fixed
value with the increase of the binary mass Mf until the
threshold Mmax is reached and it jumps to zero. More
specifically, the observed merger remnants for a series of
observations will be divided into two parts—merger
remnants with a strong scalar field that clearly has a
different ringdown compared to GR, and a GR merger
remnant. There will be no continuous transition between
both since there are no stable intermediate weak scalar field
black holes. In addition, the Schwarzschild black hole with
Mmax is already stable and has a relatively short damping
time of the scalar gravitational radiation resulting in a rapid
emission of the scalar field that has developed before the
merger. Thus, if one observes a large number of binary
mergers with a sufficient density in the mass distribution,
such a jump can be clearly observed in the GW signal.
The process described above has very interesting simi-

larities with the first-order matter phase transition from
confined hadronic to deconfined quark matter. In that
case, as well it happens that if the initial mass of the
merging neutron stars surpasses a given threshold, a phase
transition can happen during the merger resulting in a
newborn supramassive neutron star with a quark matter

core. This process was first simulated in [45–47] demon-
strating the abrupt change in the merger characteristics in
the presence of such phase transition. The methodology
developed for searching of such matter phase transitions
in the GW signal can be readily applied for black hole
mergers in sGB gravity since the process shares interesting
similarities.
We should keep in mind that in the original sGB theory

the scalar gravitational radiation is not directly coupled
to the perturbations of the metric and is thus directly not
observable with the gravitational wave detectors. The scalar
waves carry away energy, though, that will leave clear
imprints on the observed gravitational wave signal. For
example, there will be a phase difference between a merger
of GR black holes and the scalarized ones, with the latter
ones merging faster because of the accelerated inspiral. In
the case of dynamical descalarization, it might happen that
such scalar wave energy loss is present during the inspiral
but the newly formed black hole is just Schwarzschild that
will clearly lead to specifics in the data analysis of both the
inspiral and the ringdown phase. A rapid release of scalar
energy during merger in the case of descalarization can also
alter the dynamics of the actual merger if the backreaction
of the scalar field on the spacetime dynamics is taken into
account. Last but not least, the sGB gravity can be slightly
modified to include such a direct coupling between the
scalar and metric perturbations leading to the presence of
potentially observable breathing modes.
Even though we stick to the sGB gravity in the present

paper, we have all reason to believe that the conclusions we
have made are not very sensitive on the particular coupling
and the theory itself, as long as we have a black hole
scalarization mechanism and a coupling allowing for a gap
between the stable solutions. The observation of an abrupt
change in the gravitational wave signature happening at a
certain black hole mass will be a hint of the presence of the
effect described above. On the other hand, if enough
gravitational wave observations are accumulated without
clear evidence for the presence of such a jump, a whole
class of couplings can be excluded.

ACKNOWLEDGMENTS

D. D. acknowledges financial support via an Emmy
Noether Research Group funded by the German
Research Foundation (DFG) under Grant No. DO 1771/
1-1. S. Y. would like to thank the University of Tuebingen
for the financial support. The partial support by the
Bulgarian NSF Grant KP-06-H28/7 is acknowledged.
A. V. V. thanks FCT for financial support through Project
No. UIDB/00099/2020. The authors acknowledge support
by the High Performance and Cloud Computing Group
at the Zentrum für Datenverarbeitung of the University of
Tübingen, the state of Baden-Württemberg through
bwHPC and the German Research Foundation (DFG)
through Grant No. INST 37/935-1 FUGG.

DYNAMICAL DESCALARIZATION WITH A JUMP DURING A … PHYS. REV. D 106, L061502 (2022)

L061502-5



[1] Luca Baiotti and Luciano Rezzolla, Binary neutron star
mergers: A review of Einstein’s richest laboratory, Rep.
Prog. Phys. 80, 096901 (2017).

[2] James Healy, Tanja Bode, Roland Haas, Enrique Pazos,
Pablo Laguna, DeirdreM. Shoemaker, and Nicolás Yunes,
Late inspiral and merger of binary black holes in scalar-
tensor theories of gravity, Classical Quantum Gravity 29,
232002 (2012).

[3] Maria Okounkova, Leo C. Stein, Mark A. Scheel, and Saul
A. Teukolsky, Numerical binary black hole collisions in
dynamical Chern-Simons gravity, Phys. Rev. D 100, 104026
(2019).

[4] Maria Okounkova, Leo C. Stein, Jordan Moxon, Mark A.
Scheel, and Saul A. Teukolsky, Numerical relativity simu-
lation of GW150914 beyond general relativity, Phys. Rev. D
101, 104016 (2020).

[5] Maria Okounkova, Numerical relativity simulation of
GW150914 in Einstein dilaton Gauss-Bonnet gravity, Phys.
Rev. D 102, 084046 (2020).

[6] William E. East and Justin L. Ripley, Dynamics of Sponta-
neous Black Hole Scalarization and Mergers in Einstein-
Scalar-Gauss-Bonnet Gravity, Phys. Rev. Lett. 127, 101102
(2021).

[7] Hector O. Silva, Helvi Witek, Matthew Elley, and Nicolás
Yunes, Dynamical Descalarization in Binary Black Hole
Mergers, Phys. Rev. Lett. 127, 031101 (2021).

[8] Clifford M. Will, The confrontation between general rela-
tivity and experiment, Living Rev. Relativity 17, 4 (2014).

[9] Emanuele Berti et al., Testing general relativity with present
and future astrophysical observations, Classical Quantum
Gravity 32, 243001 (2015).

[10] Thibault Damour and Gilles Esposito-Farese, Tensor multi-
scalar theories of gravitation, Classical Quantum Gravity 9,
2093 (1992).

[11] Daniela D. Doneva and Stoytcho S. Yazadjiev, New Gauss-
Bonnet Black Holes with Curvature-Induced Scalarization
in Extended Scalar-Tensor Theories, Phys. Rev. Lett. 120,
131103 (2018).

[12] Hector O. Silva, Jeremy Sakstein, Leonardo Gualtieri,
Thomas P. Sotiriou, and Emanuele Berti, Spontaneous Scala-
rization of Black Holes and Compact Stars from a Gauss-
Bonnet Coupling, Phys. Rev. Lett. 120, 131104 (2018).

[13] G. Antoniou, A. Bakopoulos, and P. Kanti, Evasion of No-
Hair Theorems and Novel Black-Hole Solutions in Gauss-
Bonnet Theories, Phys. Rev. Lett. 120, 131102 (2018).

[14] Daniela D. Doneva, Stella Kiorpelidi, Petya G. Nedkova,
Eleftherios Papantonopoulos, and Stoytcho S. Yazadjiev,
Charged Gauss-Bonnet black holes with curvature induced
scalarization in the extended scalar-tensor theories, Phys.
Rev. D 98, 104056 (2018).

[15] Hector O. Silva, Caio F. B. Macedo, Thomas P. Sotiriou,
Leonardo Gualtieri, Jeremy Sakstein, and Emanuele Berti,
Stability of scalarized black hole solutions in scalar-Gauss-
Bonnet gravity, Phys. Rev. D 99, 064011 (2019).

[16] Masato Minamitsuji and Taishi Ikeda, Scalarized black
holes in the presence of the coupling to Gauss-Bonnet
gravity, Phys. Rev. D 99, 044017 (2019).

[17] Caio F. B. Macedo, Jeremy Sakstein, Emanuele Berti,
Leonardo Gualtieri, Hector O. Silva, and Thomas P.

Sotiriou, Self-interactions and Spontaneous Black Hole
Scalarization, Phys. Rev. D 99, 104041 (2019).

[18] Daniela D. Doneva, Kalin V. Staykov, and Stoytcho S.
Yazadjiev, Gauss-Bonnet black holes with a massive scalar
field, Phys. Rev. D 99, 104045 (2019).

[19] Pedro V. P. Cunha, Carlos A. R. Herdeiro, and Eugen Radu,
Spontaneously Scalarized Kerr Black Holes in Extended
Scalar-Tensor–Gauss-Bonnet Gravity, Phys. Rev. Lett. 123,
011101 (2019).

[20] Lucas G. Collodel, Burkhard Kleihaus, Jutta Kunz, and
Emanuele Berti, Spinning and excited black holes in
Einstein-scalar-Gauss–Bonnet theory, Classical Quantum
Gravity 37, 075018 (2020).

[21] Victor I. Danchev, Daniela D. Doneva, and Stoytcho S.
Yazadjiev, Constraining scalarization in scalar-Gauss-
Bonnet gravity through binary pulsars, 2021, arXiv:2112
.03869.

[22] Leong Khim Wong, Carlos A. R. Herdeiro, and Eugen
Radu, Constraining spontaneous black hole scalarization
in scalar-tensor-Gauss-Bonnet theories with current gravi-
tational-wave data, Phys. Rev. D 106, 024008 (2022).

[23] Nikolas Andreou, Nicola Franchini, Giulia Ventagli, and
Thomas P. Sotiriou, Spontaneous scalarization in general-
ised scalar-tensor theory, Phys. Rev. D 99, 124022 (2019);
101, 109903(E) (2020).

[24] Giulia Ventagli, Antoine Lehébel, and Thomas P. Sotiriou,
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