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Inflationary cosmology proposes that the early Universe undergoes accelerated expansion, driven, in
simple scenarios, by a single scalar field or inflaton. The form of the inflaton potential determines the initial
spectra of density perturbations and gravitational waves. We show that constraints on the duration of
inflation together with the BICEP3/Keck bounds on the gravitational wave background imply that higher
derivatives of the potential are nontrivial with a confidence of 99%. Such terms contribute to the scale
dependence, or running, of the density perturbation spectrum. We clarify the “universality classes” of
inflation in this limit showing that a very small gravitational wave background can be correlated with a
larger running. If pending experiments do not observe a gravitational wave background the running will be
at the threshold of detectability if inflation is well described at third order in the slow-roll expansion.
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I. INTRODUCTION

Now 40 years old, inflation [1] is the de facto description
of thevery earlyUniverse. The clear consequences of generic
inflationarymodels arewell verified: theUniverse is spatially
flat, almost homogeneous and isotropic and Gaussian,
adiabatic perturbations [2,3] induce large scale correlations
in the polarization and temperature of the microwave back-
ground [4]. The one ambiguous observable is the primordial
gravitational wave background. Constraints have steadily
tightened [5–8] and the latest BICEP3/Keck data permits an
amplitude of at most 4% that of the density perturbations [9].
A gravitational wave background is often viewed as the
“smoking gun” of inflation since known alternatives do not
generate a detectable signal [10,11] but this is also true of
many inflationary models. Moreover, algebraically simple
slow-roll scenarios with large gravitational-wave signals
must be “protected” by near symmetries [12]: such models
can be proposed (e.g., [13]) but nature need not employ them.
The amplitudes of the density and gravitational wave

perturbations (expressed via their ratio, r), depend on the
potentialV and its slopeV 0. The spectral index of the density
perturbations ns further involves the second derivative, V 00.
Given a single field slow-roll prior, ns and r are inputs for
the inflationary inverse problem: the reconstruction of the
potential from observational data [14].

We show that the latest BICEP3/Keck data implies that
all viable implementations of slow-roll inflation with only
V, V 0, and V 00 as free parameters produce more than
65e-folds of inflation after astrophysically relevant pertur-
bations leave the horizon, with 99% confidence. Without
exotic postinflationary physics, this is inconsistent with
long-standing constraints [15–18] so inflation can only
terminate appropriately if higher derivatives are nontrivial
or the potential is discontinuous.
A nontrivial V 000 modifies the dynamics relative to that

derived with only V 0 and V 00. For any ns and r one can fix
V 000 to yield a specified amount of inflation. However, this
leads to scale dependence in V 00, contributing to the running
of the spectral index, αs ¼ dns=d ln k where k is the
comoving wave number. Experiments now under develop-
ment are sensitive to r≳ 10−4 [19,20]. We show that if
r≲ 10−4, then it follows that αs < −10−3, given three
nontrivial slow-roll parameters. This is several times larger
than αs in simple models [17] and at the threshold of
detection by upcoming experiments.
The key finding is that all two-parameter single-field

inflationary models are excluded with high confidence. The
analysis rests on the well-studied Hubble slow roll expan-
sion [21]. The full dynamical system has apparent attractors
[21,22] in the fns; rg plane, issues with convergence and
truncation (particularly in models with discontinuities or an
abrupt end to inflation, or many fields), and does not
account for initial, transient, field velocities [23]. However,
none of these complexities impinge on our analysis. Present
data limits us to the “low-ϵ” regime of the slow-roll
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hierarchy, excluding much of the attractor structure.
Likewise generic scenarios beyond single-field slow-roll
necessarily have several free parameters, and thus cannot
provide counterexamples that prevent the exclusion of two
parameter models.
Given the measured value of ns, we further show that

tight constraints on r imply a nontrivial running if the
dynamics are treated at next order in slow roll. This formal
linkage between the running and the duration of inflation is
well known [17,24–27], and we clarify the understanding
of inflationary universality classes in this limit [19,28–30].
Correlated expectations for r and αs depend on the
truncated slow-roll hierarchy but three-parameter slow roll
is now the simplest feasible scenario. Excitingly, this
linkage between r and αs presents a feasible target for
future astrophysical measurements.

II. TWO PARAMETER SLOW-ROLL MODELS

Single-field inflationary scenarios are governed by the
Einstein-Klein-Gordon equations,

H2 ¼ 1

3M2
P

�
_ϕ2

2
þ VðϕÞ

�
; ð1Þ

_H ¼ −
1

2M2
P

_ϕ2; ð2Þ

ϕ̈þ 3H _ϕþ V 0ðϕÞ ¼ 0; ð3Þ

where the symbols have their usual meanings and we use
the reduced Planck mass,MP. During the accelerated phase
ϕ evolves monotonically and is thus a “clock.” Equation (2)
can be rearranged to show that dH=dϕ is proportional to
−dϕ=dt, so

VðϕÞ ¼ 3M2
P

2
HðϕÞ2 −M4

PH
0ðϕÞ2: ð4Þ

For the purposes of parameter counting, we assume that
the potential and Hubble slow-roll formulations are inter-
changeable. The Hubble slow-roll hierarchy [21] provides a
more succinct account of the dynamics,

ϵðϕÞ≡ 2M2
P

�
H0ðϕÞ
HðϕÞ

�
2

; ð5Þ

lλH ≡ ð2MPÞl
ðH0Þl−1
Hl

dlþ1H

dϕðlþ1Þ ; l ≥ 1; ð6Þ

with the convention that η ¼ 1λH and ξ ¼ 2λH. The number
of e-folds that will elapse before inflation ends is
N ¼ − lnða=aendÞ, where aend is the scale factor as inflation
completes. Noting H ¼ _a=a,

dN
dϕ

¼ 1

MP

1ffiffiffiffiffi
2ϵ

p ; ð7Þ

the “flow equations” are

dϵ
dN

¼ 2ϵðη − ϵÞ; ð8Þ

dη
dN

¼ −ϵηþ ξ; ð9Þ

dlλH
dN

¼½ðl − 1Þη − lϵ� × lλH þlþ1 λH; ð10Þ

where N is now the independent variable. Accelerated
expansion occurs when ä > 0 or equivalently ϵ < 1. If
lλH ¼ 0 for all l ≥ M, then at some ϕ0 the system remains
closed as it evolves [21,31,32], with M nontrivial slow-roll
parameters. The amplitude of the potential is a further free
parameter but scales out of the dynamics.
The foregoing treatment is exact but key observables are

expressed in the slow-roll approximation, or

ns ¼ 1þ 2η − 4ϵ − 2ð1þ CÞϵ2 − 1

2
ð3 − CÞξ; ð11Þ

r ¼ 16ϵ½1þ 2Cðϵ − ηÞ�; ð12Þ

αs ¼ −
1

1 − ϵ

dϕ
dN

dns
dϕ

; ð13Þ

where C ¼ −2þ ln 2þ γ, C ¼ 4ðγ þ ln 2Þ − 5, and γ is the
Euler-Mascheroni constant. Finally, dN=dlnk¼−1=ð1−ϵÞ
is the rate at which modes leave the horizon and ϵ → 0 in
the de Sitter limit where H is constant.
A two-term hierarchy maps ns and r to an inflationary

trajectory. Figure 1 shows the constraints on ns and ln r

FIG. 1. Likelihood contours in ns and ln r from the BK15 (blue)
and BK18 (green) datasets, in combination with PlanckTT-
TEEEþ lowEþ lensingþ BAO results [7,9]. Shaded regions
denote the 66% and 95% posteriors. Black contours indicate the
number of e-folds N that take place after the pivot leaves the
horizon with a two-term slow-roll hierarchy.
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derived from the BK15 [7] and BK18 [9] datasets (pub-
lished in 2018 and 2021, respectively), together with
Planck and baryon acoustic oscillation data overlaid with
the duration of inflation computed with two slow-roll
terms. Figure 2 shows the marginalized distributions for
N; BK18 yields PðN < 65Þ ≈ 0.0024. Provided the post-
inflationary universe is not dominated by matter whose
stiffness exceeds that of radiation, N < 65 is a generic
bound on the amount of inflation after the pivot leaves the
horizon [16]. Subject to this proviso on the equation of
state, all inflationary models described by the first two
slow-roll parameters are now excluded.
This advance arises from tightening constraints on both ns

and r. A spectral index of less than 0.95 was consistent
with the full WMAP datset [33] and inflation ends “on time”
for smaller ns without additional curvature in the potential.
Consequently, better measurements of ns combine with
tighter bounds on the polarization to yield this result.
Note too that this analysis implicitly assumes a “ski-run”
inflationary potential with a smooth approach to regular
expansion. Scenarios in which inflation abruptly terminates
also require additional parameters, albeit outside the Hubble
slow-roll expansion.

III. RUNNING AND THE END OF INFLATION

We now extend the Hubble slow-roll expansion to third
order, so that ξ is nonzero. This can increase the scale
dependence of η, as αs ≈ −2ξ when ϵ is small. Figure 3
overplots the ns and r constraints with contours showing
the running resulting from choosing ξ such that N ¼ 55
when the pivot leaves the horizon. The running is generi-
cally larger than in “standard” inflationary models [17] but
still well inside recent constraints; e.g., dns=d ln k ¼
−0.006� 0.013 [6].
This adds nuance to statements that ns − 1 ∼ −1=N and

αs ∼ 1=N2, which hold empirically for many simple

models [17]. These expectations have been formalized in
the potential slow-roll expansion [19,28–30], leading towhat
are sometimes referred to as “universality classes” [29].
In this framework ϵV ¼ M2

PðV 0=VÞ2=2, ηV ¼ M2
pV 00=V, and

ξV ¼ M4
pV 0V 000=V2 and

dϵV
dN

≈M4
P

�
V 0

V

�
2
�
V 00

V
−
�
V 0

V

�
2
�
; ð14Þ

Wewrite ns − 1 ¼ −a=N, where a is a constant a little larger
than unity. Dropping higher order txerms and accounting for
the difference between η and ηV we can set this equal to
Eq. (11), or ns ≈ 1–6ϵV þ 2ηV to find a differential equation
for ϵVðNÞ (e.g., [30]). In the low r limit the solution has the
form ϵV ∼ 1=ðANaÞ where A is a large constant. Physically,
this ensures that ηV and ϵV are tightly correlated even when
ϵV ≪ ηV . However if r≲ jns − 1j2, then it would seem that
ξV cannot be self-consistently ignored, since it contributes to
the scale dependence of ηV via

dηV
dN

≈M4
P

�
V 0

V
V 000

V
−
�
V 0

V

�
2 V 00

V

�
: ð15Þ

and the second term can be far smaller than the first.
This regime corresponds to the low-ϵ limit of the Hubble

slow-roll hierarchy, and with three terms

dη
dN

≈ ξ;
dξ
dN

≈ ξη: ð16Þ

These equations can be solved [24], showing

ξðNÞ ¼ ηðNÞ2 − η2⋆
2

þ ξ⋆; ð17Þ

where the star subscript denotes a value at the pivot. To a
good approximation ηðNÞ ¼ η⋆ − ξ⋆ΔN for astrophysi-
cally relevant modes, where ΔN is the number of e-folds
after the pivot leaves the horizon; the full solution for ηðNÞ

FIG. 2. The posterior for N with a two-term slow-roll hierarchy
(as in Fig. 1) with a uniform prior on r; for a logarithmic prior the
distribution is roughly constant at larger N.

FIG. 3. Contours of constant αs in the ns − ln r plane with a
three-term slow-roll hierarchy and ξ set to give N ¼ 55 when the
pivot leaves the horizon, with the constraints from Fig. 1.
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in this limit is the “2-parameter, low-ϵ” model of Ref. [24].
In particular, the relationship ξ ∼ jns − 1j2 ∼ 1=N2 is sup-
plemented by an additive constant in the low-ϵ limit.
Physically, this yields a near-inflexion point in the poten-
tial, where both ϵ and ns − 1 are necessarily very small.

IV. FUTURE PROSPECTS

Recalling that r ∼ ðV 0=VÞ2, we can identify three
regimes; V 0>V 00, V 0 ∼ V 00, and V 0 ≪ V 00 (with Mp ¼ 1).
The first requires r≳ 0.01 and is close to being ruled out;
the second is eliminated if r≲ 10−4, a threshold which will
be within reach by 2030 [19,20].
If a primordial gravitational wave background is not

detected in the coming decade, any viable single-field
model will satisfy V 0 ≪ V 00 and is thus squarely inside the
low-ϵ regime. Figure 4 shows the likely values of αs on the

ns − ln r plane for three different choices of the total
number of e-foldings. If r≲ 10−4 then αs < −10−3 for
any self-consistent three-parameter scenario.
Figure 5 shows the individual and combined limits on

jαsj expected from CHIME [34] and SPHEREx [35],
together with CMB-S4 [19]. Each experiment measures
αs with an accuracy of, at best, 5 × 10−3 but their combined
sensitivity is similar to the expected running if r≲ 10−4.
All these experiments aim to provide results by 2030.
Consequently, if the early Universe passed through an
accelerated phase the simplest currently viable inflationary
models suggest that we can hope to have evidence that
either r or αs is nonzero in a decade from now.

V. DISCUSSION

We have updated the priors on scalar field inflation using
the latest data: models specified by only V 0 and V 00 at the
pivot do not lead to a self-consistent inflationary era, at a
99% confidence level. There is a clear correlation between
small r and large αs at third order in slow roll. That said, it
does not hold generically; even in slow roll, if 3λH is
nontrivial ξ and the running can be small at the pivot.
Moreover there are further counterexamples which cannot
be easily described within the Hubble slow-roll hierarchy,
e.g., multifield models, and those with discontinuous or
modulated potentials.
The current observational roadmap will investigate the

range 10−4 ≲ r≲ 10−2 and jαsj ≳ 10−3 in the coming
decade. Without a detection of the gravitational wave
background there will be real pressure on the relationship
between αs, r, and N highlighted here. Consequently, even
a null result will significantly constrain what is now the
simplest viable inflationary model in terms of parameter
count and qualitative complexity.
This analysis also illuminates inflationary universality

classes for very small r,which arise from treating expressions
for ns as differential relationships. Conversely, the Hubble
slow-roll parameters are akin to Taylor coefficients and the
“flow equations” describe their running [21]. The first two
terms set

ffiffiffi
r

p
and jns − 1j but near an extremum of VðϕÞ [or

FIG. 4. The running αs (×103) is plotted in the ns − ln r plane for N ¼ 45, 55, and 60, assuming a three-parameter slow-roll hierarchy.
When r ≲ 10−4 we see that αs < −10−3 for all values of ns consistent with presently available data.

FIG. 5. Forecast ns − αs constraints with CMB-S4, SPHEREx
[S], CHIME [C]. The best combination promises to measure αs to
about 2.2 × 10−3 at 95% confidence [36].
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HðϕÞ, since V 0 ¼ 0 implies H0 ¼ 0] r ≪ 1 and V 000 is the
next-to-leading order term.
A scenario in which V 0 is very small and V 000 is

significant is most naturally an inflexion-point model.
Interestingly, hilltop potentials of the form V ∼ V0 −
V2ϕ

2 − V4ϕ
4 struggle to generate low values of r, given

present constraints on ns [37]. In addition, for fixed ns there
is an inverse correlation between αs and N, depending on
the overall inflationary scale [16,27] and the possibly
complicated and nonlinear physics of the postinflationary
universe [38–44]. This overall discussion could be further
sharpened by adopting a Bayesian model comparison
framework [6,45,46], and these considerations illuminate
the viable forms of the inflationary potential. Note too that
if the inflationary patch of the potential is small it is more
likely that models will be sensitive to the initial spatial
configuration of the inflaton [47–49].
In summary, all inflationary models fully described at

second order in the Hubble slow-roll expansion are now
excluded by observational data with high confidence.
This comes 20 years after the first nontrivial limits on

inflationary models were delivered by WMAP [5,50], and
marks a significant advance in the ability to constrain
inflation. Moreover, three-parameter slow-roll models, now
the simplest scenarios (in terms of parameter count and
qualitative complexity), exhibit a correlation between the
gravitational wave amplitude and the running. This will be
testable over the coming decade, and either a verification or
a null result would represent major progress.
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