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Reconstructing spectral functions from Euclidean Green’s functions is an important inverse problem in
many-body physics. However, the inversion is proved to be ill-posed in the realistic systems with noisy
Green’s functions. In this paper we propose an automatic differentiation (AD) framework as a generic tool
for the spectral reconstruction from propagator observable. Exploiting the neural networks’ regularization
as a nonlocal smoothness regulator of the spectral function, we represent spectral functions by neural
networks and use the propagator’s reconstruction error to optimize the network parameters unsupervisedly.
In the training process, except for the positive-definite form for the spectral function, there are no other
explicit physical priors embedded into the neural networks. The reconstruction performance is assessed
through relative entropy and mean square error for two different network representations. Compared to the
maximum entropy method, the AD framework achieves better performance in the large-noise situation. It is
noted that the freedom of introducing nonlocal regularization is an inherent advantage of the present
framework and may lead to substantial improvements in solving inverse problems.
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I. INTRODUCTION

The numerical solution to inverse problems is a vital area
of research in many domains of science. In physics,
especially quantum many-body systems, it is necessary
to perform an analytic continuation of function from finite
observations which however is ill-posed [1,2]. It is encoun-
tered for example, in Euclidean quantum field theory (QFT)
when one aims at rebuilding spectral functions based on
some discrete data points along the Euclidean axis. More
specifically, the inverse problem occurs when we take a
nonperturbative Monte Carlo simulations (e.g., lattice
QCD) and try to bridge the propagator data points with
physical spectra [3]. The knowledge of spectral function
will be further applied in transport process and nonequili-
brium phenomena in heavy ion collisions [3,4].
In general, the problem set-up is from a Fredholm

equation of the first kind, which takes the following form,

gðtÞ ¼ K ∘ f ≔
Z

b

a
Kðt; sÞfðsÞds; ð1Þ

and the problem is to reconstruct the function fðsÞ given the
continuous kernel function Kðt; sÞ and the function gðtÞ.
In realistic systems, gðtÞ is often available in a discrete
form numerically. When dealing with a finite set of data
points with nonvanishing uncertainty, the inverse transform
becomes ill-conditioned or degenerated [5,6]. Regarding the
convolution kernel as a linear operator, it can be expandedby
basis functions in a Hilbert space. McWhirter and Pike [7]
and the authors of Ref. [8] respectively show that kernels of
Laplace transformation, [Kðt; sÞ ¼ e−st], and Källen-
Lehmann (KL) transformation, [Kðt;sÞ¼sðs2þt2Þ−1π−1],
have eigenvalues with arbitrarily small magnitude, and their
corresponding eigenfunctions—referred to as null-modes—
induce negligible changes in function gðtÞ. Meanwhile, the
null-modes correspond to arbitrarily large eigenvalues of the
inversion operator. Therefore, the inversion is numerically
unstable when reconstructing fðsÞ from a noisy gðtÞ. In
Fig. 1, we show examples of different fðsÞ functions (at the
left-hand side) that correspond to gðtÞ functions with
negligible differences (at the right-hand side).
Many efforts have been made to break the degeneracy by

adding regulator terms inside the inversion process, such as
the Tikhonov regularization [6,9]. In past two decades,
the most common approach in such reconstruction task is
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statistical inference. It comprises prior knowledge from
physical domains to regularize the inversion [3,10,11].
As one classical paradigm, introducing Shannon-Jaynes
entropy regularizes the reconstruction to an unique solution
with suppressing null-modes [12–14], that is the maximum
entropy method (MEM) [1,3]. In general, the MEM
addresses this problem by regularization of the least-squares
fit with an entropy term S½f� ¼ −

R
ds½fðsÞ −mðsÞ−

fðsÞ lnðfðsÞ=mðsÞÞ�. Standard optimizations aim to maxi-
mizeQ½f� ¼ χ2½f�=2 − αS½f� through changing fðsÞ guided
by a prior model mðsÞ, where α is a positive parameter that
weights the relative importance between the entropy and the
error terms. Although both Tikhonov and Shannon-Jaynes
regularization terms yield a unique solution of fðsÞ, it is not
guaranteed that the reconstructed fðsÞ is the physical one.
Besides, there are some studies employing supervised
approaches to train deep neural networks (DNNs) for
learning the inverse mapping [15–19]. In these works, the
prior knowledge is encoded in amounts of training data from
specific physics insights, whereas one should be careful
about the risk that biasesmight be introduced in training sets.
Efforts have been made in unbiased reconstructions by
designing physics-informed networks and using complete
basis to prepare training data sets [19]. Besides, to alleviate
the dependence on specific kinds of training data, there are
also studies adopting the radial basis functions and Gaussian
process [20,21] to perform the inversion directly.
In this paper we propose an unsupervised automatic

differentiation (AD) approach to solve a spectral
reconstruction task without training data preparation.
Noting the oscillation caused by null-modes, it is natural
to add smoothness condition to regularize the degeneracy.
Therefore, we represent spectral functions by artificial
neural networks (ANNs), in which the ANNs can preserve
smoothness automatically [22]. Algorithms based on
ANNs have been deployed to address various physics
problems, e.g., determining the parton distribution function
[25,26], reconstructing the spectral function [15,19,20],
identifying phase transition [27–31], assisting lattice field
theory calculation [32–35], evaluating centrality for heavy
ion collisions [36–38], parameter estimation under detector
effects [39,40], and speeding up hydrodynamics simulation

[41]. Here we focus on the quality of the spectral function
reconstructed from inverting the KL convolution [42],

DðpÞ ¼
Z

∞

0

Kðp;ωÞρðωÞdω≡
Z

∞

0

ωρðωÞ
ω2 þ p2

dω
π

; ð2Þ

where DðpÞ is a propagator derived from a given spectral
function ρðωÞ. It is related to a wide range of quantum
many-body systems, yet proved to be difficult to solve
satisfactorily [13,14]. It shall be worth noting that the
framework discussed herein may be applied to other ill-
conditioned kernels even extended to different tasks.

II. AUTOMATIC DIFFERENTIATION

Figure 2 shows the flow chart of the devised AD
framework with network representations to reconstruct
spectral from propagator observable. More details about
theADand related back-propagation algorithmcan be found
in the Supplemental Materials [43]. The output of network
representations are ρ⃗ ¼ ½ρ1; ρ2;…; ρNω

�, fromwhich we can
calculate the propagator asDðpÞ ¼ PNω

i Kðp;ωiÞρiΔω. As
Fig. 2 shows, after the forward process of the network and
convolution, we can get the spectral ρ⃗ and further the
correlators’ reconstruction error as loss function,

L ¼
XNp

i

wiðDi −DðpiÞÞ2; ð3Þ

where Di is observed data at pi, andwi denote extra weights
of each observation.When taking the inverse variance aswi,
Eq. (3) becomes the standard χ2 function. Meanwhile, one
can directly extend it to multiple data points by making
summation over them with calculating all variances. To
optimize the parameters of network representations fθgwith
loss function, we implement gradient-based algorithms. It
derives as

∇θL ¼
X
j;k

Kðpj;ωkÞ
∂L

∂DðpjÞ
∇θρk; ð4Þ

where ∇θρk is computed by the standard backward propa-
gation (BP) method in deep learning [23]. The
reconstruction error will be transmitted to each layer of
neural networks, combined with gradients derived from
automatic differentiation [44], they are used to optimize the
parameters of neural networks. In our case, the Adam
optimizer is adopted in following computations [45].

III. NEURAL NETWORK REPRESENTATIONS

As Fig. 2 shown, we develop two representations with
different levels of nonlocal correlations among ρðωiÞ’s to
represent the spectral functions with ANNs. The first is
demonstrated in Fig. 2(a) and named NN, in which we use

FIG. 1. Spectral functions differed by null-modes (left) and
their corresponding Källen-Lehmann correlation functions
(right). The insert figure shows the differences in propagator
caused by null-modes.
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L-layers neural network to represent in list format the
spectral function ρðωÞ with a constant input node a0 ¼ C
and multiple output nodes aL ¼ ½ρ1; ρ2;…; ρNω

�. The width
of the lth layer inside the network is nl, to which the
associated weight parameters control the correlation among
the discrete outputs in a concealed form. In a special case, a
discrete list of ρi itself is equivalent to set L ¼ 1 without
any bias nodes; meanwhile, the differentiable variables
are directly elements of ρ⃗ as network weights. If one
approximates the integration over frequencies ωi to be
summation over Nω points at fixed frequency interval dω,
then it is suitable to the vectorized AD framework
described above. The second representation with ANNs
is shown in Fig. 2(b), where the input node is a0 ¼ ω and
the output node is interpreted to be aL ¼ ρðωÞ. It is termed
as point-to-point neural networks (abbreviated as NN-P2P)
and it consists of finite first-order differentiable modules,
in which the continuity of function ρðωÞ is naturally
preserved [24,47].
We adopt width ¼ 64 and depth ¼ 3 as default param-

eter setting in the whole paper, which is explained in the
Supplemental Materials [43]. Besides, a pedagogical intro-
duction of the machine learning background can also be
found there. For the optimization of the neural network
representations, we adopt the Adam optimizer [48] with L2

regularization for NN, which is a summation over the L2

norm of all differentiable weights of the network, L2 ¼
λ
P

iðθW;iÞ2 with λ ¼ 10−2 in the beginning of the warmup
stage of training process. For speeding up the training
process, we obey an annealing strategy to loosen the value
of λ from the initial tight regularization repeatedly to small

enough value (smaller than 10−8) in first 40,000 epochs. We
checked that end values of λ do not alter the reconstruction
results once it is smaller than 10−8. To converge fast, we
also adopt a smoothness regulator here, which derives as
Ls ¼ λs

PNω
i¼1ðρi − ρi−1Þ2. The initial smoothness regulator

is λs ¼ 10−3, then it decreases to 0 in the final step of the
warm-up.After that, early stopping is applied for the training
with the criterion to be when error between observed D̃ðpÞ
and reconstructed DðpÞ does not decrease, or the whole
training exceeds 250,000 epochs. The learning rate is 10−3

for all cases, and there is no any explicit regulators for NN-
P2P only implicit nonlocal correlations. Besides, the
physical prior we embedded into these representations is
the positive-definiteness of fermionic spectral functions (in
the lattice QCD case, they are hadronic spectra), which is
introduced by applying the softplus activation function at
output layer as σðxÞ ¼ lnð1þ exÞ.

IV. RECONSTRUCTION PERFORMANCE

In this section we demonstrate the performance of our
framework by testing their quality in reverting the Green’s
functions of known spectral functions (also known as
mock data). We start with a superposed collection of
Breit-Wigner peaks, which is based on a parametrization
obtained directly from one-loop perturbative quantum field
theory [15,49]. Each individual Breit-Wigner spectral
function is given by

ρðBWÞðωÞ ¼ 4AΓω
ðM2 þ Γ2 − ω2Þ2 þ 4Γ2ω2

: ð5Þ

FIG. 2. Automatic differential framework to reconstruct spectral from observations: (a) NN. Neural networks have outputs as a list
representation of spectrum ρiðωiÞ and (b) NN-P2P. Neural networks have input and output nodes as ðωi; ρiÞ pairwise.
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HereM denotes the mass of the corresponding state, Γ is its
width and A amounts to a positive normalization constant.
The multipeak structure is built by combining different
single-peak modules together.
Two profiles of spectral functions from Eq. (5) are set as

ground truths. In Fig. 3, the upper is from a single-peak
spectrum with A ¼ 1.0;Γ ¼ 0.5;M ¼ 2.0 (hereafter in
paper we omit the energy unit of massM, widthΓ, frequency
ω, andmomentump) and the below one is from double-peak
profile with A1 ¼ 0.8; A2 ¼ 1.0, Γ1 ¼ Γ2 ¼ 0.5,M1 ¼ 2.0,
M2 ¼ 5.0. To imitate the realistic observable data, we follow
Ref. [3] and add noise to the mock data with D̃i ¼
DðpiÞ þ ni;ε, where the noise term follows normal distribu-
tion with variance σ2i;ε ¼ ðεDðpiÞpi=ΔpiÞ2, Pðni;εÞ ¼
N ð0; σ2i;εÞ. In Fig. 3, we compare the reconstruction results
with ε ¼ 10−3, 10−4, 10−5, respectively. The two network
representations are marked by blue and red lines. They all
show remarkable reconstruction performances for a single
peak at each noise level. As a comparison, results fromMEM
are also shown as green lines. We see that MEM show
oscillations around zero-point under different noise back-
grounds. The rebuilding spectral function from NN-P2P do
not oscillate. This is especially important for such a task of
extracting the transport coefficients from real-world lattice
calculation data [3,15].
For mock data with two peaks, we observe that the

nonlocal smoothness condition of NN-P2P slightly sup-
press the bimodal structure, whereas NN successfully
unfolds the two-peaks information from Green’s functions
even with noise ε ¼ 10−3. Although NN-P2P misses the
second peak which may appear in the case of bimodal as

MEM, the calculations of different order momentum from
spectral function will not be disturbed. Another advantage
of the NN-P2P architecture is its stable performance of the
spectral function at small ω limit, which is important for the
measurement of conductivity σ ∝ limω→0 ρðωÞ=ω [50,51].
The smoothness condition automatically encoded in the
network setup suppresses the oscillating null-modes espe-
cially at small frequency region, and therefore allows the
reliable extraction of conductivity in NN-P2P.
In order to examine the robustness of our method against

forms of spectral function, we further apply the framework
to mock data prepared by Gaussian form ρGðωÞ ¼
ð2πΓ2Þ−1 exp−ððω −MÞ2=2Γ2Þ (A single peak spectrum
with Γ ¼ 0.4;M ¼ 2.5, and the double peak profile is
setting as Γ1 ¼ Γ2 ¼ 0.4;M1 ¼ 2.0;M2 ¼ 6.0), and
Lorentzian form ρLðωÞ ¼ Γ2½πΓððω −MÞ2 þ Γ2Þ�−1 with
Γ ¼ 0.3;M ¼ 4.0. The results are shown in Fig. 4, and it
indicates that neural network representations, NN-P2P and
NN, can be generalized to other cases, and can reach at least
comparable performances to the MEM method.

FIG. 3. The predicted spectral functions from MEM, NN, and NN-P2P. From left to right panels, different Gaussian noises are added
to the propagator data with ε ¼ 10−3; 10−4, and 10−5 in the case of Np ¼ 25 and Nω ¼ 500 for the spectral. Note that MEM with fixed
small α by hand might get improvement, as shown in the Supplemental Material [43] with comparison to AD.

FIG. 4. Reconstructed spectra with MEM, NN, and NN-P2P
from the correlators at noise level ϵ ¼ 10−4 with Np ¼ 25 points.
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V. EXTENSIONS

In addition to the above reconstructions, we also validate
the framework in another two physics motivated cases. The
first is to rebuild nonpositive-definite spectral functions—
where classical MEM approaches are normally not appli-
cable, unless adopting suitable representations within
Bayesian inference perspective [10,21,52,53]. The reason
for choosing such a setup is that there are many circum-
stances the spectra would display positivity violation, which
can be related to confined particles e.g., gluons and ghosts, or
thermal excitations with long-range correlation in strongly
coupled system [21,53,54]. In Fig. 5, we test our NN repre-
sentation using the correlators generated from the double
peak profile, with the first peak turning negative, A1¼−0.3;
A2¼1.0;Γ1¼Γ2¼0.5;M1¼2.0;M2¼3.5 (Parameter set I)
and A1 ¼ 0.3; A2 ¼ −1.0;Γ1 ¼ Γ2 ¼ 0.5;M1 ¼ 2.0;M2 ¼
3.5 (Parameter set II). The errors added to correlators obey
the same form explained before. The hierarchical architec-
ture of NN representation is unchanged, but the positive
activation function of output layer is removed to loosen the
positive-definite condition, accordingly the multiplier factor
is replaced by ωe−ω to suit the low- and large-ω limits. The
reconstructions indicate that our NNworks consistently well
in constructing such spectral functionswith nonpositive parts
at the location and width of peaks.
The other demonstration case we did is in a more realistic

scenario. The hadron spectral function ρðω; TÞ is encoded in a
thermal correlatorGðτ; TÞ at temperatureT [49]. The temper-
ature dependent correlator can be calculated along the
imaginary time τ-axis. The physics motivated spectral func-
tions proposed inRef. [19] are used to test our framework. The
correlators are generated with lattice QCD noise-level noises.
The spectral function has two parts, a resonance peak and a
continuum function.Details canbe found in our Supplemental
Materials [43]. We test the NN representation using two
parameter sets Cres ¼ 2.0; Ccont ¼ 2.1, Mres ¼ 0.1, Mcont ¼
0.05, andΓ ¼ 0.06 (left) orΓ ¼ 0.09 (right). The architecture
of the NN is the same as before but the multiplier factor is
replaced by ω2 × ω to fit the spectral behavior at the large-ω
limit. In Fig. 6,MEM results lose the peak information but our
reconstructions can capture it explicitly.

VI. SUMMARY

We present an automatic differentiation framework as a
generic tool for unfolding spectral functions from observ-
able data. The representations of spectral functions are with
two different neural network architectures, in which non-
local smoothness regularization and modern optimization
algorithm are implemented conveniently. We demonstrated
the validity of our framework on mock examples from
Breit-Wigner spectral functions with single and two peaks.
To account for uncertainties from numerical simulation for
the propagator observations, we confronted the framework
in different levels of noise contamination for the observa-
tions. Compared to conventional MEM calculations, our
framework shows superior performance especially in two
peaks situation with larger noise. Also, the NN-P2P
representation gives smooth and well-matched low fre-
quency spectral behavior, which is important in extracting
transport properties for the system. Owing to its ill-posed-
ness nature, such an inverse problem cannot be fully solved
in our framework. Nevertheless, the remarkable perfor-
mances of reconstructing spectral functions suggest that the
framework and the freedom of introducing nonlocal regu-
larization are inherent advantages of the present approach
and may lead to improvements in solving the inverse
problem in the future.
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FIG. 6. The predicted spectral functions from NN and MEM at
noise level ϵ ¼ 10−5 with Nτ ¼ 48.
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