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We study the effects of quantum corrections on transverse momentum broadening of a fast parton
passing through dense QCD matter. We show that, at leading logarithmic accuracy the broadening
distribution tends at late times or equivalently for large system sizes L to a universal distribution that only
depends on a single scaling variable k2T=Q

2
s where the typical transverse momentum scale increases with

time as ln Q2
s ≃ ð1þ 2βÞ ln L − 3

2
ð1þ βÞ ln ln L up to nonuniversal terms, with an anomalous dimension

β ∼ ffiffiffiffiffi
αs

p
. This property is analogous to geometric scaling of gluon distributions in the saturation regime and

traveling-wave solutions to reaction-diffusion processes. We note that since β > 0 the process is super-
diffusive, which is also reflected at large transverse momentum where the scaling distribution exhibits a

heavy tail k−4þ2β
T akin to Lévy random walks.
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I. INTRODUCTION

Transverse momentum broadening (TMB) of energetic
quarks and gluons traversing QCD matter plays a central
role in a variety of processes studied at colliders to probe
QCD, ranging from jet suppression in heavy-ion collisions
[1,2] to transverse-momentum-dependent gluon distribu-
tion functions that encode information on the 3D structure
of the proton and nuclei in high-energy collisions in
particular at small Bjorken x [3–5].
High-energy partons experience random kicks in hot or

cold nuclear matter causing their transverse momentum
(TM) k⊥ with respect to to their direction of motion to
increase over time. The dominant process is given by a
single gluon exchange via Coulomb scattering and leads to
an approximate Brownian motion in TM space, where the
typical TM square scales linearly with system size L,
namely hk2⊥ityp ∼ q̂L, where q̂ is the diffusion coefficient
[6–9]. Moreover, radiative processes can also increase the
TM of the leading parton due to recoil effects. It has been
shown recently that such contributions, albeit suppressed
by the coupling constant αs, are enhanced by double
logarithms which must be resummed to all orders when
αs ln2L ∼ 1 [10–14].

In this paper we go beyond this result by investigating in
more detail the consequences of the nonlocal nature of
quantum corrections on the TMB distribution. We find
in particular that the latter exhibits a universal scaling at
large L that we compute analytically along with its
subasymptotic deviations exploiting a formal analogy with
traveling-wave solutions to reaction-diffusion processes
[15–19]. As a consequence of the self-similarity character-
izing the anomalous random walk, the TMB distribution is
of Lévy type. It is in particular associated with a heavy tail
describing rare long steps which extends over a large range
of transverse momenta above the typical scale.
Lévy flights are ubiquitous in nature and span a wide

variety of stochastic processes in biological systems
[20,21], molecular chemistry [22], optical lattice [23],
turbulent diffusion and polymer transport theory [24,25].
Furthermore, heavy-tailed distributions are also observed in
self-organized critical states [26,27]. In this work, we point
out for the first time another occurrence of such random
walks in the transport of eikonal partons in dense QCD
matter and we compute the anomalous exponents that
characterize the deviation from standard diffusion.

II. QUANTUM CORRECTIONS TO TRANSVERSE
MOMENTUM BROADENING IN QCD MEDIA

The TMB distribution is related to the forward scattering
amplitude Sðx⊥Þ of an effective dipole in the color
representation R ¼ A, F with transverse size x⊥ (see
e.g., Refs. [11,28,29]) via a Fourier transform,

Pðk⊥Þ ¼
Z

d2x⊥e−ik⊥·x⊥Sðx⊥Þ: ð1Þ
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Considering the dipole formulation in position space allows
for a straightforward resummation of multiple scattering by
exponentiating the single-scattering cross section, so long
as the interactions between the dipole and the medium are
local. Thus, we may write [30]

Sðx⊥Þ ¼ exp

�
−
1

4

CR

Nc
q̂ð1=x2⊥; LÞLx2⊥

�
: ð2Þ

The latter relation defines the quenching parameter in the
adjoint representation which is assumed to be a slowly
varying function of x⊥. At tree level it reads q̂ð0Þð1=x2⊥; LÞ ¼
q̂0 ln ð1=ðx2⊥μ2ÞÞ þOðx2⊥μ2Þ, up to power-suppressed
terms, and is independent of L. For a weakly coupled
quark-gluon plasma (QGP) the bare quenching parameter
q̂0 and the infrared transverse scale μ2 [31] are related to the
Debye screening mass in the QGP or to the inverse nucleon
size in a nucleus.
It is customary to define the emergent saturation scale

QsðLÞ via the relation Sðx2⊥ ¼ 1=Q2
sðLÞÞ≡ e−1=4, or

equivalently, q̂ðQ2
sðLÞ; LÞL≡Q2

sðLÞ. This definition is
standard in small-x physics [34,35], and is also motivated
by Molière’s theory of multiple scatterings [33,36,37] in
which Qs is the transverse scale that controls the transition
between the multiple soft scattering and the single hard
scattering regimes. At tree level, one finds approxi-
mately Q2

s ∼ q̂0L lnðq̂0L=μ2Þ.
Beyond leading order in αs, one has to account for real

and virtual gluon fluctuations in the effective dipole with
lifetime τ smaller than the system size. Such fluctuations
yield potentially large contributions of the form q̂ð1Þ ∼
αsq̂ð0Þ ln2ðL=τ0Þ where τ0 ≪ L is a microscopic scale of
order of the mean free path [10]. These radiative corrections
to the quenching parameter can be resummed to double
logarithmic accuracy (DLA) via an evolution equation
ordered in τ [10,12,13,38]:

∂q̂ðk2⊥; τÞ
∂ ln τ

¼
Z

k2⊥

Q2
sðτÞ

dk02⊥
k02⊥

ᾱsq̂ðk02⊥; τÞ; ð3Þ

Q2
sðτÞ ¼ q̂ðQ2

sðτÞ; τÞτ; ð4Þ

where ᾱs ¼ αsNc=π. The initial condition is the tree-level
value q̂ð0Þðk2⊥; τ0Þ. The condition k2⊥ > Q2

sðτÞ in Eq. (3)
ensures that the gluon fluctuations are triggered by a single
scattering with plasma constituents whose contribution is
logarithmically enhanced compared to the multiple scatter-
ing regime for which k2⊥ ≤ Q2

sðτÞ. Once Eq. (4) is solved, τ
and k2⊥ are fixed by the external parameters L and 1=x2⊥.
In this paper, we address both analytically and numeri-

cally the nonlinear system (3) and (4) [39]. Analytic
solutions are in general difficult to obtain; however, a
solution for the linearized problem that consists in approxi-
mating Q2

sðτÞ ≃ q̂0τ for the emission phase space can be
found in Refs. [40,41]. Formally, this linearization is valid

in DLA, which captures all the terms of the form ᾱnsY2n

where Y ¼ lnðL=τ0Þ, but it misses subleading corrections
of the form ᾱnsY2n−1 ln Y which are parametrically larger
than the single logarithmic ones. This is one of the novelties
of the present study, enabling us to highlight the geometric
scaling property of transverse momentum diffusion in QCD
and to compute its scaling deviations.

III. GEOMETRIC SCALING
AND TRAVELING WAVES

The TMB distribution is said to obey geometric scaling if
it is only a function of k2⊥=Q2

sðLÞ as a result of scale
invariance of the radiative process for large L. Geometric
scaling was extensively studied in the context of deep
inelastic scattering, where it has been shown that the gluon
distribution gðx;Q2Þ at small x satisfies this property over a
broad region of photon virtuality −Q2 [42–44]. We shall
demonstrate that TMB exhibits similar properties.
More precisely, we would have

lim
L→∞

q̂ðk2⊥; LÞL ¼ Q2
sðLÞf

�
ln

k2⊥
Q2

sðLÞ
�
; ð5Þ

where f is a function to be determined. By definition we
have q̂ðQ2

s ; LÞL ¼ Q2
s , and thus, fð0Þ ¼ 1. In fact, the

nonlinearity of Eq. (3) enforces the evolution to be
controlled by a single momentum scale QsðLÞ.
Remarkably, it is possible to find the scaling function f

for the nonlinear problem defined by Eqs. (3) and (4). In
terms of the variables Y ¼ lnðL=τ0Þ and ρ ¼ lnðk2⊥=ðq̂0τ0ÞÞ,
the integral equation satisfied by q̂ reads

q̂ðρ; YÞ ¼ q̂ð0Þðρ; 0Þ þ
Z

Y

0

dY 0
Z

ρ

ρsðY 0Þ
dρ0ᾱsq̂ðρ0; Y 0Þ; ð6Þ

where ρsðYÞ ¼ lnðQ2
sðLÞ=ðq̂0τ0ÞÞ. Note that by analyzing

the support of the double integral one distinguishes two
regimes: if ρ > ρsðYÞ, or k2⊥ > Q2

sðLÞ, the upper limit of the
Y 0 integral is Y. However, when ρ ≤ ρsðYÞ, or k2⊥ ≤ Q2

sðLÞ,
the Y 0 is actually bounded by the scale YsðρÞ < Y beyond
which the ρ0 integral has no support, i.e., ρsðYsÞ≡ ρ. In that
case, q̂ðρ; YÞ ¼ q̂ðρ; YsðρÞÞ.
In terms of ρ and Y, the scaling form (5) reads

q̂ðρ; YÞ ¼ q̂0eρsðYÞ−Yfðρ − ρsðYÞÞ; ð7Þ

which we insert into Eq. (6) and differentiate twice in order
to get the second-order equation

−
dρs
dY

f00ðxÞ þ
�
dρs
dY

− 1

�
f0ðxÞ − ᾱsfðxÞ ¼ 0; ð8Þ

where x ¼ ρ − ρsðYÞ. In order for f to be a function of x
only, at large Y, the derivative dρs=dY must converge
towards a constant c, which can be interpreted as the speed
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of a traveling wave (TW) that propagates to the right on
the ρ axis. This is reminiscent of the TW solutions [17] to
the Balitsky-Kovchegov (BK) equation [45,46]. The initial
conditions set by the saturation boundary read fð0Þ ¼ 1
and f0ð0Þ ¼ ðc − 1Þ=c, the latter resulting from ∂q̂ðρs; YÞ=
∂Y ¼ 0. It is then straightforward to solve Eq. (8) with
the scaling form fðxÞ ¼ eβx where β is a solution of the
quadratic equation −cβ2 þ ðc − 1Þβ − ᾱs ¼ 0. We need
an additional condition to fully fix the value of the front
velocity. This can be done formally by requiring the scaling
violations to decay at large Y [see discussion below
Eq. (12)]. Physically, the system is driven towards a critical
(maximum) slope β ¼ βc that corresponds to a minimal
velocity that satisfies the additional constraint dc=dβ ¼ 0,
provided the initial condition satisfies q̂ð0Þðρ; 0Þe−βcρ → 0
at large ρ [18,47], which is the case in the present problem.
As a result we obtain for the minimal velocity c ¼ 1þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ᾱs þ ᾱ2s

p
þ 2ᾱs and the solution to Eq. (8) takes the form

fðxÞ ¼ eβxð1þ βxÞ; β≡ c − 1

2c
; ð9Þ

where we have dropped the subscript c in βc for simplicity.
Let us now specify the scaling limit for the two regimes

k2⊥ ≥ Q2
sðLÞ and k2⊥ < Q2

sðLÞ. As discussed below Eq. (6),
when k2⊥ < Q2

sðLÞ, one has q̂ðρ; YÞ ¼ q̂ðρ; YsðρÞÞ. Hence,
replacing Y by YsðρÞ in Eq. (7) and using the fact that
x ¼ ρ − ρsðYsÞ ¼ 0, we readily find q̂ðρ; YÞ ¼ q̂0eρ−YsðρÞ.
In the scaling limit, ρsðYÞ ¼ cY so YsðρÞ ¼ ρ=c, leading to
q̂ðρ; YÞ ¼ q̂0e2βρ for ρ < ρsðYÞ. In terms of the physical
variables the k2⊥ dependence of q̂ that enters the broadening
distribution reads, in the large-L limit,

q̂ðk2⊥; LÞL
Q2

sðLÞ
¼

8>>><
>>>:

�
k2⊥

Q2
sðLÞ

�
2β

if k2⊥ ≤ Q2
sðLÞ;�

k2⊥
Q2

sðLÞ
�
β
h
1þ β ln

�
k2⊥

Q2
sðLÞ

�i
otherwise;

ð10Þ

which is continuous and derivable everywhere. Note that
for αs ≪ 1, β ≃

ffiffiffiffiffi
ᾱs

p
.

To make the interpretation of these results in terms of
TWs more transparent we insert Eq. (10) into Sðx⊥Þ and
plot the result in Fig. 1 for several values of L. We see that
the TW propagates from right to left (from large to small
xT) with increasing L. However, once plotted in terms
of x2TQ

2
s as shown in the inset of Fig. 1, they all lie

approximately on the same universal curve given by
Eqs. (1)–(10). The observed deviations will be discussed
in what follows.
We turn now to the calculation of the subasymptotic

corrections to the geometric scaling solution (10). Near the
wave front, typically for x ≫ 1, we can look for a solution
of the form

q̂ðρ; YÞ ¼ q̂0eρsðYÞ−YeβxYαG

�
x
Yα

�
; ð11Þ

ρsðYÞ ¼ cY þ b lnðYÞ; ð12Þ
inspired by the TW ansatz that solves the BK equation
[17,48,49] and more generally Fisher-Kolmogorov-
Petrovsky-Piskunov (FKPP)-like equations [50,51]. Plug-
ging this ansatz into Eq. (6), one gets a differential
equation for GðzÞ. Because the coefficient of Y and Yα

(assuming α > 0) in this equation must vanish, we
recover the two previous constraints that fix the values of
c and β. Then, neglecting the power-suppressed terms Y−1

and Y−α−1, one finds −cY−αG00ðzÞ − βαzYα−1G0ðzÞ þ
βð−bβ þ bþ αÞYα−1GðzÞ ¼ 0. The homogeneity condi-
tion implies that the coefficient α must be equal to 1=2 so
that the deviation from the scaling form near the wave front
grows in a diffusive way as Y increases.
The differential equation for G is solved with the initial

condition GðzÞ ∼ βz at small z, in order to match with the
scaling limit f. Similarly to the FKPP or BK equations, the
boundary conditions at z ¼ ∞ [52] constrain the value of
the coefficient b to be [18,47,48]

b ¼ −
3

2ð1 − βÞ : ð13Þ

This yields the solution

Gðz ¼ x=
ffiffiffiffi
Y

p
Þ ¼ βz exp

�
−
βz2

4c

�
: ð14Þ

The value of b we extract from this analysis is novel and
a consequence of the nonlinearity of the saturation boun-
dary. In the linearized problem with the lower bound in
the integral of Eq. (6) set to Y instead of ρsðYÞ, one gets

FIG. 1. Dipole scattering amplitude as a function of the trans-
verse dipole size squared x2T for several values of the medium
size. The inset shows the same curves as a function of the scaling
variable x2TQ

2
sðLÞ compared to the geometric scaling solution

(dashed black).
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b ¼ −3=2 [40], whereas in the nonlinear case, we have
b ≃ −3=2ð1þ ffiffiffiffiffi

ᾱs
p Þ for αs ≪ 1. The subleading term

provides a correction to the saturation line which is para-
metrically of order

ffiffiffiffiffi
ᾱs

p
ln Y and therefore dominates over

the single logarithmic corrections of order ᾱsY ∼
ffiffiffiffiffi
ᾱs

p
since

in DLA Y ∼ 1=
ffiffiffiffiffi
ᾱs

p
≫ 1.

The TW solution (14) provides the functional form of
q̂ðρ; YÞ near the wave front, i.e., for x ¼ ρ − ρsðYÞ ∼ffiffiffiffi
Y

p
≫ 1 and fixes the value of the coefficient b in

the asymptotic expansion of ρsðYÞ. For small values of
x, one can find the scaling deviations by looking for a
solution as a power series in 1=

ffiffiffiffi
Y

p
of the form q̂ðρ; YÞ ¼

q̂0eρsðYÞ−Yeβx
P

n≥0 Y
−n=2HnðxÞ [18]. Plugging this form

into Eq. (6) gives second-order differential equations for
H1ðxÞ and H2ðxÞ, whose initial conditions are constrained
by the definition of Qs. The solutions to these equations
read H1ðxÞ ¼ 0 and H2ðxÞ ¼ bx=c2½1þ ðc − 1Þðcþ 3Þ=
ð8cÞxþ ðc − 1Þ2ð1þ cÞ=ð48c2Þx2� [39]. The last term in
this expression is included in the solution (14), as can be
checked by expanding the function G for large Y, but not
the first two since Eq. (14) is only valid at large x.
Combining the scaling limit with its deviation provided
by the function G for x ∼

ffiffiffiffi
Y

p
and H2ðxÞ for all x up to

powers of Y−3=2, our final result reads

q̂ðk2⊥; LÞL
Q2

sðLÞ
¼ exp

�
βx −

βx2

4cY

��
1þ βx

þ bx
c2Y

�
1þ βðcþ 4Þx

6

�
þOðY−3=2Þ

�
; ð15Þ

with x ¼ lnðk2⊥=Q2
sðLÞÞ, Y ¼ lnðL=τ0Þ, and lnðQ2

sðLÞ=
ðq̂0τ0ÞÞ given by Eq. (12).
This solution is independent of the initial condition (for

physically relevant ones), and only depends on the value of ᾱs
via the coefficients c, β and b. The resummed TMB distri-
bution displays a universal behavior independent of the
nonperturbative modeling of the tree-level distribution often
used as an initial condition for nonlinear small-x evolution
[53,54]. It can therefore provide a model-independent func-
tional form for the initial condition of the BK equation,
that includes gluon fluctuations enhanced by double logs,
ᾱs ln2 A1=3, inside the nucleus target to all orders.

IV. SUPER-DIFFUSION AND MODIFICATION
OF RUTHERFORD SCATTERING

In this section, we investigate the physical consequences
of the scaling solution (10) for q̂ðk2⊥; LÞ on the TMB
distribution given by Eq. (1), in particular at large kT , where
the distribution is characterized by rare events that are
sensitive to the point-like nature of the medium scattering
centers [55,56]. In Fig. 2, we plot the TMB distribution
Pðk⊥Þ as a function of kT=QsðLÞ with Y ¼ lnðL=τ0Þ ¼ 4,
for the following setups: (i) tree level, in dash-dotted grey,
(ii) after quantum evolution obtained by solving Eq. (4)

numerically, in red, (iii) in blue, using the expression (15)
that includes subasymptotic corrections to the scaling limit,
and (iv) finally, in dashed black, the scaling limit Y → ∞ of
Eq. (15). Interestingly, the universal subasymptotic correc-
tions account for the relatively large deviations between
the asymptotic curve and the exact numerical result at the
moderate value of L ¼ 6 fm.
The kT distribution exhibits two different regimes: the

region of the peak, near QsðLÞ and the large-kT tail, with
kT ≫ QsðLÞ. These results can be interpreted in terms of a
special kind of random walk (here in momentum space)
called Lévy flight. Such a remarkable connection with
statistical physics enables us to highlight some interesting
features: (i) self-similar dynamics, (ii) super-diffusion, and
(iii) a power-law tail with slower decay than the Rutherford
k−4⊥ behavior seen at tree level.
In order to further the connection with the physics

of anomalous diffusion, consider the scaling limit of the
TMB distribution in the vicinity of the peak where
the shape of the distribution is controlled by the first
line in Eq. (10). Using this solution, one finds that
Sðx⊥Þ ≃ exp ½− 1

4
CR
Nc

ðjx⊥jQsÞ2−4β�. In momentum space, it
implies that the distribution Pðk⊥Þ satisfies a generalized
Fokker-Planck equation, ∂P=∂L ∝ −ð−ΔÞ1−2βP, where the
so-called fractional Laplace operator ð−ΔÞγ=2 is defined by
its Fourier transform jx⊥jγ [57,58]. This fractional diffusion
equation (without external potential) is satisfied by the
probability density for the position of a particle undergoing
a Lévy flight process in two dimensions [59] with stability
index γ ¼ 2–4β ≃ 2 − 4

ffiffiffiffiffi
αs

p þOðαsÞ.
Because of its heavy tail (to be discussed thereafter),

the mean k2T of the TMB distribution is not defined.

FIG. 2. TMB distribution of a high-energy gluon propagating
though a dense medium of size L at tree level (dotted line) and
after resummation of the leading radiative corrections (solid
red).The dashed black line is the scaling limit when L → ∞ and
the blue curve is our analytic result given by Eq. (15) including
subasymptotic corrections.

PAUL CAUCAL and YACINE MEHTAR-TANI PHYS. REV. D 106, L051501 (2022)

L051501-4



Nevertheless, it is possible to introduce a measure of the
characteristic width of the kT distribution, and study its
behavior as a function of the medium size L. In what
follows, we shall use the median value hkTimed of kTPðkTÞ
which is shown in Fig. 3 for three different scenarios. The
grey dotted curve, shows the tree-level result. In this case,
the median scales approximately like ðL ln LÞ1=2, which up
to the logarithmic factor resulting from the Coulomb
logarithm in the initial condition, exhibits the standard
diffusion scaling. The red line is the median of the kT
distribution obtained using the resummed value of q̂ with
fixed coupling, after numerical resolution of Eq. (4). We
then compare this result with our analytic prediction (12)

(assuming hkTimed ∝ Qs [60]), hkTimed ∝ L
c
2
þb

2

lnðYÞ
Y , which is

represented in blue in Fig. 3. Remarkably, the agreement is
excellent down to rather small values of L ∼ 3 fm. We have
also checked that our asymptotic expansion for ρs matches
the numerical simulations down to Y ∼ 4 with Oð5%Þ
accuracy. Since c=2 > 1=2, the median grows faster thanffiffiffiffi
L

p
at large L, illustrating the super-diffusive behavior of

TMB beyond leading order, with a deviation to the standard
diffusion of order

ffiffiffiffiffi
ᾱs

p
.

Another important aspect of Lévy flights is the power-
law decay of the step-length distribution for a Lévy walker
[61,62]. This reflects the fact that long jumps with arbitrary
length may occur with non-negligible probability. In the
problem at hand, this power-law tail can also be understood
as a consequence of the self-similar nature of overlapping
successive gluon fluctuations. The tail of the TMB dis-
tribution is controlled by the large-k2⊥ behavior of q̂ðk2⊥; LÞ,
and consequently, by the exponential in the second line of
Eq. (10). Note, however, that the scaling limit encompasses
two stability indices: one controlling the peak and the
median, as discussed above, and one controlling the tail of

the distribution [cf. Eq. (10)]. Without loss of generality,
one can derive the leading behavior of Pðk⊥Þ at large kT by
expanding the dipole S matrix for small dipole sizes and
then expanding the x⊥ integrant assuming lnðk2⊥=ðq̂0LÞÞ ≫
lnð1=ðx2⊥k2⊥ÞÞ ∼ 1 since x⊥ and k⊥ are conjugate to one
another and kT is large. As a result the Fourier transform
can be approximated by [39]

Pðk⊥Þ ∼
kT→∞

∇⃗2
k⊥

π

k2⊥
dq̂ðk2⊥; LÞL
d ln k2⊥

; ð16Þ

up to logarithmically suppressed terms. This formula quan-
tifies the deviations from the Rutherford scattering cross
section that are induced by radiative corrections. Applying
Eq. (16) to our scaling solution (10), one finds the tail

Pðk⊥Þ ∝
kT→∞

1

Q2
sðLÞ

�
Q2

sðLÞ
k2⊥

�
ν

; ð17Þ

with ν ¼ 2 − β þOðlnðxÞ=xÞ. The corrections to the power-
law behavior are due to the prefactor in the second line of
Eq. (10). The power of the tail deviates from the tree-level
Rutherford ν ¼ 2 behavior by ∼ − 2

ffiffiffiffiffi
ᾱs

p
. The form of ν is

correct in the strict scaling limit L → ∞. For finite L values,
the 1=k4⊥ tail is recovered at very large kT , as can be inferred
from the linearized analytic solution [40] which yields ν ¼
2 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ᾱsY=x

p
(when x ≫ Y). The fact that geometric scaling

extends into the tail region is known in the context of
saturation physics as the “extended geometric scaling win-
dow” corresponding to Qs ≪ kT ≪ Q2

s=μ.

V. SUMMARY

In summary, we have studied the transverse momentum
distribution of a high-energy parton propagating through a
dense QCD medium, including resummation of radiative
corrections within a modified double-logarithmic approxi-
mation which accounts for the nonlinear dynamics due to
multiple scatterings that restrict the phase space for
quantum fluctuations. We have found that the nonlinearity
and self-similarity of overlapping multiple gluon radiations
lead to a universal scaling limit at large system sizes, which
exhibits a super-diffusive regime and a power-law decay
akin to Lévy flights. Although at very high kT , the distri-
bution is characterized by point-like interactions of
Rutherford type, for moderately large kT we observed a
weaker power due to the nonlocal nature of the interactions
which is the hallmark of scale-invariant phenomena.
Concerning phenomenological applications, we point

out the relevance of our analytic solutions in the study of
nuclear structure at high energy as it provides a new initial
condition for nonlinear evolution of the gluon distribution.
We leave for future work the question of the experimental
detection of this emergent QCD phenomenon in heavy-ion
collisions as well as running coupling corrections which are
expected to yield mild scaling violations.

FIG. 3. System size dependence of the median of the TMB
distribution at tree level (dotted line) and after numerical
resummation of radiative corrections (red line). The dashed blue
line is our analytic prediction given by Eq. (12).
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