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In this Letter, anomaly, which is a generic feature of relativistic quantum field theory (QFT), is shown to
be present in non-relativistic classical ideal fluid. Also, in this model we have found the presence of
anomalous terms in current algebra, an obvious analogue of Schwinger terms in QFT. We work in the
Hamiltonian framework, where Eulerian dynamical variables obey an anomalous algebra (with Schwinger
terms) that is inherited from modified Poisson brackets, with Berry curvature corrections, among
Lagrangian discrete coordinates. The divergence anomaly appears in the Hamiltonian equations of
motion. A generalized form of the fluid velocity field can be identified by the “anomalous velocity” of
Bloch band electrons appearing in the quantum Hall effect in condensed matter physics. Finally, we show
that the divergence anomaly and Schwinger terms satisfy the well-known Adler consistency condition, and
we mention possible scenarios that can be impacted by this new anomalous fluid theory.
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I. INTRODUCTION

Anomaly, a generic feature of relativistic quantum field
theories (QFT), appear when classical symmetries and
(Noether) conservation laws of a classical field theory are
not preserved in their QFT counterpart (see [1]). Applying
classical equations of motion yield vector and axial vector
current conservation laws in mass-less QED, ∂μJVμ ðxÞ ¼
∂
μðψ̄ðxÞγμψðxÞÞ ¼ 0, ∂

μJAμ ðxÞ ¼ ∂
μðψ̄ðxÞγμγ5ψðxÞÞ ¼ 0,

respectively. However in QFT, one has to use regularized
composite (current) operators and finally the regularization
independent conservation equations can getmodified giving
rise to anomalies. In massless QED, one can choose to
preserve charge conservation on physical grounds,
∂
μJVμ ¼ 0, and in the process break the axial current
conservation law, ∂μJAμ ¼ ðe2=4π2ÞE:B, (E, B the electric
and magnetic fields), generating the Adler Bell Jackiw
anomaly [2]. Another crucial aspect of QFT is the current
algebra (see, for example, Ref. [3]), where certain equal-
time commutation relations among current density operators
define an infinite-dimensional Lie algebra. Originally pro-
posed by Gell-Mann to describe strongly interacting hadron
physics, the current algebra led to the Adler-Weisberger

formula, Sugawara model, Virasoro algebra, the mathemati-
cal theory of affine Kac-Moody algebra, and nonrelativistic
current algebra in quantum and statistical physics.
Returning to the present context, anomalies can modify

the current algebra, i.e., through the introduction of
Schwinger terms [4,5], computed along similar lines as
the divergence anomaly. As proved by Adler [6] and studied
by others [7], the divergence anomaly and Schwinger terms
(or commutator anomalies) are complementary effects—the
presence of one type necessitates the existence of the other
(in fact, in 1þ 1 dimensions the Schwinger terms can
uniquely yield the divergence anomaly [7])—and the
anomalous extensions have to obey the Adler [6] consis-
tency condition. This will play a major role in our work.
In recent years, the divergence anomaly has generated a

huge amount of interest in an unexpected scenario—the
hydrodynamic regimeof nonrelativistic classical field theory.
The effect of anomalous current algebra onRaman scattering
inMott insulators was studied in Ref. [8]. Son and Spivak [9]
have shown that the large classical negative magnetoresist-
ance of Weyl metals is connected to the triangle anomaly in
the classical regime where the mean free path of the electron
is short compared to the magnetic length. Further works in
related areas are Refs. [10,11]. Further studies include
quantum anomalies for global currents in hydrodynamic
limit [10] and gauge anomalies in hydrodynamics in a
Hamiltonian framework [11]. After reporting our results [12]
we noted that [13] discusses divergence anomaly in classical
fluid. Surprisingly there are no attempts to derive the
divergence anomaly from first principles. Also Schwinger
terms does not appear in recent works.
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II. SIGNIFICANCE AND NEW RESULTS
OF OUR WORK

In this articlewewill shed some light on the twountouched
problems mentioned above in the following format:
(1) First principle derivation of anomalous current alge-

bra (∼ Schwinger terms) in classical fluid dynamics.
(2) Derivation of the classic chiral anomaly form e2E:B

in the helicity conservation equation using the
above-mentioned Schwinger terms.

(3) Establishing an analogy between the generalized
velocity field defined here and the well-known
“anomalous velocity” appearing in condensed mat-
ter physics [14].

(4) Schwinger terms and the divergence anomaly satisfy-
ing the Adler consistency condition [6].

(5) Construction of Casimir operators (in the weak field
approximation) in the anomalous system via the
Darboux prescription.

(6) Topical interest of the work: In our work, Schwinger
(or anomalous) terms in algebra among dynamical
variables play the primary role and divergence
anomaly appears naturally as a derived quantity.
We develop the anomalous fluid model systemati-
cally inHamiltonian formalism in Eulerian approach.

The quantum input comes from a basic generalized Poisson
bracket structure satisfied by the discrete (Lagrangian) fluid
particle coordinates. This phase space characterizes the
semiclassical electron dynamics in a magnetic Bloch band
in the presence of a periodic potential with an external
magnetic field and Berry curvature [15–18]. Berry curvature
and an induced magnetic field in momentum space are
responsible for the anomalous velocity in the quantum Hall
effect [14]. Electron hydrodynamics in condensed matter,
i.e., situations where electron flow is influenced by hydro-
dynamic laws instead of being fully was studied in old [19].
In normal circumstances, electrons in metals behave as a
nearly free Fermi gas since the effective mean free path for
electron-electron collision is quite large, allowing impurities
and lattice thermal vibrations (phonons) to destroy a collec-
tive viscous fluidlike electronmotion. But, in recent years the
hydrodynamic regime has been achieved in extremely pure,
high quality, electronic materials—especially graphene [20],
layered materials with very high electrical conductivity such
as metallic delafossites PdCoO2 and PtCoO2 [21], among
others.
We exploit the well-known map (constitutive relation) that

expresses the continuous Euler fluid variables in terms of the
discrete Lagrangian particle coordinates. Through this map
the fluid field algebra inherits the Schwinger terms from the
quantum corrected Poisson brackets of Lagrangian coordi-
nates. Divergence anomaly follows from Hamiltonian equa-
tions of motion. The sequence of our scheme is as follows:
generalized phase-space algebra with Berry curvature correc-
tions [15,16,18]→ (via constitutive relations) extended fluid
variable algebra→ extended fluid equations with divergence

anomaly and Schwinger terms → the consistency condition
connecting the divergence anomaly and Schwinger terms.

III. DERIVATION OF ANOMALOUS FLUID
ALGEBRA (SCHWINGER TERMS)

Berry phase corrected (∼ anomalous or noncommuta-
tive) phase-space algebra of the degrees of freedom (d.o.f.),
XjðxÞ, PjðxÞ ¼ M _XjðxÞ (M being the point particle mass),
is identified with discrete particle phase-space coordinates
[15–18],

fXiðxÞ; Xjðx0Þg ¼ −
1

ρ0
ϵijkF kδðx − x0Þ; fXiðxÞ; Pjðx0Þg

¼ Mðδij þ eBiΩjÞ
ρ0A

δðx − x0Þ;

fPiðxÞ; Pjðx0Þg ¼ e
ϵijkM2Bk

ρ0A
δðx − x0Þ ð1Þ

F iðx;kÞ¼
Ωi

1þeBðxÞ:ΩðkÞ ; Aðx;kÞ¼1þeBðxÞ:ΩðkÞ:

In the above Lagrangian d.o.f., XðnÞi; PðnÞi, the discrete
particle index n is replaced by x in the continuum limit.
The parameters are; ρ0 for proper dimension, e≡ electronic
charge, B≡ external magnetic field, WΩðkÞ ¼ ∇k ×
AðkÞ≡ Berry curvature in momentum space. For
Ω ¼ 0;B ¼ 0, one recovers the canonical Poisson brackets.
Ω appears as a result of electron motion in a periodic lattice
potential. These are equal time brackets.
In general P and k (the crystal momentum) are related

but as in [22], in a toy model Ω can be constant. In realistic
models Ω is ∼ðlattice constantÞ2 [22]. We will restrict Ω
to be independent of dynamical variables. At the end we
will comment on some other non-trivial possibilities.
Since M is a constant parameter, we will drop it to

express formally the above brackets (1) using XiðxÞ, _XiðxÞ.
Euler variables density ρðrÞ and velocity fields viðrÞ are
defined as [23],

ρðrÞ ¼ ρ0

Z
dxδðXðxÞ − rÞ;

viðrÞ ¼
R
dx _XiðxÞδðXðxÞ − rÞR

dxδðXðxÞ − rÞ : ð2Þ

ji ¼ ρvi constitutes the momentum density of the fluid.
Even though we are not considering relativistic fluid
dynamics and our system is non-dissipative, note that this
definition pertains to the Landau frame where jiðr⃗; tÞ refers
to the values at a fixed spacetime position r⃗; t. The Landau
frame is chosen in the direction of the total energy where
the directions of the eigenvector of the energy-momentum
tensor and the conserved current match. This is generally
true in nonrelativistic hydrodynamic flow, defined as a
local particle flux.
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Using Eq. (1) it is straightforward to compute the
anomalous fluid brackets,

fρðrÞ; ρðr0Þg ¼ ϵijk∂
r
i ðρðrÞF kðrÞÞ∂rjδðr − r0Þ; ð3Þ

fρðrÞ; viðr0Þg ¼ ∂
r
iδðr − r0Þ
Aðr0Þ þ eBjðr0ÞF iðr0Þ∂rjδðr − r0Þ

þ ϵljkF lðr0Þ∂r0j vi∂rkδðr − r0Þ; ð4Þ

fviðrÞ; vjðr0Þg ¼
�
∂jvi − ∂ivj
ρAðrÞ þ eϵijk

BkðrÞ
ρAðrÞ

−
eBlðrÞ

ρ
ðF iðrÞ∂lvj−F jðrÞ∂lviÞ−2ϵlmn

vi
ρ2
∂mvj∂lðF nðrÞρÞ

−ϵlmn
1

ρ
∂nvi∂mvjF lðrÞ−2ϵlmn

∂mρ

ρ2
∂nðvivjÞF lðrÞ

�
δðr−r0Þ

þ2ϵlmn
∂
r
mδðr−r0Þ
ρðrÞ ∂

r
nðvivjÞF lðrÞ: ð5Þ

Clearly the Ω-dependent terms are Schwinger terms.
We stress, although Berry curvature Ω behaves as an
effective magnetic field, its effect is distinct from external
magnetic field B. Also, note that this anomalous fluid
algebra is different from the general structure derived from
the results in Ref. [24], where B, E are nonvanishing but
Ω ¼ 0. Our algebra matches with the brackets in Ref. [11]
for Ω ¼ 0. We emphasize that even if the (canonical)
vorticity ωij ¼ ∂ivj − ∂jvi vanishes, the effective vorticity
can reappear anomalously, as seen in Eq. (5). Similar types
of extended fluid brackets in different contexts have
appeared in Ref. [25]. The canonical brackets for
ρc; vðcÞi are recovered for B ¼ Ω ¼ 0,

fρcðrÞ; ρcðr0Þg ¼ 0; fρcðrÞ; vðcÞiðr0Þg ¼ ∂
r
iδðr − r0Þ;

fvðcÞiðrÞ; vðcÞjðr0Þg ¼ −
ð∂ivðcÞj − ∂jvðcÞiÞ

ρc
δðr − r0Þ: ð6Þ

The anomalous fluid algebra in Eqs. (3)–(5) constitutes
the first part of our work.
ji ¼ ρvi, the momentum density, acts as translation

generator for B ¼ 0, as shown below for arbitrary functions
αðρÞ, AlðviÞ (computational details are in Supplementary
Material [26]):

�
αðρðxÞÞ;

Z
d3yρvl

�
¼ dα

dρ
∂lρ ¼ ∂lαðρðxÞÞ; ð7Þ

�
AlðviðxÞÞ;

Z
d3yρvj

�
¼ dAl

dvi
∂jvi ¼ ∂jAlðyÞ: ð8Þ

IV. CONSERVATION LAW
AND HELICITY ANOMALY

For a barometric fluid Hamiltonian (pressure P ¼
ρðdVÞ=ðdρÞ − V depending only on density ρ)

H0 ¼
Z

dx

�
1

2
ρv2 þ VðρÞ

�
ð9Þ

and the brackets in Eq. (6), the canonical continuity and
Euler equations are obtained as

_ρðxÞ ¼ fρðxÞ;H0g ¼ −∇ðρvÞ;
_vðxÞ ¼ fvðxÞ;H0g ¼ −ðv:∇Þv −∇P

ρ
: ð10Þ

The fluid Hamiltonian in the external electromagnetic field
is given by

H ¼
Z

dx

�
1

2
ρv2 þ VðρÞ − eρΦ

�
ð11Þ

where the electric field is E ¼ −∇Φ in a time-independent
scenario. The effect of magnetic field B has already been
taken into account through the extended symplectic struc-
ture (3)–(5). The continuity equation is modified as

_ρþ∇:Jan ¼ eρF :ð∇ ×EÞ ð12Þ
where the anomalous current Jan is

Jan ¼
�
ρv
A

�
þeρðF :vÞBþeρðE×F ÞþF ×∇P: ð13Þ

However, in the present time-independent case, the con-
servation law _ρþ∇:Jan ¼ 0 survives, albeit with an
anomalous current since now Maxwell’s equation yields
∇ ×E ¼ −ð∂BÞ=∂t ¼ 0.
The anomalous Euler equation is derived as

_vþðv:∇Þv
A

¼−
∇P
ρA

þe
ρv×B
ρA

−e
B:∇P
ρ

F −eðv:F ÞðB:∇Þvþ
��∇P

ρ
×F

�
:∇

−
1

ρ
∇v2:

�
∇× ðFρÞÞþ2v2

�
F ×

∇ρ
ρ

�
:∇−F :

�∇ρ
ρ

×∇v2
���

v−e

�
E
A
þeðE:BÞF − ðE×F Þ:∇v

�
: ð14Þ

We stress that in RHS of (14), e2ðE:BÞF has the classic chiral anomaly form. In Newtonian fluid, an important pseudo-
scalar quantity, helicity Σ ¼ R

dx h ¼ R
dx v:ω, with ω ¼ ∇ × v being vorticity, is conserved. Time-evolution of h is

_h ¼ _v:ωþ v: _ω ¼ −∇:ðv × _vÞ þ 2_v:ω: ð15Þ
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The divergence term will not contribute in Σ and using (14)
we find

_h=2 ¼ −e2ðE:BÞðω:F Þ − e
ðω:EÞ
A

− e
ðB:∇PÞ

ρ
ðω:F Þ

− e
ω:ðv ×BÞ

A
− eðv:F Þ½ω:ðB:∇Þv�

þ Ψhþ ω:½F :ðC ×∇Þ�v ð16Þ

Ψ ¼ −∇v2:ð∇ × F Þ þ∇v2:

�
F ×

∇ρ

ρ

�
;

C ¼ −
∇P
ρ

þ∇v2 − eE:

We consider special cases: (a) In a low energy regime,
we keep only first three OðvÞ terms in RHS and ignore
higher order terms. (b) Consider pressure P ¼ 0.
(c) Rewrite ω:E ¼ ð∇ × vÞ:E ¼ ∇:ðv ×EÞ þ v:ð∇ ×EÞ.
For time independent external E, B, ∇ ×E ¼ 0 and only
the chiral anomaly term survives,

_Σ ¼ −2e2ðE:BÞ
Z

dXðω:F Þ: ð17Þ

This is the cherished form of the anomaly in Eulerian fluid
(in the low energy limit), and constitutes our principal
result.

V. ANALOGY BETWEEN GENERALIZED AND
“ANOMALOUS” VELOCITY [14–16,18]

Let us rewrite Jan from Eq. (13) in a more suggestive
form as

Jan ¼
�

ρ

1þ eB:Ω

�
ðv þ eρðΩ:vÞBþ eρðE ×ΩÞ

þ
�

Ω
1þ eB:Ω

�
×∇P: ð18Þ

Keeping terms of OðeÞ only, we write Jan ≈ ρvgen where,
ignoring the pressure term, the generalized velocity is

vgen ¼ ð1 − eB:ΩÞv þ eρðΩ:vÞBþ eρðE ×ΩÞ: ð19Þ
On the other hand, following Refs. [14–16,18], from the

Bloch electron dynamics in a magnetic band, with ϵnðkÞ
being the nth band energy,

_r ¼ ∂ϵnðkÞ
∂k

− _k ×Ω; _k ¼ −eE − e_r ×B; ð20Þ

we obtain

_r ¼ ∂ϵnðkÞ
∂k

þ eE ×Ωþ eð_r ×BÞ ×Ω; ð21Þ

where _r in Eq. (21) is referred as the anomalous velocity
[14–16,18]. Note that the e-dependent terms in Eqs. (19)
and (21) are identical. This matching clearly shows that the

anomaly inherited by the ideal classical fluid (from the
Bloch band electron dynamics) has a deeper significance.
This will be further strengthened in the next section where
we prove consistency of the full anomalous structure
developed in this Letter.

VI. CONSISTENCY CONDITION
INVOLVING DIVERGENCE ANOMALY

AND SCHWINGER TERM

In this section we restrict ourselves to constant external
fields E, B, Ω, but the results can easily be extended to
nonconstant external fields. Let us rewrite Eqs. (12), (3),
and (4) schematically as

_ρþ∇:Jan ¼ 0; ð22Þ
fρðrÞ;ρðr0Þg¼Sðr;r0Þ; fρðrÞ;Jani ðr0Þg¼Siðr;r0Þ: ð23Þ
Taking the time derivative of both sides of the generic

bracket fρ; ρg ¼ S equation in Eq. (23), we get

∂0fρðrÞ; ρðr0Þg ¼ f∂0ρðrÞ; ρðr0Þg þ fρðrÞ; ∂0ρðr0Þg
¼ ∂0Sðr; r0Þ: ð24Þ

Using the bracket in Eq. (3), the rhs of Eq. (24) is given by

∂0Sðr; r0Þ ¼ ∂
r
jðϵijkF k∂ið_ρÞδðr − r0ÞÞ

¼ −∂rjðϵijkF k∂ið∂lJanl Þδðr − r0ÞÞ ð25Þ
where Janl is given by Eq. (13). In the lhs of Eq. (24), we
have

f∂0ρðrÞ; ρðr0Þg þ fρðrÞ; ∂0ρðr0Þg
¼ −f∂iJani ðrÞ; ρðr0Þg − fρðrÞ; ∂iJani ðr0Þg: ð26Þ

Again substituting Jani from Eq. (13) and computing each
bracket from the full bracket structure in the Supplemental
Material (1,2,3) [26], after a long algebra we recover
Eq. (25), thereby ensuring that the consistency condition
is satisfied.

VII. DARBOUX TRANSFORMATION
AND CASIMIR OPERATORS

As shown here, the anomalous fluid being an extension
of the canonical Hamiltonian fluid, we now construct
extensions of the two Casimirs of the latter, total ρ-charge
and h-helicity, (arising from relabeling symmetry in Euler
formulation for fluids), in anomalous fluid. From Darboux
theorem it is possible (at least locally) to construct
combinations of noncanonical variables that behave
canonically. Instead of working directly with the continu-
ous fluid variables, it is easier to construct the Darboux map
in the discrete noncommutative variables (1) where the
following combinations are canonical, up to OðeE; eB;ΩÞ
for simplicity with fqi; qjg ¼ fpi; pjg ¼ 0; fqi; pjg ¼ δij
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Xi¼ qiþ
1

2M
ϵijkpjΩk; Pi ¼piþ

eM
2

ϵilkqlBk; ð27Þ

from definition of fluid variables in terms of discrete
degrees of freedom (2), we generate the combinations of
anomalous variables that behave canonically (subject to the
approximation mentioned above):

ρcðrÞ ¼ ρðrÞ − 1

2
ϵijkΩk∂ijjðrÞ; ð28Þ

jðcÞiðrÞ ¼ jiðrÞ − ρ0

Z
dx

�
1

2
ϵljkΩk

_Xi
_Xj ∂

r
lδðXðxÞ − rÞ

−
e
2
ϵilkXlBkδðXðxÞ − rÞ

�
: ð29Þ

We derive the map between ρc; vðiÞc and its anomalous
counterpart ρ; vðiÞ and construct the Casimir operators in
anomalous phase space. In (28)we have one of the cherished
Casimirs ρc and the other Casimir, i.e. helicity can in
principle be constructed using (28), (29). Note that rhs of
(29) is not closing in terms of ρ, ji, and higher moments
come into play due to the essential nonlinearity in themodel.

VIII. NONTRIVIAL FORMS OF Ω

Besides the constant form used here, there are nontrivial
forms of Ω that are of topical interest in condensed matter
physics, such as

(i) Anomalous Hall Effect [14,27] in metallic ferromag-
nets, in the semiclassical framework, induces an
anomalous velocity contribution to the Bloch
wave-packet group velocity, generated by momen-
tum-space Berry curvatures. In this case, the anoma-
lousHall conductivity σij ¼ −ϵijl e

2

ℏ Ω
l consists of the

Berry phase Ω a linear combination of reciprocal
lattice vectors G. Here, our formalism can be carried
through by simply substituting the explicit expres-
sion for Ω in density (ρ) and current (ji) operators.

(ii) Another well-known example of a nontrivial Berry
phase is inWeyl semimetals [28]:Ωi ¼ �pi=ð2jpj3Þ.
AWeyl semimetal is a 3D crystal whose low energy
excitations are Weyl fermions. The Berry curvature
monopoles are located at Weyl points in the Brillouin
zone. Unfortunately, a naive adaptation of our for-
malism for this particular case might be computa-
tionally problematic due to thepresenceofvi in the rhs
of the anomalous brackets in Eqs. (3)–(5).

IX. DISCUSSION

In this paper, we have developed an extended classical
fluid model, incorporating Berry phase effects, that gen-
erates a divergence anomaly ∼e2E:B (having the form of
the Adler-Bell-Jackiw chiral anomaly) in the helicity
conservation equation. We have shown a direct analogy
between the generalized fluid velocity field defined here
and the well-known anomalous velocity appearing in the

quantum Hall effect in condensed matter physics. The
overall validity of the entire anomalous structure is dem-
onstrated by satisfying the Adler consistency condition. We
have developed a systematic program to construct the
Casimir operators for the anomalous fluid model. Lastly,
we have discussed the applicability of our scheme in some
specific Berry curvature structures that are of interest in
condensed matter physics.
Our approach is semiclassical, and we have constructed

the anomalous fluid bracket structure based on Poisson
brackets augmented with the (quantum mechanical) Berry
phase effect. The latter is applicable for electrons moving in
magnetic Bloch bands. Hence, our anomalous fluid model
can have relevance in hydrodynamic equations describing
electron gas models subject to spin-orbit-like interactions in
condensed matter systems, such as graphene [29]. In
condensed matter systems in a semiclassical framework,
transport is studied through the Boltzmann equation involv-
ing the distribution function fðx;p; tÞ, and the density
function appearing here is ρðx; tÞ ¼ R

mf dv. Thus, the
anomalous equations revealed here will alter the Boltzmann
equation. Electron transport in Bloch bands in the hydro-
dynamic limit are given by Eulerian fluid equations, which
should bemodified appropriately. An interesting recent case
is Ref. [30], where the transport of collective excitations,
named chiral Berry plasmons, in the hydrodynamic limit is
studied in generic interacting metallic systems with nonzero
Berry flux. InRef. [31], chiral liquids, consisting of right-left
asymmetric massless fermions, are considered, where the
electromagnetic current in the presence of an external
magnetic field will carry a chiral anomaly.
Previously, Oðℏ2Þ corrections were introduced in

classical fluid equations [32] from a moment expansion
of the Wigner-Boltzmann equation. Interestingly, in the
present work, the Berry curvature plays an essential role in
inducing the OðℏÞ correction. This can be seen by
comparing a classical model Lagrangian

L ¼ 1

2
mv2 − eΦþ eA:v; ð30Þ

with e dimensionless, and ½B� ¼ M
t ; ½E� ¼ ML

t2 , and the
definitions of Lorentz force and electromagnetic fields,
respectively,

F¼ νðEþ v×BÞ; E¼ −∇Φ−
∂A
∂t

; B¼∇×A

with a quantum Lagrangian

L ¼ ℏk_r − e_r ×Aþ ℏ_kAβ þ eΦ −W: ð31Þ

Here, ½ℏk�¼ML
t , ½AB�¼L, ½F �¼ L

ML
t
¼ t

M, with ½B:Ω� being
dimensionless. In the above equation, AB is the Berry
potential andΩ¼∇p×AB the Berry curvature. Coming back
to the fluid variables, the dimensions are ½ρ�¼M

L3, ½v� ¼ L
t .
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Presence of chiral anomaly in a generalized helicity
conservation equation has been shown in [13]. The
framework is entirely different from ours as seen in
the difference between explicit anomaly equations. In
Ref. [13], the anomaly appears to be induced as a
noninertial effect. But we have followed throughout a
systematic Hamiltonian approach from first principles,
starting from a semiclassical Poisson algebra with Berry
phase corrections that induces a generalized (anomalous)
fluid algebra. Subsequently, the Hamiltonian equations

of motion yield the generalized continuity and Euler
equations leading to the anomaly. Furthermore, current
algebra and Schwinger terms do not play any role in
Ref. [13].
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