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In the framework of gravothermal evolution of an ideal monatomic fluid, I examine the dynamical
instability of the fluid sphere in (N þ 1) dimensions by exploiting Chandrasekhar’s criterion to each
quasistatic equilibrium along the sequence of the evolution. Once the instability is triggered, it would
probably collapse into a black hole if no other interaction halts the process. From this viewpoint, the
privilege of (3þ 1)-dimensional spacetime is manifest, as it is the marginal dimensionality in which the
ideal monatomic fluid is stable but not too stable. Moreover, it is the unique dimensionality that allows
stable hydrostatic equilibrium with positive cosmological constant. While all higher dimensional (N > 3)
spheres are genuinely unstable. In contrast, in (2þ 1)-dimensional spacetime it is too stable either in the
context of Newton’s theory of gravity or Einstein’s general relativity. It is well known that the role of
negative cosmological constant is crucial to have the Bañados-Teitelboim-Zanelli (BTZ) black hole
solution and the equilibrium configurations of a fluid disk. Owing to the negativeness of the cosmological
constant, there is no unstable configuration for a homogeneous fluid disk to collapse into a naked
singularity, which supports the cosmic censorship conjecture. However, BTZ holes of mass MBTZ > 0

could emerge from collapsing fluid disks. The implications of spacetime dimensionality are briefly
discussed.
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I. INTRODUCTION

Black holes (BHs) are the most profound prediction of
Einstein’s general relativity (GR), though their existence is
questionable in the early days. Oppenheimer and Snyder
[1] first demonstrated the dynamical process of forming a
BH from dust collapse, and the spacetime singularity is
inevitable. However, the idealized collapsing process of
spherical symmetry might be unrealistic. Until 1965,
Penrose showed [2] mathematically that whenever matter
satisfies reasonable energy conditions, a BH is a generic
consequence of GR regardless of spherical symmetry. In
astrophysics, a BH is the end state of a conventional star
running out of fuel. But it could also emerge from the direct
collapse of clouds of gas without igniting a nuclear
reaction.
In the context of Newtonian gravity (NG), the self-

gravitating ideal monatomic fluid is too stable [3]. The
pressure always counteracts gravitational attraction and
stabilizes the fluid. In GR, the pressure in the fluid is a
double-edged sword. Because not only the energy density
but also the pressure is sourcing gravity, once the pressure
starts to dominate energy density at some point, it will
destabilize the fluid. This is why the instability and collapse
into BHs from a fluid can happen in the framework of GR.
All of the above concern BHs in (3þ 1)-dimensional

spacetime. Of course, there is nothing to hinder theorists
from considering BHs in (N þ 1) dimensions with N ≠ 3.
BHs in higher dimensions have been studied thoroughly in
the literature [4–6]. Although the stability of a fluid sphere
and its dimensional constraint has been explored somewhat
[7], less investigated is the instability condition of the
higher-dimensional BHs coming from collapsing fluids. As
we shall see, the ideal fluids in the context of NG are
genuinely unstable for N > 3, and the GR effect makes the
situation worse. However, the presence of cosmological
constant λ will modify the situation, in particular, λ < 0 can
stabilize the fluid sphere. We also note that the dynamical
instability of stellar equilibrium for N ¼ 3 with cosmo-
logical constant was studied to some extent in Refs. [8–10].
In lower dimensions, i.e., N ¼ 2, gravity is bizarre. The

Bañados-Teitelboim-Zanelli (BTZ) BH solution exists only
if a “negative” cosmological constant λ ¼ −1=l2 < 0 is
introduced, where l is the background radius of curvature
[11]. This can be understood from the unit of Newton’s
constant in (N þ 1) dimensions: ½GN � ¼ ½M�−1½L�N ½T�−2.
For N ¼ 2, setting c ¼ 1 determines the fundamental
“mass scale” in terms of the Newton’s constant G2, but
the fundamental “length scale” cannot be settled down.
Thus an independent length scale l ¼ ð−λÞ−1=2 must be
introduced independently. Moreover, the negativeness of λ
permits the BH solution [12]. In addition, there is no
Newtonian limit in (2þ 1) dimensions. Gravity has no
local degrees of freedom (locally flat), thus no gravitational*wfeng016@ucr.edu
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wave (or graviton) can propagate. This reflects the fact that
static particles do not gravitate [13–15]. In contrast, the
collective behavior of thermal particles will gravitate and
demand the fluid description under its self-gravity. Crucially,
λ < 0 is also to guarantee the hydrostatic equilibrium (the
pressure is monotonically decreasing) [16].
The basic mechanism of hierarchical structure formation

(stars, galaxies, halos, etc.) relies on the Jeans instability
[17], which determines the largest mass (Jeans mass, also
called Bonnor-Ebert mass [18,19]) of an isothermal gas
sphere can still remain in hydrostatic equilibrium. For the
gas sphere heavier than this, it will further collapse or
fragment into smaller and denser objects [20]. Then it
transitions into gravothermal evolution. As a gravitationally
bound system, it gets hotter and hotter as it releases thermal
energy through dissipation [21–23]. If the mass sphere is
sufficiently heavy (≳106 M⊙), this process will persist
without triggering the thermonuclear sources of energy,
while it behaves as a “supermassive star.” Nevertheless,
the gravothermal evolution will end eventually and probably
collapse into a BH once relativistic instability is triggered
[24]. It serves as the prototype of supermassive BHs from
direct collapse of pristine gas [25–29] or dark matter halo
with self-interaction [30–34].
As long as heat transport occurs, a self-gravitating

monatomic fluid (or supermassive star) will relax and shrink
automatically due to the negative specific heat of a gravi-
tationally bound system [31,34]. During the gravothermal
process in the hydrostatic limit, the thermal evolution
timescale of the contraction is much larger its free-fall
(dynamical) timescale tff ∼ 1=

ffiffiffiffiffiffiffiffiffi
GNρ

p
, where ρ is the (mean)

energy density of the fluid [3]. In this scenario, we can
idealize the evolution process by a sequence of virialized
quasiequilibria characterized by the mass and radius of the
fluid sphere. In particular, the particles in the fluid will
follow the same distribution function, albeit the dispersion
varies during the process until the onset of relativistic
instability. Moreover, we assume no extra degrees of free-
dom, e.g., nuclear reaction of our universe in (3þ 1)
dimensions, will be ignited to halt the direct collapse into
aBH.We note that the final BH formation near the end of the
gravothermal evolution requires dynamically evolving the
fluid and the spacetime given initial data [35–38], which is
beyond the scope of this study. Without a cosmological
constant in (3þ 1), it has been shown that unstable static
spherical Tolman-Oppenheimer-Volkoff solutions exist on
saddle points that, when perturbed from their unstable
equilibrium, will tend to either black hole formation or a
perturbed stable solution [38]; while with positive cosmo-
logical constant, the dynamical evolution of a homogeneous
dust would drag the entire spacetime into a “big crunch”
singularity if the fluid mass is sufficiently large [35].
The goal of this paper is to examine the sufficient

condition that can naturally trigger the instability of a
self-gravitating monatomic fluid in (N þ 1) dimensions, in

particular, in the presence of cosmological constant. We
adopt homogeneous solutions, which are adequate for the
purpose. In the end, we will briefly discuss the implications
on the dimensionality of spacetime. The geometric unit
GN ¼ c ¼ 1 is used, unless noted otherwise.

II. DYNAMICAL INSTABILITY IN
(N + 1) DIMENSIONS

The method exploited by Chandrasekhar [39] is to
examine the radial pulsation equation of a perturbed fluid
sphere of mass M within radius R:

δR̈þ ω2δR ¼ 0 with ω2 ∝ hγi − γcr; ð1Þ

where ω is oscillation frequency, the critical adiabatic
index γcr depends on the given equilibrium configuration,
and hγi is the pressured-averaged adiabatic index of the
fluid sphere. Thus the stability problem boils down to the
Sturm-Liouville eigenvalue problem. The sufficient con-
dition for the fluid to become unstable is γcr > hγi such that
ω2 < 0, implying the perturbation δR ∼ eiωt would be an
exponential growth.
The adiabatic index of a fluid,

γ ¼
�
∂ lnp
∂ ln n

�
s
; ð2Þ

is a stiffness/compressibility parameter signifying how the
fluid pressure p responds to the adiabatic (ds ¼ 0) com-
pression on number density n. In particular, an ideal fluid
parametrized by the γ-law form p ¼ KðmnÞγ [40], wherem
is the particle’s mass, satisfies the above definition as long
as γ and K are not explicit functions of n under adiabatic
perturbation. The first law of thermodynamics results in
[3,41,42] γ ¼ 1þ p=ðρ −mnÞ. Given a distribution func-
tion fðx;pÞ of monatomic particles with phase space
measure dNxdNp, the adiabatic index of the ideal fluid
merely depends on its velocity dispersion v≡ ffiffiffiffiffiffiffiffiffiffiffiffi

Np=ρ
p

< 1

and the degrees of freedom N, specifically

γ ¼ 1þ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p

N
ð3Þ

ranges from 1þ 2=N (nonrelativistic v → 0) to 1þ 1=N
(ultrarelativistic v → 1) [42].
Considering NG in (N þ 1)-dimensional spacetime, one

can derive the critical adiabatic index [42]:

γcrðNGÞ ¼ 2

�
1 −

1

N

�
: ð4Þ

In order to have a stable configuration, it is necessary
that hγi > γcrðNGÞ. For ultrarelativistic (nonrelativistic)
ideal fluids, this implies the spatial dimensions must be

WEI-XIANG FENG PHYS. REV. D 106, L041501 (2022)

L041501-2



N < 3ðN < 4Þ in order to have a stable sphere. From this
viewpoint, the privilege of (3þ 1) dimensions is manifest
because the fluid sphere is stable but not too stable.However,
in (2þ 1) dimensions the fluid disk is too stable because
γcrðNGÞ ¼ 1 < 1.5ð2Þ ¼ γ as always for an ultrarelativistic
(nonrelativistic) fluid. Nevertheless, in the context of GR the
pressure effect is crucial to destabilize the fluid disk. Besides,
in order for the fluid to have equilibrium configurations
and a BTZ solution, a negative cosmological constant is
required [11].
Thus we have to first examine the equilibrium configu-

rations with cosmological constant λ ¼ �1=l2 in (N þ 1)
dimensions. For homogeneous solutions, the critical adia-
batic index1

γcrðGRÞ ¼
λR2

ðN − 2ÞM=RN−2 − λR2

þ
X

j;k¼0;1;…

fðNÞ
jk

�
M
RN−2

�
j
ðλR2Þk; ð5Þ

where the post-Newtonian coefficients fðNÞ
jk depend on the

density distribution and spatial dimensions N, except

fðNÞ
00 ¼ γcrðNGÞ; and the stabilizer/destabilizer:

λR2

ðN − 2ÞM=RN−2 − λR2

�
stabilizer if negative

destabilizer if positive
ð6Þ

characterizes the relative competition between compactness
and background curvature. We note that its appearance is
generically from GR as long as λ is switched on, and cannot
be regarded as post-Newtonian correction.
Qualitatively, the GR instability depends on the pre-

ssure effect of the fluid through p=ρ ∝ M=RN−2 ≡ CN , the
compactness parameter in (N þ 1) dimensions. On the
other hand, the stability of a fluid will also depend on
the relative size of the fluid to the radius of curvature of the
space, specifically, the curvature parameter λR2. As was
mentioned, in the context of NG, fluid spheres are
genuinely subject to dynamical instability for N > 3.
Even worse, the corrections from GR deteriorate the
situation, especially if λ > 0. However, it is possible to
have stable hydrostatic equilibrium if λ < 0. We also note

that for λ ¼ 0 the post-Newtonian approximation fð3Þ10 ¼
19=21 is exactly the result shown in Ref. [39].

III. GRAVITATIONALLY BOUND SYSTEMS

In GR, the gravitational mass of a fluid sphere M is the
corresponding Schwarzschild mass (N ≥ 3) if it were to
collapse into a BH. It includes the energy of self-gravity
due to the curved spacetime, which is thus not conserved

during the gravothermal evolution. By contrast, the rest
mass Mrest of the fluid is conserved (see Appendix B in
Supplemental Material for definition). It is the mass of total
particles in the fluid when they are dispersed to infinity.
Therefore, to form a gravitationally bound state the total
internal energy must be

M −Mrest < 0: ð7Þ
Before we are able to examine the dynamical instability
reasonably, it is necessary to see if the quasistatic equilib-
rium is gravitationally bound during the gravothermal
evolution. The solutions can be categorized as stable or
unstable only if they are gravitationally bound. If the initial
configuration is a unbound state,M −Mrest > 0, dynami-
cal evolution of the fluid and the spacetime is required to
determine the final fate (BH or naked singularity) [36],
which is again beyond the scope of the paper.

IV. FLUID SPHERES IN
(3 + 1) AND HIGHER DIMENSIONS

Assuming a fluid sphere in (N þ 1) dimensions is in
hydrostatic quasiequilibrium, the fluid (rest) mass Mrest ¼
const during the gravothermal evolution. The radius will
contract such that CN increases gradually as more and more
thermal energy dissipates until reaching the critical com-
pactness as hγi ¼ γcr. Given λ ¼ const, we can tell from the
phase diagrams (Figs. 1 and 2) when the phase transition
into BH could be triggered. For N ≥ 3 the evolution
follows MrestjλjðN−2Þ=2 ¼ const; only those paths passing
through the stable bound region will be in the “long-lived”
stage of gravothermal evolution.

FIG. 1. C3 − λR2 phase diagram of homogeneous fluid spheres
in (3þ 1) dimensions. Bound states are to the right of the brown
dashed line. The stable and unstable regions are separated by the
marginal stable curve (black solid), and the black dot denotes the
end point ð−0.0949; 0.248Þ at the causal limit. As the radius
contracts with Mrest ¼ const, the orange path follows λ ¼ 0,
and the circle denotes the critical point (0,0.189) of instability;
the blue paths (I), (II), (III) follow Mrest

ffiffiffiffiffijλjp ¼ 0.02ðλ < 0Þ;
0.01ðλ > 0Þ, 0.02ðλ > 0Þ, respectively.

1The exact expression is derived in Ref. [42] and see also
Supplemental Material [43] for a full GR expression.
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As we have already noted, a fluid sphere is genuinely
unstable forN ≥ 4, and λ > 0 just deteriorates the situation.
Remarkably, the privileged position of N ¼ 3 can be seen
also from the fact that it is the unique dimensionality that
allows stable hydrostatic equilibrium with positive cosmo-
logical constant. From Fig. 1, we see that for λ > 0 stable
hydrostatic equilibrium exists only between some upper
bound and lower bound of compactness, and the stable
region of compactness diminishes as λR2 increases; for
λ < 0, the stable region enlarges as jλR2j increases until
the critical compactness C3 ¼ 0.248 at causal limit
vð0Þ≡ vc ¼ 1. However, bound states no longer exist well
before this critical point. The orange path (λ ¼ 0) will
gravothermally transition from a stable region into an
unstable one after passing critical compactness C3 ¼
0.189 and the collapse into BH might ensue. The blue
path (I), which follows Mrest

ffiffiffiffiffijλjp ¼ 0.02ðλ < 0Þ, will be
gravothermally transitioning from the stable region into the
unstable one after hitting the marginal stable curve if it
starts from the region of bound states; while the blue path
(II), which followsMrest

ffiffiffiffiffijλjp ¼ 0.01ðλ > 0Þ, starting from
the unstable region could directly collapse into the stable
region of gravothermal evolution until exceeding the upper
critical compactness; however, if the mass is sufficiently
heavy as blue (dashed) path (III) with Mrest

ffiffiffiffiffijλjp ¼
0.02ðλ > 0Þ, there is no long-lived gravothermal evolution
of the fluid.
On the other hand, in Fig. 2, we see that for N ¼ 4

there is no stable hydrostatic equilibrium for λ ≥ 0. A stable
region emerges if λ < 0, and the critical compactness
increases as jλR2j increases until C4¼0.118 at vc¼1.
Nevertheless, no bound state exists in the domain of λ ≤ 0.
For instance, there is no stable bound state along the orange

dashed path (λ ¼ 0). Although the blue dashed path (I),
following Mrestjλj ¼ 0.002ðλ < 0Þ, could transition from
the stable region into an unstable one, it is by no means
gravothermal as no static bound state is available along this
path. Finally, the blue dashed path (II), which follows
Mrestjλj ¼ 0.001ðλ > 0Þ, always lies in the unstable region
no matter if it starts from a bound or an unbound state. The
phase diagrams are similar for N > 4 but it becomes less
compact on the marginal stable curves as N increases. In
Table I, we show the end points (vc ¼ 1) of the marginal
stable curves for N ¼ 2, 3, 4, 5, 6 and 7.
Remarkably, the region of bound states never overlaps

with the stable region for N ≥ 4. Dynamically, if the fluid
starts from any point on the dashed paths in Figs. 1 and 2,
BH formation, dispersal of the fluid to infinity, or gravi-
tationally bound and oscillatory states could be the possible
outcome depending on the initial velocity perturbation and
density [38], which deserves further investigation.

V. FLUID DISKS IN (2 + 1) DIMENSIONS

By matching the junction conditions, the mass of the
BTZ BH is related to the gravitational mass of the fluid disk
by [42]

MBTZ ¼ 2M − 1; ð8Þ
thus M > 0.5 is the threshold to have MBTZ > 0, the
excited state, if collapse ensues. Dynamical collapse into
BTZ BHs and naked singularities has been shown possible
from pressureless dust [44]. However, static stars of perfect
fluid qualitatively differ in their behavior from static stars of
dust [13]; it is curious to see if the GR instability will be
triggered in (2þ 1), especially under the influence of a
negative cosmological constant.
Therefore we have to examine the critical adiabatic index

for N ¼ 2:

γcrðGRÞ ¼ −1þ
X

j;k¼0;1;…

fð2Þjk M
jðλR2Þk ð9Þ

starts from −1þ fð2Þ00 ¼ −1þ γcrðNGÞ ¼ 0 with “post-
Newtonian” corrections, thus the Einsteinian stars are
much stabler than Newtonian stars in (2þ 1). We note
that for N ¼ 2 the “compactness” parameter reduces toM,
the gravitational mass of the disk itself. That manifests the

FIG. 2. C4 − λR2 phase diagram of homogeneous fluid spheres
in (4þ 1) dimensions. Bound states are to the right of the brown
dashed line. The stable and unstable regions are separated by the
marginal stable curve (black solid), and the black dot denotes the
end point ð−0.135; 0.118Þ at the causal limit. As the radius
contracts with Mrest ¼ const, the orange path follows λ ¼ 0,
which is unbound; the blue paths (I), (II) follow Mrestjλj ¼
0.002ðλ < 0Þ; 0.001ðλ > 0Þ, respectively.

TABLE I. End points of marginal stable curves for N ¼ 2, 3, 4,
5, 6, and 7 with λ < 0 at causal limit vc ¼ 1.

N CN λR2 hγi ¼ γcr

2 0.518001 −0.060912 1.81893
3 0.248179 −0.094853 1.56387
4 0.117505 −0.134605 1.43352
5 0.062846 −0.151149 1.35328
6 0.037099 −0.154395 1.29861
7 0.023595 −0.151406 1.25884
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reason why there is no Buchdahl-like bound in (2þ 1)
dimensions [16]. Furthermore, this also implies that a self-
gravitating disk cannot gravothermally evolve to a singular
state on its own because the compactness M always
decreases with Mrest ¼ const due to the gravothermal
dissipation. However, it can become unstable by external
agents, such as compression by external force while adding
mass to keep M large [42].
To illustrate, we see from Fig. 3 that as the negative

cosmological constant is switched on, there is no unstable
configuration for γcr to cross hγi of the fluid disk as the
fluid mass grows from M ¼ 0 to 0.5 (the would-be
MBTZ ¼ −1 to MBTZ ¼ 0), which means there is no
instability for a fluid disk to collapse into a naked
singularity from an ideal fluid within causal region
vc ≤ 1. Therefore, along the solid blue path (I), Mrest ¼
0.5 in Fig. 3, the compactness decreases from M ¼ 0.495
to 0.375 during the gravothermal shrinking, it never meets
the instability. That is to say, although dissipation or
thermal radiation can make the disk shrink naturally given
λ ¼ const, it never drives the fluid into an unstable state.
Nevertheless, in the range −0.061≲ λR2 < 0 a BTZ BH
could emerge from a collapsing fluid of 0.5 < M≲ 0.518
without violating causality. For example, under the back-
ground λ ¼ const this can be achieved by “adding more
mass” to the fluid disk, while the radius remains fixed, as
shown by the dashed blue path (II): λR2 ¼ −0.02 in Fig. 3.

VI. DISCUSSIONS AND IMPLICATIONS

In the context of gravothermal evolution, we have exam-
ined the dynamical instability of a self-gravitating fluid
sphere in (N þ 1)-dimensional spacetimeby adopting homo-
geneous fluid solutions. Although the critical CN may vary
quantitatively depending on the density distribution, the
main conclusion generally holds as it is based on the three
assumptions made implicitly [42]: (i) The monatomic fluids
obey the first law of thermodynamics, and the pressure is
isotropic due to equipartition theorem. (ii) The particles
composing the fluid follow the mass-energy dispersion
relation. (iii) Gravity is governed by Einstein field equations
in (N þ 1) dimensions.
From the dynamical instability viewpoint, we can re-

examinewhy (3þ 1) is privileged rather than why it must be
(3þ 1). If BH is the pathway to generate a baby universe
[45–50], the collapsing matter squeezing into a (N þ 1)-
dimensional BH near the classical singularity would result in
a new-born universe of arbitrary dimensions. If the spacetime
dimensionality reshuffling [51] is a random process in the
reign of quantum gravity near singularity, it repeats this
process again and again until the new-born universe is just
(3þ 1)-dimensional, in which the fluid sphere is stable but
not too stable. As a self-gravitating fluid sphere (or a star) in
N ≥ 4 is genuinely subject to dynamical instability, and
could transition into a BH automatically without undergoing
the stage of long-lived gravothermal evolution. Although a
fluid star can be stabilized by introducing a negative
cosmological constant, no gravitationally bound state of a
monatomic fluid could exist in this region.
Remarkably, (3þ 1) is the unique dimensionality that

allows stable hydrostatic equilibrium with positive cosmo-
logical constant. Given the cosmological constant observed
[52] (orl ∼ 1061lPl,wherelPl is thePlanck length), themass
of a virialized stellar object, e.g., dark matter halo, must be
M ≪ 0.02lc2=G3 ∼ 1021 M⊙ (see Fig. 1) in order to avoid
the dynamical instability and a possible BH formation from
its direct collapse. However, a big crunch singularity would
form if M > ð1=3 ffiffiffi

3
p Þlc2=G3 ∼ 1022 M⊙ [35]. On the

other hand, (2þ 1)-dimensional gravity is bizarre. The fluid
disk cannot gravothermally evolve into a singular state
through dissipation, but a BTZ hole could emerge from a
collapsing fluid disk with external agents, while a naked
singularity cannot emerge from a fluid disk, which supports
the cosmic censorship conjecture [53].
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FIG. 3. C2 − λR2 phase diagram of homogeneous fluid disks in
(2þ 1) dimensions. Bound states are to the right of the brown
dashed line. The stable and unstable regions are separated by the
marginal stable curve (solid black), and the black dot denotes the
end point ð−0.0609; 0.518Þ at the causal limit. The shaded region
(λ > 0) is forbidden to have hydrostatic equilibrium. The circle
denotes M ¼ 0.5 exactly at λ ¼ 0, which is independent of
central velocity dispersion [13]. The upper bound of fluid mass is
M ¼ 0.5208 at the causal limit. The region under M ¼ 0.5 is
stable, which means that no homogeneous fluid disk can trigger
the instability and collapse into a naked singularity. Path (I)
follows Mrest ¼ 0.5 under gravothermal evolution; (II) follows
λR2 ¼ −0.02 by adding mass. Only path (II) could transition into
a BTZ BH under the causal limit.
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