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Considering a six-dimensional geometry orbifolded on S1=Z2 × S1=Z2 with quarks and leptons
localized on orthogonal branes, we show that the construction admits observable n − n̄ oscillation while
naturally suppressing the proton decay rates. Consistent with other low-energy observables, the model also
accommodates baryogenesis at Oð10 TeVÞ scale.
DOI: 10.1103/PhysRevD.106.L031701

Baryon number (B) violation, a key ingredient for
generating the observed baryon to photon ratio in the
universe (nB=nγ ¼ ð6.19� 0.14Þ × 10−10), is allowed in
the Standard Model (SM) only through nonperturbative
processes [1]. Presumably important for baryogenesis at
temperatures near the electroweak scale [2], such processes
are highly suppressed at low temperatures, and B is
seemingly a good global symmetry. With =B and CP
violation within the SM not being large enough to generate
the nB=nγ , other sources must be explored.
The simplest gauge invariant and =B effective operator

also violates lepton number (L) by one unit, and non-
observation of proton decay pushes the corresponding scale
to well above 1015 GeV. On the other hand, if the leading
operator were a ΔB ¼ 2 one, the scale could be much lower
and be probed by looking for either n − n̄ oscillation in
nuclei, or annihilations brought about in collisions of cold
neutrons against a target. The characteristic timescales are
related through Tnucl ¼ τ2freeR, where R characterizes the
strong interaction n̄ annihilation time, and is, typically,
Oð100 MeVÞ [3]. Using different nuclei, experiments at
SOUDAN-II (Fe56) [4], Super-Kamiokande (O16) [5], and
SNO (deuteron) [6] have constrained τfree to be larger than
1.3 × 108 s, 2.7 × 108 s, and 1.23 × 108 s respectively,
each at 90% C.L. A correspondence with the underlying
theory is best established [7] by considering the matrix
element of the effective six-quark (dimension-9) operator
viz. Δm≡ τ−1free ¼ hn̄jO9jni. The transition probability for
pure state jn; t ¼ 0i to evolve to jn̄; ti is given by PðtÞ ¼
ðt=τfreeÞ2e−λt where λ−1 ¼ 880 s is the mean life of a free
neutron. The bound on τfree implies Δm≲ 6 × 10−33 GeV,

or, for an Oð1Þ Wilson coefficient, a new physics scale
(≳500 TeV [8]) much lower than the proton decay scale. A
roadblock to a UV-complete model for n − n̄ oscillation is
that it, generically, needs two new fields with gauge
symmetry allowing one of these to couple to a ΔL ¼ 1
current as well, thereby requiring an unnatural suppression
for the said coupling.
In our quest for a well-motivated scenario that naturally

circumvents all such constraints, we propose a six-
dimensional space-time orbifolded on S1=Z2×S1=Z2 [9–11]
and a highly-warped x5—direction. With quarks and leptons
localized on orthogonal branes, the geometry supports
substantial ΔB ¼ 2 while evading proton-decay constraints
without any hierarchy/unnaturalness in the parameters. With
successive warpings along the two compactified dimensions,
(x4 ∈ ½0; πRy� and x5 ∈ ½0; πrz�) that are individually
Z2-orbifolded with 4-branes sitting at each of the edges,
the geometry is described by the line element [9]

ds26 ¼ b2ðx5Þ½a2ðx4Þημνdxμdxν þ dx24� þ dx25;

where ημν is the flat metric. Denoting the fundamental scale
in six dimensions byM6 and the negative bulk cosmological
constant by Λ6, the total bulk-brane Lagrangian is, thus,

L ¼ ffiffiffiffiffiffiffiffi
−g6

p ðM4
6R6 − Λ6Þ

þ ffiffiffiffiffiffiffiffi
−g5

p ½V1ðx5Þδðx4Þ þ V2ðx5Þδðx4 − πRyÞ�
þ

ffiffiffiffiffiffiffiffi
−g̃5

p
½V3ðx4Þδðx5Þ þ V4ðx4Þδðx5 − πrzÞ�:

The five-dimensional metrics (g5; g̃5) are those induced on
the appropriate 4-branes, and the brane potentials Vi encode
the Israel junction conditions.
Generalizing from the restrictive case studied in Ref. [9],

we admit a five-dimensional induced nonzero cosmological
constant Ω̃ < 0 on the 4-branes, allowing these to be bent.
The four-dimensional cosmological constant, though, is
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held to be zero (the generic case [10] only leads to algebraic
complications). With this, the Einstein equations lead to

bðx5Þ¼ b1 coshðkjx5jþb2Þ; b1¼ sechðkπrzþb2Þ; ð1Þ

with k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Λ6=10M4

6

q
. Similarly,

aðx4Þ ¼ expð−cjx4jÞ; where c≡ kb1Ry=rz: ð2Þ

Unlike Ref. [9], we consider a very large b2 [10,11] leading
to bðx5Þ ∝ expðkjx5jÞ, and one is forced to c ≪ k, unless a
large, and unpleasant, hierarchy between Ry and rz is to be
admitted. This also implies that the 4-brane tensions are
pairwise almost equal and opposite (V1 ¼ −V2 ≈ 0 and
V3 ¼ −V4 ≈ −8M4k) thereby ensuring the near vanishing
of the induced cosmological constant on the 4-branes at
the ends of the world. In this limit, the metric is nearly
conformally flat, and, along with the AdS6 bulk, resembles a
generalization of the Randall-Sundrum geometry to one
dimension higher.
In this space-time, the Lagrangian for a free massless

fermion is given by

Lfermion ¼
1

2
b4ðx5ÞðQ̄iΓaEM

a DMQÞΔ̄ðx4Þ
þ b5ðx5ÞðL̄iΓaEM

a DMLÞδðx5Þ
Δ̄ðx4Þ≡ δðx4Þ þ δðx4 − πRyÞ

whereQðLÞ denote the quark (lepton) fields and EM
a are the

appropriate fünfbeins. The low-energy phenomenology is,
of course, dictated by only the zero-modes of the fermions.
Since the x4—direction is nearly flat, so would be the wave
profile of the leptonic zero mode. On the other hand, the
quark zero mode is given, to a very good approximation, by
an exponential function.
To induce =B, we begin by introducing two colored scalar

fields ϕð3; 1;−1=3Þ and ωð6; 1; 2=3Þ, localized, of course,
on the two 4-branes at x4 ¼ 0 and x4 ¼ πRy. With leptons
being confined to the 4-brane at x5 ¼ 0, the scalar
interactions are given by

Lscal ¼
ffiffiffiffiffiffiffi
2rz

p ½yudϕucPRdþ zddωdcPRd

þ ffiffiffiffiffiffiffiffiffiffiffiffi
4rzRy

p
yueϕ�ucPReδðx5Þ

þ λMϕ2ω�Δðx4Þ þ H:c:

All the fermion fields here are SUð2Þ singlets and we have
listed just the relevant term of the scalar potential.
Introduced for convenience, the scale M is equated to the
mass of the heaviest scalar field. Since, post compactifica-
tion, we would be interested only in the lightest KK-modes,
the five dimensional fields (F ¼ u; d;ϕ;ω) could be
decomposed as F ðxμ; x5Þ ¼ ð2rzÞ−1=2F ðxμÞχF ðx5Þ, where

the zero-mode wave functions χF ðx5Þ satisfy the normali-
zation condition

R
dx5bsχ2F ¼ 1, with (s ¼ 2, 3) for scalars

and fermions respectively, yielding canonically normalized
four-dimensional fields. In contrast, thanks to the x4-
direction being nearly flat, the wave function for the lepton
zero-mode is a trivial one. To obtain the effective four-
dimensional theory, one needs to integrate over both x5 and
x4 (given the smallness of the warping c, the second
integration is essentially trivial), resulting in

Lint ¼ ηudϕucdþ ηueϕ
�uceþ ζddω

�dcd

þ ρMϕ2ωþ H:c:; ð3Þ

where

ζdd ¼ ð2rzÞ−1zdd
Z

dx5b2χϕχ2d

ηud ¼ ð2rzÞ−1yud
Z

dx5b2χϕχuχd

ρ ¼ ð2rzÞ−1λ
Z

dx5b2χ2ϕχω

ηue ¼ yueb2ð0Þχϕð0Þχuð0Þ: ð4Þ

The relations above may include any possible flavor
structure, a point that we return to later. Now, for fermions
with vanishing bulk masses (an excellent approximation for
the first and second generation fields), the wave profiles
would be expected to be nearly identical, and the ratio
ζdd=ηud ≈ zdd=yud.
The Wilson coefficients for proton-decay and neutron

oscillation are now straightforward, viz.

Cp ¼ ηudηue
m2

ϕ

; Cnn ¼ ρM
m2

ϕm
4
ω
η2ud ζdd: ð5Þ

Qualitative features of this result are best appreciated by
assuming that all the masses are of the same order. Despite
the fact that Cnn is fourth order in the couplings while Cp is
only bilinear, Cp ≪ Cnn on account of the factor b2ð0Þ in
ηue. Note that this relative suppression does not need any
hierarchy, either of couplings or between masses. Rather, it
is engendered dynamically on account of the warping.
The neutron oscillation rate is determined by jΔmj ¼

jhnjHeff jnij ¼ 8ξ2Cnn=3 where the matrix element is
computed using vacuum insertion approximation [8] with
ξ parametrizing the reduced matrix element for the
three quark operator. Lattice computations [12] give
ξ ≈ 0.0096þ6−20 GeV3, with this error being the main
uncertainty in the calculation.
The observed limits on jΔmj can now be translated to

constraints on the parameter space. In view of the large
dimensionality of the latter, it is instructive to make the
simplifying assumption that ηud ¼ ζdd ¼ ρ≡ κ and
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mϕ ¼ mω ¼ M. The saturation of the limit can then be
expressed as

jΔmj
jΔmjmax

≈
�

κ

0.01

�
4
�

M
15 TeV

�
−5
: ð6Þ

More precise values are listed in Table I for a few benchmark
points. It is worth noting here that, for krz ∼ 8.5
(a value that leads to Cp ≲ 10−30, thereby suppressing
proton decay to rates well below the current limit) also
implies that for anarchic bulk-couplings zdd; yud; λ ∼Oð1Þ,
the corresponding 4-dimensional ones (ζdd; ηud; ρ), obtained
on integrating over x5, are all ∼Oð10−2Þ. Further suppres-
sion of the effective couplings could arise in two ways:
(i) starting with smaller bulk couplings or (ii) localizing the
light quark states away from the scalars. In contrast, the
scenario with κ ∼ 1 is achievable only for a flat extra
dimension, at the cost of very large scalar masses and
self-consistency of the treatment would imply that the scales
of the KK-excitations be at least as large, thereby taking the
entire scenario beyond detection.
We now examine other possible phenomenological

consequences. For light (a few TeVs) ϕ or ω, resonance
production at the LHC is possible, leading to a peak in
the dijet invariant mass (while a lepton-jet decay is notion-
ally available to the ϕ, it is highly suppressed). With the
QCD background being very large, the only hope is to
concentrate on high-pT , high invariant-mass events. For
mϕ ¼ 3 TeV and ηud ¼ 10−2, the ϕ-production cross-
section is ≲0.4 fb (and somewhat lower for the ω) even
without accounting for efficiencies. In other words, even
in the most optimistic scenario, direct detection would have
to wait. The only caveat to this would be to consider a
hierarchy in the scalar masses whereby one of them could
be made significantly lighter and brought into the current
reach of the LHC.
Much more important are the flavor sector observables.

While n − n̄ oscillation needs only the d − d − ω coupling,
it is conceivable that the s − s − ω coupling is unsuppressed
as well. This would result in an effective flavor changing
Hamiltonian of the form HΔS¼2 ¼ m−2

ϕ ðscPRsÞðdPLdcÞ,
thereby contributing to K0–K0 oscillation (which, within,
the SM, proceeds through the charm-dominated box dia-
gram). To bring this to the usual form, one has to effect Fierz
rotations [13], both in the Dirac space and the color space,
using ð6c⊗6cÞ1¼ð2=3Þð1c⊗1cÞþð1=2Þð8c⊗8cÞ1, encap-
sulating both color-unsuppressed and suppressed contribu-
tions. Comparing with the SM contribution (which saturates
the observed mass difference), we have

Reðζddζ�ssÞ
8m2

ω
≲ G2

FM
2
W

16π2
F 0 ∼ 10−7 TeV−2; ð7Þ

where F 0 includes the box-diagram computation [14] (note
that the hadronic matrix element calculation is common

to both). Assuming that the couplings are of similar size,
for mω ¼ 3 TeV, this translates to jζddj < 0.0026. In other
words, the coupling values required for observable neutron-
oscillation rates more than easily satisfy the bounds from
kaon oscillations. This exercise, though, tells us that any
introduction of hierarchy in the scalar masses needs to be
approached carefully.
As is well known, the creation of a baryon asymmetry

needs not only =B and CP (much larger than that we have in
the SM) but also an accompanying epoch with out-
of-equilibrium condition. To create an environment ame-
nable for this, let us augment the model with the inclusion
of a further copy of ϕ (henceforth called ϕ1) and a singlet S
(which, for simplicity, we consider to be localized on the
same branes as the colored scalars). Similarly, we also
assume, that the ϕ mass matrix is diagonal and that there is
no substantial mass hierarchy between these. As for the
potential in (3), it now includes additional terms such as
(i ¼ 1, 2)

−V ∋ M½ρijϕiϕjωþ ρ̃ijϕ
�
iϕjS� þ H:c:; ð8Þ

where, for the sake of simplicity, we retain only the zero-
modes. While the terms in Eq. (8) could have extra factors,
of S=M, these do not add anything to our discussion, and
we omit them.
At the tree level, we forbid any Yukawa couplings for the

new field ϕ2 (this could be arranged simply by introducing
a softly broken discrete symmetry). Thus, the dominant
decay available to it would be one through ρ12 leading to
ϕ2 → uddd, or a final state of B ¼ 4=3. On the other hand,
ϕ1 → ū d̄ (B ¼ −2=3).
For 2mϕ < mS ≲ 2mω, the dominant decay of the S

would be S → ϕ�
iϕj. While the tree-level diagram is

obvious, one-loop corrections are brought about by the
diagram in Fig. 1. The latter evidently has a nonzero

TABLE I. Lower limits on the mass parameter mϕ as a function
of the common coupling.

κ 1 0.1 0.01 0.001

mϕðTeVÞ ¼ mω ¼ M 670 106 17 2.6
mϕðTeVÞ ¼ mω=3 ¼ M=3 345 55 9 1.4

FIG. 1. One-loop diagram contributing to B-asymmetry gen-
erated from a decaying S.
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absorptive part, receiving contributions from possibly three
ways of cutting a pair of internal lines. For example, for
mϕ1

∼mϕ2
≳mω=2, only the vertical cut in Fig. 1 contrib-

utes. Since a net baryon number ϵB (per S-decay) can arise
only from the difference ΓðS → ϕ1ϕ

�
2Þ − ΓðS → ϕ�

1ϕ2Þ, we
have (denoting xa ≡m2

a=m2
S)

ϵB ≈
M2

4π2m2
Sβ

log

�
xω − xϕ þ 1þ β

xω − xϕ þ 1 − β

�
Aρ

Aρ ≡ Im½ρ̃�12ðρ†ρ̃ρÞ12�=
X
i;j

jρ̃ijj2 ð9Þ

where β ¼ ð1 − 4xϕÞ1=2 and we have neglected terms
proportional to the mass difference δm2

ϕ.
Thus, the number density nS of the decaying field is

related to those for the (anti-)baryons through, nb − nb̄ ¼
nSϵBBq, where Bq ¼ 2 is the baryon number created per
decay. Since the photons in the universe far outnumber the
baryons, they dominate the entropy density s of the
universe and we may write [15]

nb − nb̄
s

¼ nSBqϵB
4π2=45g�T3

¼ 180ζð3Þ
π4

ϵB; ð10Þ

where g� ≈ 107 is the weighted number of degrees of
freedom operative at that temperature.
Using Eq. (10), the constraint on baryon asymmetry in the

universe as, ϵB ¼ 3.8 × 10−11. This could be arranged quite
easily in the model. In the parameter space where the
nuetron-antineutron oscillation is observable,mϕ ∼mω ¼ 3

TeV, and M ∼mS ¼ 10 TeV, the asymmetry required for
baryogenesis is obtained for Aρ ≲ 2.2 × 10−9. Note that the
very structure of Aρ implies cancellations between the
nominal phases in the couplings. Consequently, the residual

phase is naturally smaller. Indeed, such a phase is also
stipulated by the ϵ0 parameter in kaon oscillations.
To summarize, we have investigated baryon-number

violation in a six-dimensional world compactified on
ðS1=Z2Þ ⊗ ðS1=Z2Þwherein one direction is highly warped
with the other being almost flat (minuscule warping).
Boasting stabilized moduli [10], such models are more
natural than their flat extra dimension counterparts. As we
have demonstrated here, augmenting the minimal SM
extension by just two extra colored scalars allows for
low-energy ΔB ¼ 2 processes, thereby offering the tanta-
lizing prospect of an observable n − n̄ oscillation signal.
On the other hand, proton decay is dynamically suppressed
(without the need for any hierarchy of couplings) on
account of the leptons being localized on a different
4-brane and suffering a consequent warping at the inter-
section with the quark 4-brane. While, for natural sizes of
Yukawa couplings, the masses of the scalars are just
beyond the reach of the LHC, these are likely to be visible
in the next generation of hadronic colliders or their
presence inferred from more sensitive flavor probes.
Most interestingly, a minor addition to the spectrum opens
the possibility for multi-TeV scale baryogenesis. The
parameter space amenable to reproducing the observed
baryon asymmetry is large and no hierarchy or unnatural
assumptions need be invoked. Furthermore, these scalars
hold the prospect of generating strong phase transitions,
signals of which are likely to be observable in the next
generation of gravitational wave detectors.
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