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We investigate the finite-size effects on the transition temperature associated with the quark-gluon
plasma (QGP) formation. From a percolation perspective, the onset of the QGP in high-energy collisions
occurs when the spanning cluster of color strings emerges. The principal result presented here is the finite-
size effects on the transition temperature expressed as a power law in terms of the nucleon number. We
found that the transition temperature is higher for small systems than for large ones. It means that minimal
triggering conditions events in pp collisions require about 20 times higher energies than AuAu-PbPb
collisions. We also estimate the center-of-mass energy required for the QGP formation as a function of the
nucleon number. Our results are consistent with the minimal center-of-mass energies at which the QGP has
been observed.
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In high energy physics, multiparticle production is
usually described in terms of color strings stretched between
the projectile and target, which decay into new strings
through color neutral qq̄ pairs production and subsequently
hadronize to produce the observed hadrons [1,2]. Color
strings may be viewed as small circular areas distributed in
the transverse plane (of the collision) filled with a color field
created by colliding partons that interact when they overlap.
With the increasing energy and size of the colliding system,
the number of strings grows. They start to overlap, forming
clusters in the transverse plane, in a similar way to the
phenomena studied by two-dimensional percolation theory
[3]. At one critical density, a giant cluster of color strings
appears where the quarks are no more confined. This
interpretation marks the percolation phase transition and
the onset of the quark-gluon plasma (QGP) [4]. A first
experimental evidence of the QGP was observed in AuAu
collisions at RHIC that later was confirmed in PbPb

collisions at LHC, through the study of all the harmonics
of the azimuthal distributions, showing the existence of a
collective motion of quarks and gluons [5–7]. Furthermore,
the data analysis for pp and pA collisions at LHC [8] and
d-Au and 3He-Au collisions at RHIC [9] conclude that in
these experiments, most properties observed in heavy-ion
collisions are also present.
The general result due to the SU(3) random summation of

color charges of overlapped strings is a reduction of the
multiplicity and an increase of the string tension, hence an
increase of the mean transverse momentum [10]. For a
cluster formed by n strings, it is found that its multiplicity μn
and average transverse momentum square hp2

Tin are given
by [11]

μn ¼ ðnSn=S1Þ1=2μ1; ð1Þ

hp2
Tin ¼ ðnS1=SnÞ1=2hp2

Ti1; ð2Þ

where S1 ¼ πr20 is the transverse area of the strings, and Sn
the area covered by the cluster, μ1 and hp2

Ti1 are the
multiplicity and average transverse momentum squared for
a single string, respectively. Here r0 is the radius of the
string and takes values between 0.2 and 0.3 fm. Taking into
account fluctuations of the number of strings at a fixed
density, the average of nS1=Sn is
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hnS1=Sni ¼ η=ϕðηÞ ¼ FðηÞ−2; ð3Þ

with ϕðηÞ being the area covered by strings and η ¼
N S1=S the filling factor, where N is the total number of
strings distributed on the transverse plane with area S [1,2].
In particular, for the case of uniformly distributed disks,
this picture corresponds to the classical two-dimensional
continuum percolation of disks, and ϕðηÞ ¼ 1 − e−η in the
thermodynamic limit [1,12]. Nevertheless, ϕðηÞ can sig-
nificantly deviate from 1 − e−η if the model considers a
low number of strings [13], fluctuations in the shape of the
transverse surface to the collisions [14], interactions
between strings [15], or nonuniform string density profiles
[16]. Equation (3) defines the function

FðηÞ ¼ ½ϕðηÞ=η�1=2; ð4Þ

called the color suppression factor, which reflects the effects
of the interaction between strings on the observables of the
system [11]. Combining Eqs. (1), (2), and (4), we get [17]

μ ¼ NFðηÞμ1; ð5Þ

hp2
Ti ¼ hp2

Ti1=FðηÞ: ð6Þ

Note that for diluted systems, η → 0 and FðηÞ → 1, hence
μ ¼ Nμ1 and hp2

Ti ¼ hp2
Ti1. However, since FðηÞ is a

decreasing function, a colliding system produces less
charged particles with higher momentum as η increases,
which can be understood as a consequence of the string
clustering process. Additionally, Eq. (6) encodes the
dependence on the centrality, energy, and sizes of the
collision of the average of transverse momentum of pro-
duced particles. This determines the slope of the low pT
distribution and thus the radial flow. A detailed study of the
comparison with data of the pT distribution and fluctuations
from a color string percolation approach can be seen in
Refs. [18,19].
On the other hand, it is well known that the Schwinger

mechanism dN=dp2
T ∼ e−πp

2
T=x

2

dictates the transverse
momentum distribution of the produced particles [20–22],
with x being the string tension (color field), which is
expected to fluctuate. Assuming a Gaussian distribution
for the chromoelectric field [23] with variance hx2i, the
Schwinger distribution becomes dN=dp2

T ∼ e−βpT , where
β ¼ ð2π=hx2iÞ1=2 [24]. Note the similarity between the
latter and the Boltzmann distribution. In this way, β can
be understood as a measure of the inverse of the tempera-
ture of the system [25]. To determine hx2i, it is necessary
to compute hp2

Ti from the Schwinger mechanism.
Then averaging over the tension fluctuations, we get
hp2

Ti ¼ hx2i=π. Using Eq. (6), we can define a dimension-
less temperature for the color string percolation model as

T�ðηÞ ¼ hp2
Ti−1=21 TðηÞ ¼ ½2FðηÞ�−1=2: ð7Þ

This local temperature becomes the temperature of the
thermal distribution as clusters grow and cover most of the
collision surface [24]. So the quark-gluon plasma for-
mation can be associated with the emergence of the
spanning cluster [26–28] and then the transition temper-
ature can be defined as the evaluation of the temperature
(7) at the percolation threshold (ηc), i.e., Tc ¼ TðηcÞ. The
value of hp2

Ti1 can be determined by comparing Tc in
Eq. (7) with the estimation made from other models, for
example, lattice QCD [29]. However, the dimensionless
temperature T�

c may be helpful in the analysis of the
behavior of observables through the order parameter ϵ ¼
ðT − TcÞ=Tc ¼ ðT� − T�

cÞ=T�
c which is independent of

hp2
Ti1 [14].
This paper aims to analyze the finite-size effects of the

dimensionless transition temperature as a function of
the system size. To do this for finite systems, we estimate
the percolation threshold and the area covered by disks by
computer simulation, then we compute the transition temper-
ature and the minimal center-of-mass energy required for the
formation of the QGP on pp and AA collisions. The main
result presented here is that such finite-size effects are
expressed as a power law in terms of the nucleon number.
This lets us estimate T�

c for different projectiles in the
collisions, from pp to PbPb.
In our simulations, we adopt the microcanonical ensem-

ble scheme developed by Mertens and Moore in Ref. [30]
for continuum percolation systems, so that strings are added
one by one in a square surface of side L. We then measure
the value of the observable O after adding exactly n strings,
which is denoted by On. Thus, the mean value of the
observable O at any value of η is estimated by convoluting
the set of values fOng and the Poisson distribution with
average α ¼ ηL2=πr20 [30], i.e.,

OðηÞ ¼ e−α
X∞
n¼0

On
αn

n!
: ð8Þ

We compute Poisson weights wn ∝ αn=n! by using the
recursive formula provided by Mertens and Moore in
Ref. [30]. By plugging the wn distribution instead of
Poisson weights in Eq. (8), it is necessary to normalize
the sum by dividing by

P
wn.

We apply this algorithm to estimate the percolation
threshold, area covered by disks, color suppression factor,
and temperature for color string percolation systems at
finite transverse plane.
To compute the percolation threshold, we randomly add

disk by disk over the square ½0; L� × ½0; L� until the
appearance of the spanning cluster. The Union-Find algo-
rithm is used for the clustering process. The spanning
cluster is detected when at least one string at the left border
and other at the opposite side belong to the same cluster.
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After the emergence of the spanning cluster, the simulation
is stopped, from which we obtain the critical number nc of
disks added. We compute the probability fn that a spanning
cluster appears after adding exactly n disks as the quotient
between the frequency of n and the total of trials performed.
Thus F n ¼

P
n
k¼0 fk defines the probability of observing

the spanning cluster after adding n disks in the system.
Therefore, we compute the percolation probability PðηÞ at
any filling factor by convoluting the distributionF n with the
Poisson distribution as in Eq. (8). The percolation proba-
bility has a sigmoid form whose width transition becomes
smaller as L increases. Moreover, in the thermodynamic
limit, PðηÞ is a Heaviside step functionHðη − ηcÞ, where ηc
is the percolation threshold [31]. In this way, the percolation
probability for finite L is well fitted to the function
PLðηÞ ¼ 0.5½1þ tanh ððη − ηcLÞ=ΔLÞ�. The subscript in P
and ηc point out their dependence on L. ΔL is the width of
the sigmoid transition for finite size systems [31,32]. The
estimation of ηc in the thermodynamic limit requires a
finite-size effects analysis on ηcL [30,33,34].
On the other hand, we use a grid sample method to

compute the area covered by disks ϕn after adding exactly n
strings. Our selection of the grid spacing is r0=20. Thus, ϕn

is approximated as N nr20=400L
2, where N n counts only

those cells whose center lies on a disk after adding exactly
n strings. It is expected that ϕn be a random variable
because the center of the strings are randomly allocated. We
thus define ϕ̄n as the average of ϕn over the number of trials
performed. Therefore, the fraction of covered area by disks
at any filling factor value is estimated using the convolution
in Eq. (8). Since the distribution ϕ̄n is estimated for a finite
number of strings, we perform the convolution for a finite
number of terms. The sum runs from Nmin ¼ n̄ − 5σ to
Nmax ¼ n̄þ 5σ, where n̄ ¼ bαc and σ ¼ bα1=2c. Therefore,
the critical area covered by disks is computed as

ϕcL ¼ e−αcL
XNmax

n¼Nmin

ϕ̄nwn=
XNmax

n¼Nmin

wn; ð9Þ

with αcL ¼ ηcLL2=πr20. In what follows, we use the latter
scheme to calculate the value of the color suppression
factor and dimensionless temperature at the percolation
threshold just by replacing ϕ̄n by Fn and T�

n, which are
computed as ðϕ̄nL2=nπr20Þ1=2 and ð2FnÞ−1=2, respectively.
In the simulations, we set the diameter of the strings as

the typical length of the system. This allows us to represent
the length side of the system as integer multiples of the
string diameter. To take into account the finite-size effects
on the percolation threshold and other observables of
interest, simulations were carried out by setting L ¼ 6, 8,
12, 16, 24, 32, 48, 64, 96, 128, 192, and 256. The data
analysis is achieved over a compilation of 104 trials for each
L value.

Figure 1(a) illustrates the percolation probability sigmoid
shape. Notice that the width transition ΔL becomes smaller
as L increases. This fact leads to the well-known scaling
relation ΔL ∝ L−1=ν, with ν the critical exponent associated
with the (cluster radii) correlation length [35]. This behavior
is depicted in Fig. 1(b), where ΔL is well described by a
linear function in a logarithmic scale whose slope corre-
sponds to the critical exponent. We found 1=ν ¼ 0.758ð7Þ
for the systems described above. This value agrees with the
existing result for percolation systems in two dimensions,
where 1=ν ¼ 0.75 [35].
The percolation threshold in the thermodynamic limit is

estimated by analyzing the scaling relation of ηc − ηcL as a
function of L, which is determined by two factors. The first
comes from the fact that the width transition scales as L−1=ν.
The second factor comes from the imposed boundary
conditions, which contributes another L−1=ν. These two
factors combine to give

ηc − ηcL ∝ L−2=ν; ð10Þ

leading to stronger finite-size effects than the universal
scaling relation for the percolation threshold. Figure 1(c)
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FIG. 1. (a) Percolation probability for finite-size systemswithL ¼
64 (solid line), 128 (dashed line), and 256 (dash-dotted line).
(b) Width transition ΔL (squares) of the percolation probability
as a function of the system side L. The dashed line is the
function fðLÞ ¼ aLb, with b ¼ −0.758ð7Þ. (c) Results of ηcL as
a function ofL. Note the suitable match between our results and the
functionmL−2=ν þ ηc (dashed line), with ηc ¼ 1.1279ð1Þ being the
estimation of the percolation threshold in the thermodynamic limit.
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shows the behavior of ηcL as a function of L−2=ν. Notice that
our results on the percolation threshold for finite systems
satisfy the scaling relation (10) even for small values of L.
The percolation threshold in the thermodynamic limit
(L → ∞) is determined by extrapolating the trendline of
the data. We found ηc ¼ 1.1279ð1Þ, which is in accordance
with the most precise value reported in the literature
(1.12808737(6)) [30].
In addition, from the analysis of the finite-size effects,

we found the following power-law behaviors for the area
covered by disks and critical color suppression factor

ϕc − ϕcL ∝ L−2; ð11Þ

Fc − FcL ∝ L−1.3; ð12Þ

respectively. Moreover, the average transverse momentum
squared at the percolation threshold behaves as

hp2
Tic − hp2

TicL ∝ L−1.33: ð13Þ

Note that the multiplicity diverges as L2 because μ is
proportional to the number of strings in the system. By
replacing N ¼ ηL2=S1 in Eq. (5), we can define the
multiplicity density as M ¼ μ=L2 ¼ ηFðηÞM1, with M1 ¼
μ1=S1 being the multiplicity density for a single string.
Thus, we found

Mc −McL ∝ L−1.66: ð14Þ

Figures 2(a)–2(d) show the scaling relations in
Eqs. (11)–(14), respectively. Error bars are computed as
the usual standard deviation, where the second moment is
calculated according to the convolution in Eq. (9).
Our estimation of the critical area covered by disks in the

thermodynamic limit is ϕc ¼ 0.6757ð7Þ, which agrees with
the best existing determination (0.67634831(2)) [30]. More-
over, we estimate Fc ¼ 0.7742ð1Þ, Mc=M1 ¼ 0.8731ð6Þ,
and hp2

Tic=hp2
Ti1 ¼ 1.2917ð2Þ in the thermodynamic limit.

These values are in agreement with those computed using the
information of ηc and ϕc reported in Ref. [30], whose estima-
tions are Fc¼0.77430816ð4Þ, Mc=M1 ¼ 0.87348726ð6Þ,
and hp2

Tic=hp2
Ti1 ¼ 1.29147548ð7Þ.

We recall that the transition temperature associated with
the quark-gluon plasma formation can be computed by
evaluating T at the percolation threshold. For the color
string percolation model we found that T�

cL satisfy

T�
c − T�

cL ∝ L−1.32; ð15Þ

where T�
cL is computed by means of the convolution in

Eq. (9). Figure 3 depicts this scaling behavior for our data
simulation of T�

cL. Another way to calculate T
�
cL consists of

computing the percolation probability as a function of the
temperature. SincePLðTÞ also exhibits a sigmoid shape,T�

cL

is estimated by using the aforementioned procedure. Both
methods give consistent results onT�

cL, which coincide up to
five decimals. Additionally, we estimate T�

c ¼ 0.80365ð8Þ
in the thermodynamic limit. As expected, our estimation
perfectly agrees with the value 0.80357808(3) computed
using the best determination of the percolation threshold and
the critical area covered by disks reported in Ref. [30].
Notice the scaling relation in (15) implicates that the
transition temperature of the quark-gluon plasma formation
is greater for small systems than for large ones.
To make contact with the experimental parameters of

collision physics, we enclose the transverse plane surface
for central collision with a square of side length
L ¼ RA=r0, with RA being the radius of the atomic nucleus,
given by RA ¼ r�0A

1=3
M , where AM is the nucleon number

and r�0 takes values between 1.2–1.3 fm [36]. Therefore, the
finite-size effects on the transition temperature can be
rewritten as a power law on the nucleon number as

T�
c − T�

cL ∝ A−0.44
M : ð16Þ

This last relation is helpful because we can estimate the
transition temperature for different kinds of projectiles, as
Fig. 3 illustrates. In the computation, we use r�0 ¼ 1.25ð5Þ
and r0 ¼ 0.25ð5Þ fm. The error propagation leads to
σL ≈ 0.2L and σTcL

≈ 0.08L−1.32, which are shown as
box errors in Fig. 3. We take AM ¼ 1 and AM ¼ 2 for

(a)

φ c
L

L-2

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.00 0.01 0.02 0.03

(b)

F
cL

L-1.3

0.69
0.70
0.71
0.72
0.73
0.74
0.75
0.76
0.77
0.78

0.00 0.02 0.04 0.06 0.08 0.10

(c)

M
cL

/M
1

L-1.66

0.85

0.90

0.95

1.00

1.05

1.10

0.00 0.02 0.04 0.06

(d)

<
p T

2 >
cL

/<
p T

2 >
1

L-1.33

1.28
1.30
1.32
1.34
1.36
1.38
1.40
1.42
1.44

0.00 0.02 0.04 0.06 0.08 0.10

FIG. 2. Area covered by disks (a), color suppression factor (b),
multiplicity density (c), and average transverse momentum
squared (d) at ηcL as a function of L. Dashed lines are the
corresponding scaling relation mLa þ b, with b ¼ 0.6757ð7Þ,
0.7742(1), 0.8731(6), and 1.2917(2) being the estimation in the
thermodynamic limit for ϕc, Fc, Mc=M1, and hp2

Tic=hp2
Ti1,

respectively. Error bars are computed as the square root of the
variance.

J. C. TEXCA GARCÍA et al. PHYS. REV. D 106, L031503 (2022)

L031503-4



pA-pp and dA collisions, respectively. For AA collisions,
we take AM as the value corresponding to the most
abundant isotope.
Additionally, it is possible to determine the center-of-

mass energy needed for the formation of the QGP. To do
this, we consider that the filling factor of strings distributed
on the transverse plane of pp collisions at center-of-mass
energy

ffiffiffi
s

p
is given by [37]

ηpp ¼ π

25

�
2þ 4

�
r0
Rp

�
2
� ffiffiffi

s
p
mp

�
2λ
�
; ð17Þ

where Rp ¼ 0.84–0.87 fm and mp ¼ 938 MeV=c2 are the
radius and mass of the proton, respectively. On the other
hand, the filling factor for central AA collisions is

ηAA ¼ ηppAαð ffiffi
s

p Þ
M ; ð18Þ

with

αð ffiffiffi
s

p Þ ¼ 1

3

�
1 −

1

1þ lnð ffiffiffiffiffiffiffiffiffi
s=s0

p þ 1Þ

�
: ð19Þ

Theparameters λ and
ffiffiffiffiffi
s0

p
canbe foundby fitting the adequate

experimental data, taking the values 245ð29Þ GeV=c2
and 0.201(3) [37], respectively. Since the onset of the QGP
is associated with the emergence of the spanning cluster,
the center-of-mass energy

ffiffiffiffi
sc

p
for central AA collisions is

estimated by solving the equation ηc þmA−2=3ν
M ¼ ηAA, with

m ¼ 0.316ð4Þ. In Fig. 4 we plot
ffiffiffiffi
sc

p
as a function of the

nucleon number. We estimate
ffiffiffiffi
sc

p ¼ 184ð15Þ GeV=c2 for
AuAu collisions. Notice that our estimation is in agreement
with the data analysis that claims the QGP signatures for
AuAu (

ffiffiffi
s

p ¼ 200 GeV=c2 at RHIC) collisions [38]. For
PbPb collisions we found

ffiffiffiffi
sc

p ¼ 182ð15Þ GeV=c2. This
explains why the QGP is obtained at LHC energies for these
experiments. In the case of pp collisions we estimateffiffiffiffi
sc

p ¼ 3.7ð5Þ TeV=c2, which is in agreement with the
results observed in experiments at

ffiffiffi
s

p ¼ 5.02 TeV=c2 at
LHC [39,40]. However, the formation of the QGP in pp
collisions is expected for high multiplicity events at lower
energies [41].
In summary, we presented the analysis of the finite-size

effects on the transition temperature of the QGP formation
associated with the emergence of the spanning cluster of
color strings. Through the radius of the atomic nucleus,
these effects are expressed as a power-law in terms of the
nucleon number, which allowed us to estimate the tran-
sition temperature for different projectiles and targets in
high energy collisions systems. We found that the transition
temperature is higher for small collision systems like pp or
pA collisions than for large ones, such as AuAu or PbPb
collisions. This means that systems of color strings formed
by pp or pA collisions need high filling factor values, which
require higher energy or very high multiplicity than those at
minimal triggering conditions events. In particular, we
estimate that pp collisions require about 20 times bigger
center-of-mass energy than AuAu or PbPb collisions for the
QGP formation.
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Our results could lead to finding scaling functions
that incorporate information on finite-size systems and
the filling factor for observables in the color string perco-
lation framework and other models. Moreover, results
presented here can be extended to consider other centralities,
fluctuations of the initial shape of the transverse plane,
nonuniform density profiles or interactions between strings.
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