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Spin correlations of Λ-hyperons embedded in the QCD strings formed in high energy collider
experiments provide unique insight into their locality and entanglement features. We show from general
considerations that, while the Clauser-Horne-Shimony-Holt inequality is less stringent for such states, they
provide a benchmark for quantum-to-classical transitions induced by varying (i) the associated hadron
multiplicity, (ii) the spin of nucleons, (iii) the separation in rapidity between pairs, and (iv) the kinematic
regimes accessed. These studies also enable the extraction of quantitative measures of quantum
entanglement. We first explore such questions within a simple model of a QCD string composed of
singlets of two partial distinguishable fermion flavors and compare analytical results to those obtained on
quantum hardware. We further discuss a class of spin Hamiltonians that model the dynamics of Λ spin
correlations. Prospects for extracting quantum features of QCD strings from hyperon measurements at
current and future colliders are outlined.
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The promise of solving ab initio real-time many-body
problems in quantum field theory motivates the interest
in quantum information science (QIS) for high energy
physics [1]. For instance, an outstanding problem in
quantum chromodynamics (QCD) at high energies is the
origin of “ridge” [2] long-range rapidity correlations which
offer unique insight into the thermalization process in the
quark-gluon plasma (QGP) [3]. While answers to these
questions will only be obtained past the noisy intermediate
scale quantum (NISQ) era, focused questions on problems
universal to simpler systems can provide valuable answers
sooner [4–20].
In the case of the ridge correlations, QIS studies

may help identify (and classify) intrinsically quantum
features such as Hanbury-Brown–Twiss and Bose-
enhanced gluon correlations [21,22] arising from the
entanglement of partons (quarks, antiquarks, and gluons)

within an ensemble of QCD strings [23,24]. Their dy-
namics is presently only implemented classically in
Monte Carlo (MC) generators that simulate collider events
[25]. Further, quantum correlations of partons are not easily
separable from those arising from their rescattering [26]
with increasing density in the string ensemble. Useful
lessons on such quantum-to-classical transitions may come
from tabletop experiments with ultracold atomic gases [27];
a powerful example of this synergy is provided by the
nonthermal fixed points universal to QGP thermalization
and ultracold atomic gases [28,29].
Quantum correlations within QCD strings or string

ensembles can be studied at electron-positron (eþe−)
colliders [30], in deeply inelastic electron-proton scattering
(DIS) experiments [31,32], and in hadronic collisions [33].
For example, a remarkable observation in collider data that
is suggestive of the role of entanglement is the apparent
thermal distribution of small numbers of produced particles
in a QCD string [34,35].
In this paper, we will explore the possibility that Λ and

Λ̄-hyperon spin correlations provide novel insight into
intrinsically quantum features of many-body parton
dynamics. Such measurements are feasible because the
weak decay Λ → π− þ p allows one to extract the Λ’s
(and analogously, that of Λ̄) spin polarization to be
P ¼ αâ, where â denotes the direction of the daughter
proton’s momentum in the Λ rest frame, and α ≈ 0.750
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[36].1 The use of Λ-hyperon spin correlations in QIS was
first suggested in [38] as a test2 of local hidden variable
theory (LHVT) [42–44] by employing the Clauser-Horne-
Shimony-Holt (CHSH) [45] inequality

jEðâ; b̂Þ − Eðâ; b̂0Þj þ jEðâ0; b̂0Þ þ Eðâ0; b̂Þj ≤ 2; ð1Þ

where Eðâ; b̂Þ ¼ hψ jâ · σ1b̂ · σ2jψi with â and b̂ corre-
sponding to the momentum directions of the daughter
particles.3 Measured violations of the CHSH inequality
imply a violation of LHVT. However, these Bell-type tests,
while interesting, are unlikely to provide stronger constraints
on LHVT beyond that of tabletop experiments.4 Further, ΛΛ̄
correlations in a QCD string reflect the dynamics of many-
body mixed states for which the CHSH test in [38] is
inapplicable. Nevertheless, as we will discuss, a modified
CHSH inequality, and related entanglement measures, can
help quantify dynamical quantum-to-classical transitions in
such systems.
We will first demonstrate a general proof of a modified

LHVT test for mixed states, discuss its relation to entan-
glement measures, and describe their possible implications
for quantum-to-classical transitions. To address quantum
dynamics in multiparticle production at colliders, we will
first apply this framework to a simple string model and
explore how hyperon correlations are washed away with
increasing multiplicity. We then discuss a class of spin
Hamiltonians that capture their underlying parton dynam-
ics. Simulations of ΛΛ̄ correlations are discussed next, with
particular attention to their implementation on quantum
hardware. Finally, we address experimental opportunities
in extracting quantum information from measurements.
The Supplemental Material provides details of these
measurements [49].
Consider the two-particle correlation function (or equiv-

alently a joint probability distribution),

hnâ; nb̂i
hnâihnb̂i

¼ Pðâ; b̂Þ
PðâÞPðb̂Þ ; ð2Þ

where nâ (nb̂) indicates the number of daughter particles
with momentum direction â (b̂) measured in a single event,
and h� � �i denotes the ensemble average. The count pair
in the numerator is from the same event; those in the
denominator are from different events.
We now discuss a theorem that encompasses how

nonlocality and entanglement manifest in Eq. (2). For

simplicity, we consider spins in the x − z decay plane of
the Bloch sphere and assume jPj ¼ 1, indicating perfect
discrimination between spin-up and spin-down. Thus a
daughter proton (or pion) decaying along â signifies a
parent hyperon spin state of spin-up along â. The realistic
determination of the spin direction is described later in the
text and in the Supplemental Material [49].
The general spin state of the two spin-1

2
hyperons [with

angles θa (θb) of spin directions â (b̂)] relative to the z axis
of the system can be represented by a density matrix
ρab ¼

P
4
i¼1

P
4
j¼1 λijjBiihBjj in the Bell basis,

jB1i ¼
j00i þ j11iffiffiffi

2
p ; jB2i ¼

j00i − j11ffiffiffi
2

p ;

jB3i ¼
j01i þ j10iffiffiffi

2
p ; jB4i ¼

j01i − j10iffiffiffi
2

p ; ð3Þ

with λij real due to spins being in the x − z plane.
Computing Pðâ; b̂Þ ¼ TrðjθaijθbihθajhθbjρabÞ and like-
wise, PðâÞ ¼ TrðjθaihθajρaÞ, with ρa ¼ TrbðρabÞ, and
assuming both probabilities only depend on θa − θb (rota-
tional invariance, which sets λ22 ¼ λ33), and Pðâ; b̂Þ ¼
Pðb̂; âÞ (which sets λij ¼ 0, i ≠ j), we obtain

Pðâ; b̂Þ
PðâÞPðb̂Þ ¼ 1þ ðλ11 − λ44Þ cosðθa − θbÞ: ð4Þ

We therefore conclude the following:
Theorem.—A symmetric, rotationally invariant correla-

tion function implies that the measured state ρab is diagonal
in the Bell basis, with λ22 ¼ λ33.
In the context of the generalized CHSH inequality

[50,51] for mixed two-particle spin-1
2
states diagonal in

the Bell basis [with Eðâ; b̂Þ ¼ Eðθa − θbÞ≡ EðθabÞ and
coplanar spin axes â; â0; b̂; b̂0], Eq. (1) reduces to the one-
parameter inequality

8
<

:

jEðθabÞj ≤ C
�
1 − 2jθabj

π

�
; jθabj ≤ π

2

jEðθabÞj ≤ C
�
1 − 2ðπ−jθabjÞ

π

�
; π=2 ≤ jθabj ≤ π;

ð5Þ

where C ¼ jλ44 − λ11j. We can obtain EðθabÞ from the
numerator of the measured two-particle correlation
function as EðθabÞ ¼ 1

4
ðPðâ; b̂Þ þPð−â;−b̂Þ−Pð−â; b̂Þ−

Pðâ;−b̂Þ, which gives

EðθabÞ ¼ ðλ11 − λ44Þ cosðθabÞ: ð6Þ

Comparing Eq. (6) to Eq. (5) leads us to a corollary to our
theorem:
Corollary 1.—A symmetric, rotationally invariant cor-

relation function implies that the measured state ρab

1This value updates that of 0.642 quoted in Ref. [37].
2It was further examined in the context of eþe− collisions [39]

and for top-quark and Higgs measurements at colliders [40,41].
3Note that the Pauli operator σi acts on particle i, and we

denote spin-up as 1 and spin-down as −1.
4For discussions of precision LHVT tests, with emphases on

potential loopholes, see [46–48].
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violates its related CHSH inequality, indicating incompat-
ibility with LHVT.
As the theorem and corollary indicate, the CHSH

inequality is violated more easily for our mixed hyperon
states relative to pure states. The above criteria are therefore
sufficient to negate classical/deterministic explanations of
their spin correlations.
In quantifying entanglement, of several possible mea-

sures [52], entanglement fidelity defined as

F i ¼ hBijρabjBii≡ λii ð7Þ

is the most straightforward to extract from measured ΛΛ̄
spin correlations with ρab entangled if F i > 1

2
. Since the

coefficient of cosðθabÞ in Eq. (4) is λ11 − λ44, we obtain a
second corollary to our theorem:
Corollary 2.—If the magnitude of the coefficient of

cosðθabÞ in a symmetric rotationally invariant correlation
function is > 1

2
, then the measured state ρab is entangled.

The criterion F i > 1
2
is sufficient but not necessary for

entanglement. A necessary and sufficient entanglement
measure, albeit more challenging to extract at colliders,
is the Peres-Horodecki positive partial transpose (PPT)
criterion [53,54]; it is discussed at length in the
Supplemental Material [49].
Our theorem and corollaries provide a novel approach to

quantifying quantum-to-classical transitions in many-body
systems. For example, the aforementioned ridge effect for
ΛΛ̄ correlations could arise from hydrodynamic flow (the
LHVT) in high multiplicity events. As we would anticipate,
rotational invariance of the correlations is broken because
of a preferred “reaction plane” in such events. The con-
verse, a quantum effect that breaks rotational invariance,
is feasible; however, since microscopic interactions in
QCD respect rotational invariance, its observed violation
with increasing multiplicity signals onset of a quantum-to-
classical transition.
To flesh out these general results, and in particular

ascertain the role of entanglement, we will first consider
a very simple spin model for Λ-hyperons embedded in a
QCD string. Here heavy strange-antistrange quarks (ss̄) are
mixed up with light parton pairs of one other flavor uū
along the QCD string. Hadronization in this picture
corresponds to the parton ensemble of s; s̄; u, and ū being
grouped, after hadronization, into spin singlets with pos-
sible singlet combinations5 being ss̄, us̄, sū, and uū. For N
partons, there are a singlets of type ss̄, b=2 singlets of type
sū, b=2 singlets of type us̄, and N=2 − a − b singlets of
type uū. Hence there are 2aþ b particles of type s or s̄ and
N − 2a − b particles of type u or ū. We assume the ground
state wave function of parton singlets corresponds to their
occupying the lowest N=2 energy levels of the string, with

ss̄ on levels 1.::a, sū on levels aþ 1.::aþ b=2, us̄ on levels
aþ b=2þ 1…aþ b, and uū on levels aþ bþ 1.::N=2;
the relevant aspect for us is the orthogonality of individual
wave functions.
The explicit computation of ss̄, sū, and uū correlations is

worked out in the Supplemental Material [49]; for the ss̄
(ΛΛ̄) correlations,

Pðjn̂1i; jn̂2iÞ
Pðjn̂1iÞPðjn̂2iÞ

¼ 1 −
a

ðaþ b=2Þ2 cosðθ2 − θ1Þ: ð8Þ

This result depends on a and b since they are the only
parameters that determine the number of ss̄, sū, and us̄
singlets. It clearly violates the CHSH inequality for mixed
states for all values of a and b. The coefficient of the cosine
is plotted for various a and b in Fig. 1. As may be
anticipated, adding mixed singlets, or having b > 0,
decreases the entanglement fidelity since their indistin-
guishability washes out the spin correlation. The corre-
sponding PPT entanglement criterion for this model is
discussed in the Supplemental Material [49].
Our toy model shows that, even though entanglement

fidelity is washed away, nonlocality can persist; for locality
to emerge necessitates further many-body interactions that
break rotational invariance, generating classical correlations.
QIS discussions of stringy phenomena are dominantly in

the Schwinger model and its variants [34,35]. However,
since ΛΛ̄ correlations are a promising probe of quantum
features of strings, models where heavy strange quarks
interact with light up/down quarks provide novel insight. A
good starting point is the Anderson model of localized
impurities coupled to delocalized fermion spins [55],

HAnderson ¼
X

kσ

ϵka
†
kσakσ þ ϵdd

†
σdσ þ Ud†↑d↑d

†
↓d↓

þ ηffiffiffiffi
V

p ðd†σakσ þ a†kσdσÞ: ð9Þ

FIG. 1. The coefficient a
ðaþb=2Þ2 in Eq. (8) plotted for various a

and b corresponding to ss̄ and us̄ðsūÞ pairs in the string. A
coefficient greater than 1

2
satisfies the entanglement fidelity

criterion.

5These are proxies for ΛΛ̄, kaon, and pion states, respectively;
up and down quark pairs are taken as indistinguishable.
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Here the d†σðdσÞ’s denote the localized impurities with spins
σ (denoting heavy strange quarks carrying Λ spin [56,57])
and the a†σðaσÞ’s represent the delocalized fermions (light
up and down quarks); the first two terms in the Hamiltonian
are their respective kinetic energies. The third term is a
Hubbard-type hopping term for the light quarks and the
final term denotes their spin coupling to the strange quark
impurities. This last term “screens” the formation of ΛΛ̄
singlets. A Schrieffer-Wolff transformation [58], with the
impurity kinetic energy ϵd below the Fermi energy recovers
the Kondo Hamiltonian, describing the net spin coupling of
delocalized fermions to the impurity spin S.
Further insight into correlations between the ΛΛ̄ pairs

“doping” the QCD string is obtained in an extension of
the Kondo model,6 whose ground state is a filled Fermi sea
of light fermions and impurities, with additional phase
factors denoting their spatial locations. Eliminating exci-
tations of the Fermi sea via another Schrieffer-Wolff
transformation results in an effective Hamiltonian of
localized impurities with interactions mediated by the
exchange of virtual electron-hole pairs.
This Ruderman-Kittel-Kasuya-Yoshida (RKKY) effective

Hamiltonian [60–62] mimics the QCD string at small values
of the DIS Bjorken x variable, where a large multiplicity
of light quark/gluon pairs either screen or antiscreen the
correlations between Λ-hyperons, taking the form

HRKKY ¼
X

jj0
Sj · Sj0JRKKYðRj − Rj0 Þ; ð10Þ

with

JRKKYðRÞ ¼
−J2

ðkFRÞ4
½sin ð2kFRÞ − 2kFR cos ð2kFRÞ�;

where kF is the Fermi momentum. It is ferromagnetic at
short distances but has alternating sign at larger distances,
suggestive of glassy dynamics.
While the RKKY model is a good model of ΛΛ̄

correlations for small x, a better fit for the “impurity
doped” QCD string at large x is the Anderson model with
multiple impurities [63]. In analogy to a quantum phase
transition proposed [64] between Kondo and RKKY
regimes, it would be interesting to investigate consequences
of the increased multiplicity of QCD strings with varying
Bjorken x. In polarized DIS, valence quark spin plays
an analogous role to a magnetic field providing an
additional handle on simulating string dynamics. Thus
mapping the rich dynamics of the Anderson/Kondo model,
“tuned” appropriately to measurements of ΛΛ̄ correlations
embedded in QCD strings, offers a novel direction in QIS
studies of hadronization at colliders.

There are several classical approaches to simulating
the ground state properties of the aforementioned spin
Hamiltonians [63,65–68]. However, such Hamiltonians
suffer from a severe dynamical sign problem that afflicts
the extraction of real-time correlations [69]. Since the
formation, evolution, and fragmentation of QCD strings
are dynamical real-time problems, they are susceptible to
the sign problem even in lower-dimensional incarnations.
Quantum computers do not suffer from this problem,

with benchmark computations performed for the Ising
model in an external magnetic field [70]. The quantum
computation of Anderson and Kondo lattices has been
discussed previously [71]; digital simulations of these
Hamiltonians, adapted to the QCD string, are in progress.
As a first step, we wrote down quantum circuits for our

toy model and performed computations on IBM’s QISKIT

quantum simulator [72] and on IBM Q quantum hardware,

(a)

(b)

FIG. 2. (a) One of 16 circuits necessary to initialize and
simulate the state ofN ¼ 8 particles with a ¼ 1 ss̄ singlets, b ¼ 2
sū and us̄ singlets, and one uū singlet. Here, each qubit qi carries
the spin information of one of the N ¼ 8 particles, while the
classical register c stores the value of the qubit obtained after
measurement. The barrier separates initialization from simulation
of the correlation function. (b) Quantum simulation results for the
ss̄ correlation function compared to the prediction in Eq. (8).
Correlations obtained from the IBM Q Melbourne quantum
computer are smaller than our analytical calculation due to
quantum hardware noise; this hardware error will pose even
greater restrictions for simulations of larger ensembles N.

6See [59] for a similar discussion of heavy flavor impurities in
quark matter at high baryon densities.
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specifically ibmq_16_melbourne containing 14 qubits [73].
This computation is outlined in the Supplemental Material
[49]. In Fig. 2(a), we show one of the 16 circuits necessary
to generate and simulate the mixed spin density matrix for
the case of N ¼ 8 spin-1=2 fermions, with a ¼ 1 (one ss̄
pair), b ¼ 2 (one sū and s̄u singlet each), and N=2 − a − b,
one uū singlet. In Fig. 2(b), we show the analytical result
from Eq. (8) compared to the result from the QISKIT

simulator; we find good agreement. In contrast, the agree-
ment with actual quantum hardware is not good, illustrating
the challenge of reliable quantum simulation in the
NISQ era.
Finally, we discuss the experimental opportunities in

measuring ΛΛ̄ correlations at colliders. The Λ and Λ̄ spins
are measured in terms of their polarization, where the decay
kinematics on an event-averaged basis reflects their spin
projections [74–87]. The CHSH inequality and entangle-
ment measures are extracted from the correlation of their
relative spin projections, illustrated in Fig. 3 and written as
N ∝ 1þ α2PΛ;Λ cos ðnθabÞ, where n is a free parameter that
can be determined by the measurement and is expected to
be less than unity due to a convolution between the intrinsic
CHSH cosine modulation and the Λ decay kinematics.7 As
noted, α ¼ 0.750� 0.010 [36], θab is the relative angle
between daughter particles in their respective mother’s rest
frame, and a nonzero PΛ;Λ implies their spin correlation.
Currently, no MC generators implement spin entangle-

ment at the parton level, providing a clear (null result)
experimental baseline for entanglement searches.
Specifically, we can simulate “by hand” spin entanglement
in the PYTHIA 8 MC event generator [88]; the Supplemental

Material discusses in detail simulation results and exper-
imental measurements [49].
In summary, we derived in this paper a modification of

the CHSH inequality, and related entanglement measures,
for mixed states. These are powerful tools in quantifying
quantum-to-classical transitions in the many-body dynam-
ics of strings in the collider environment. We further
constructed theoretical models to capture the quantum
dynamics of QCD strings with embedded hyperons and
discussed how these can be extracted from ΛΛ̄ correlations.
With a longer term view of QIS, we performed first
simulations on quantum hardware; these provide a bench-
mark and illustrate the current challenges in reliable
extraction of quantum information. Further systematic
studies implementing quantum error correction, state
preparation, Trotter evolution, and entanglement measures
will be reported separately. MC simulations of Λ correla-
tion measurements at colliders suggest that prospects for
extracting information on quantum-to-classical transitions
in QCD strings are promising.

We thank Robert Konik for discussions on spin
Hamiltonians, Elke-Caroline Aschenauer for discussions
on spin polarization measurements, and Alexander Jentsch
for discussions of Λ particle detection in the far-forward
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work of W. G. is supported in part by the U.S. Department
of Energy, Office of Science, Office of Workforce
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the Science Undergraduate Laboratory Internships Program
(SULI). Access to IBM’s quantum hardware is provided
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the S. N. Bose Scholars Program, jointly funded by the
Government of India [Department of Science and
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(SERB)], Indo-U.S. Science and Technology Forum
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FIG. 3. Illustration of double Λ polarization; here â (b̂) denotes
the momentum direction of ΛA (ΛB) daughter particle in the ΛA
(ΛB) rest frame.

7The cosine modulation in Eq. (8) and in Λ decays are of
different origin.
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