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We construct an infinite class of new ultraviolet-complete four-graviton scattering amplitudes
that reduce to Einstein gravity at low energies, vanish at high energies, are meromorphic, and exhibit
a triple-product structure AðsÞAðtÞAðuÞ. The spectrum invariantly exhibits accumulation points in the
form of infinite towers of states on each mass pole, whose residue can be positively expanded on tree-level
exchanges of irreducible representations of the Lorentz group.
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I. INTRODUCTION

At energies below the Planck scale, general relativity
can be treated as an effective field theory (EFT), with
Feynman rules computable in perturbative quantum
gravity. However, at high energies, perturbative unitarity
breaks down. This is easily visible from the tree-level four-
graviton scattering amplitude,

Mgrav ¼
κ2R4

stu
; ð1Þ

where κ2 ¼ 8πG is the gravitational coupling, R4 is a
kinematic invariant of polarization tensors that can bewritten
as the contraction of four linearized Riemann tensors [1], and
in terms of incomingmomenta, theMandelstamvariables are
s ¼ −ðp1 þ p2Þ2, t ¼ −ðp2 þ p3Þ2, and u ¼ −s − t for a
mostly plus metric. Since Mgrav ∝ E2=m2

Pl, the amplitude
diverges with characteristic scale mPl, leading to a break-
down of perturbative unitarity beyond the Planck scale
directly analogous to the failure of perturbative unitarity
in WW scattering at the weak scale in the absence of
the Higgs.
A UV-complete gravitational theory is expected to

provide a unitarized four-graviton amplitude; therefore,
consistency constraints on the latter presents an avenue to
bootstrap the theory of quantum gravity. Constraints such

as unitarity and causality are often encoded in the analytic
behavior of the scattering amplitude. Let us consider a
perturbative completion, in which case the graviton loops
are suppressed, so that the amplitude is analytic, but for
poles, at low energies. Indeed, working with tree-level
completions has led to tremendous insight into the UV
spectrum stemming from causality constraints [2], as well
as the EFT beyond the leading Einstein-Hilbert action
from the combined requirements of causality, unitarity, and
crossing [3–8]. Moreover, as shown via ℏ counting in
Ref. [8], any theory that perturbatively unitarizes Einstein-
Hilbert graviton scattering must do so at tree level.
Another obvious reason for considering tree-level ampli-

tudes is that perturbative string theories with 1=
ffiffiffiffi
α0

p
≪ mPl,

along with their deformations [9], provide explicit examples
of tree-level completions of gravity. Consider the celebrated
four-graviton amplitude for the type-II superstring,

Mtype-II ¼ −
κ2R4Γð− α0

4
sÞΓð− α0

4
tÞΓð− α0

4
uÞ

Γð1þ α0
4
sÞΓð1þ α0

4
tÞΓð1þ α0

4
uÞ ; ð2Þ

which reproduces Eq. (1) at low energies. An interesting
feature of this solution is that it is a triple product,

Mtype-II ¼ κ2R4AðsÞAðtÞAðuÞ; ð3Þ

where AðsÞ ¼ −Γð− α0
4
sÞ=Γð1þ α0

4
sÞ. Note that AðsÞ has a

simple pole with residue ð−1Þn=ðn!Þ2 at nonnegative integer
n and vanishes as s → þ∞. The four-U(1) amplitude of the
heterotic string and four-tachyon amplitude of the bosonic
string can also written as triple products. Taking this fact as
inspiration, we ask if there exist other UV completions of the
graviton amplitude that admit the form (3). As it turns out,
there are an infinite number of such amplitudes if one permits
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accumulation points, by which we mean, following the
terminology of Refs. [3,10], a theory with an infinite number
of states at a given mass.
Accumulation-point amplitudes appear to play a special

role in low-energy EFT bounds. Indeed, for a massless
scalar, it was shown in Ref. [11] that a triple-product form
with a single pole, AðsÞ ¼ 1=ðm2 − sÞ, plays a special role
in spanning the space of consistent EFTs (see Ref. [12] for
the role of Coon’s amplitude [13,14] in such a context).
This amplitude contains an infinite tower of higher-spin
states of massm, since the pole at s ¼ m2 inAðsÞAðtÞAðuÞ
becomes an infinite series in cos θ for scattering angle θ.
The existence of such accumulation-point amplitudes was
also conjectured to be important in spanning the gravita-
tional EFT [7]. In this work, we aim to construct such
amplitudes. In our ansatz, we are modeling a tree-level
completion and thus consider a spectrum with distinct,
isolated poles, i.e., meromorphic amplitudes, in contrast to
Coon’s generalization of the Veneziano amplitude, which
involves an infinite accumulating sequence of distinct poles
and thus fails to be analytic. Motivated by the behavior of
Eq. (2), we will require our AðsÞ to contain only simple
poles and vanish as s → þ∞.
While we do not identify a model—e.g., a Hamiltonian

or Lagrangian description—corresponding to our ampli-
tudes, taking the bootstraplike approach of directly building
the amplitudes themselves first can be useful in under-
standing the necessary characteristics of a UV completion
of gravity. Such an approach has the notable historical
precedent of the construction of the Veneziano amplitude
[15], which preceded its interpretation as a theory of
strings [16].
This paper is structured as follows. We construct an

infinite-parameter generalization of the massive-pole prod-
uct amplitude for scalar scattering of Ref. [11] and prove
that it is unitary. Using this as a starting point, we then build
UV-soft gravitational amplitudes with a particular triple-
product structure. Computing the partial waves for arbitrary
spectra, we confirm that our amplitudes are unitary. We
subsequently consider the large-spin limit and discuss soft
theorems, causality, and a potentially related construction
in string theory.

II. TRIPLE-PRODUCT AMPLITUDES

Consider a function describing the general s-channel
exchange of an arbitrary tower of states:

AðsÞ ¼
X
n

g2n
−sþm2

n
; ð4Þ

where the gn are arbitrary real couplings and the m2
n > 0

describe an arbitrary spectrum of distinct masses. From
AðsÞ, let us define a four-point amplitude for massless
scalar scattering,

M ¼ AðsÞAðtÞAðuÞ: ð5Þ

By construction, M is Bose symmetric.
The residues of M have a positive expansion on the

Gegenbauer polyonomials, as required by unitarity, in
arbitrary spacetime dimension D. To see this, let us define
the residue at s ¼ m2

n as Rn ¼ lims→m2
n
ð−sþm2

nÞM ¼P
i;j R

ij
n , where

Rij
n ¼ g2ng2i g

2
j

ð−tþm2
i Þðtþm2

n þm2
jÞ
: ð6Þ

Note that the sum in i, j will pick out the symmetric part of
Rij

n . We further define the rescaled mass parameters,

M2
i;n ¼ 1þ 2m2

i

m2
n
> 1; ð7Þ

and write the scattering angle in terms of cos θ ¼ x [where
t ¼ m2

nðx − 1Þ=2 on the massive pole], in terms of which
the symmetrized residue is

RðijÞ
n ¼ 4g2ng2i g

2
j

m4
nðM2

i;n þM2
j;nÞ

M2
i;n

M4
i;n − x2

þ ði ↔ jÞ; ð8Þ

where TðijÞ ¼ ðTij þ TjiÞ=2. Since M2
i;n;M

2
j;n > 1 and

jxj ≤ 1, we can rewrite the result as a geometric series
in x2 resulting in a positive-definite polynomial. Since the
monomial x2k has a strictly positive expansion in the
Gegenbauer polynomials,

x2k ¼
Xk
l¼0

ð2kÞ!ðαþ 2lÞΓðαþ 1Þ
α22kðk − lÞ!Γðαþ 1þ kþ lÞC

ðαÞ
2l ðxÞ; ð9Þ

this immediately implies that the residue has a positive
partial-wave expansion in any dimension, so M in Eq. (5)
is indeed unitary.
It will be useful to have the explicit form of the partial-

wave expansion, RnðxÞ ¼
P∞

l¼0 a
ðnÞ
l CðαÞ

l ðxÞ, where CðαÞ
l

are the Gegenbauer polynomials and α ¼ ðD − 3Þ=2.
Odd-l partial waves will vanish since t ↔ u crossing
symmetry implies that R is even in x. Let us compute a
useful integral for even l,

IðαÞl ðvÞ ¼
Z þ1

−1

ð1 − x2Þα−1
2

v2 − x2
CðαÞ
l ðxÞdx

¼ πΓðlþ 2αÞ2F1ðlþ1
2
; lþ2

2
;lþ 1þ α; 1

v2Þ
22αþl−1vlþ2ΓðαÞΓðlþ 1þ αÞ : ð10Þ

Using orthogonality of the Gegenbauer polynomials,Rþ1
−1 CðαÞ

l ðxÞCðαÞ
m ðxÞð1 − x2Þα−1

2dx ¼ δlm=F
ðαÞ
l , where
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FðαÞ
l ¼ fl!ðlþ αÞ½ΓðαÞ�2g=½π21−2αΓðlþ 2αÞ� is a nor-

malization, we find the even-spin partial waves,

aðnÞl ¼ 8g2nF
ðαÞ
l

m4
n

X
i;j

g2i g
2
jM

2
i;nI

ðαÞ
l ðM2

i;nÞ
M2

i;n þM2
j;n

; ð11Þ

which are all positive since IðαÞl ðvÞ > 0. The amplitude M
therefore describes the unitary exchange of an infinite
tower of even higher-spin states at each of the masses mn.

III. GRAVITATIONAL TRIPLE PRODUCT

We will now find that there is a very intriguing variation
on the triple-product amplitude introduced above that will
allow us to accommodate gravity. In particular, consider

AðsÞ ¼ 1

s
þ
X∞
n¼1

g2n
−sþm2

n
ð12Þ

for gn, mn arbitrary parameters and (nonzero real) masses,
respectively [17], and where the sum can also be taken to be
finite. As before, we take the sequence of mn to be free of
accumulation points, so thatA is meromorphic. Imposing a
single requirement on the gn,

X∞
n¼1

g2n ¼ 1; ð13Þ

we will find the remarkable result that the triple-product
amplitude,

M ¼ κ2R4AðsÞAðtÞAðuÞ; ð14Þ

with A as given in Eq. (12), unitarizes graviton scattering.
That is, M in Eq. (14) reduces to Mgrav in the IR while
satisfying perturbative unitarity in the UV and obeying
unitarity with all nonnegative partial waves on each pole.
The coupling constraint (13) enables perturbative

unitarity, since for high-energy fixed-angle scattering
M ∝ ð1 −P

n g
2
nÞ3E2, while with Eq. (13) this is dramati-

cally softened to M ∝ E−4. Similarly, in the Regge limit
of large s and fixed t, M ∝ ð1 −P

n g
2
nÞ2s2 for general

couplings, but with Eq. (13) this improves to M ∝ s0, in
both cases satisfying the bound in Ref. [18].

IV. PARTIAL WAVES

Let us compute the partial waves for our amplitude
M on its various massless and massive residues, all
of which we must prove are positive to guarantee uni-
tarity. Unitarity of string amplitudes was established in
Refs. [19–21]. Recently, Ref. [22] further showed that the
R4 itself prefactor can be written as a positive expansion of
exchanges of irreps in D ≤ 10. Thus, if the residue of the

triple productAðsÞAðtÞAðuÞ itself has a positive expansion
on the Gegenbauer polynomials, then this tells us that the
residue of M corresponds to the exchange of tensor
products of irreps with positive coefficients.
We note that convergence of the partial-wave expansion

will as usual require D ≥ 5 due to the t-channel singularity.
(That is, t ∝ θ−2 in the forward limit, while the volume
measure goes like dΩ ∼ θD−3dθ, leading to a partial-wave
divergence in D ¼ 4 [23].) As before, t ↔ u crossing
symmetry ensures that only even-l partial waves contribute.
Let us first consider the residue on the massless s ¼ 0

pole, R0 ¼ lims→0ð−sÞAðsÞAðtÞAðuÞ,

R0 ¼
�
1

t
þ
X∞
i¼1

g2i
−tþm2

i

��
1

t
þ
X∞
j¼1

g2j
−t −m2

j

�

¼
X
i;j

g2i g
2
j

�
1

t
þ 1

−tþm2
i

��
1

t
þ 1

−t −m2
j

�
; ð15Þ

where in the second line we used Eq. (13). Rewriting as a
series and rearranging, we obtain

R0 ¼
X
i;j

g2i g
2
j

m2
i þm2

j

X∞
l≥0
even

tl−2
�
m2

i

m2l
j

þ m2
j

m2l
i

�
> 0: ð16Þ

The overall R4 scales like t4, so the t−2 term in the residue
corresponds to the spin-two Einstein-Hilbert contribution,
while the remaining terms form an infinite series with even
degree in t and all positive coefficients. If we insist on
interpreting these extra terms as the exchange of higher-
spin states, the positivity of its coefficient is consistent
with unitarity. To see this, we will useD ¼ 4 for simplicity,
even though the partial-wave expansion will ultimately
require D ≥ 5. For ðþ;þ;−;−Þ helicity configuration, the
s-channel exchange of an even-l state has residue given by

Mð1þ2; 2þ2; PþlÞ ×Mð3−2; 4−2;−P−lÞ

¼ ð½1P�½P2�Þl
½12�l−4

ðh3PihP4iÞl
h34il−4 ¼ ½12�4h34i4tl; ð17Þ

where we have used P ¼ p3 þ p4 to simplify to the last
equality, and the spinor brackets correspond to R4 in this
helicity arrangement. Thus, on the s ¼ 0 pole sits an infinite
number ofmassless even higher-spin states. In our amplitude
(14), we are not considering these exchanged particles as
isolated, asymptotic states; wewill come back to the issue of
external massless higher spins in the discussion.
Let us next consider the residue our triple product on the

massive poles. At s ¼ m2
n, the residueRn ¼ lims→m2

n
ð−sþ

m2
nÞAðsÞAðtÞAðuÞ can be written as

g2n

�
1

t
þ
X∞
i¼1

g2i
m2

i − t

��
−1

m2
n þ t

þ
X∞
j¼1

g2j
tþm2

n þm2
j

�
: ð18Þ
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This residue has three qualitatively different types of terms:
those ∝ g2i g

2
j from the product of massive propagators,

those ∝ g2i or g2j alone from the cross terms involving
massive and massless poles, and those independent of g2i
and g2j from the 1=tu product of massless propagators. That
is, we can write

Rn ¼ R00
n þ

X∞
i¼1

R0i
n þ

X∞
i¼1

X∞
j¼1

Rij
n ; ð19Þ

where R00
n ¼ −g2n=½tðtþm2

nÞ�,

R0i
n ¼ g2ng2i

tðtþm2
n þm2

i Þ
þ g2ng2i
ðtþm2

nÞðt −m2
i Þ
; ð20Þ

and Rij
n is given in Eq. (6). From Eq. (8),

RðijÞ
n ¼ 4g2ng2i g

2
j

m4
nðM2

i;n þM2
j;nÞ

X∞
k¼0

x2k

M4kþ2
i;n

þ ði ↔ jÞ: ð21Þ

Meanwhile, for the R00
n part of the residue, we can expand

in a series in x to obtain

R00
n ðxÞ ¼ 4g2n

m4
nð1 − x2Þ ¼

4g2n
m4

n

X∞
k¼0

x2k; ð22Þ

while the cross term residue for R0i
n can be written as

R0i
n ¼ −

8g2ng2i
m4

nð1þM2
i;nÞ

X∞
k¼0

�
1þ 1

M4kþ2
i;n

�
x2k: ð23Þ

While Eqs. (21) and (22) are strictly positive, the cross term
(23) is negative.
Using our requirement on the couplings in Eq. (13), we

assemble the full residue into the form

Rn ¼
4g2n
m4

n

X∞
k¼0

X∞
i¼1

X∞
j¼1

g2i g
2
jQnijkx2k; ð24Þ

where we can rearrange Qnijk into a manifestly positive
form (recalling that M2

i;n;M
2
j;n > 1),

Qnijk ¼
ðM2

i;n − 1ÞðM4kþ4
j;n − 1Þ

M4kþ2
j;n ð1þM2

j;nÞðM2
i;n þM2

j;nÞ
þ ði ↔ jÞ: ð25Þ

By Eq. (9), Eq. (25) immediately implies that all of the
partial waves have nonnegative coefficients. Explicitly,

in the partial-wave expansion RnðxÞ ¼
P∞

l¼0 a
ðnÞ
l CðαÞ

l ðxÞ,
we have aðnÞl ¼ 0 for odd l, while for even l, aðnÞl ¼
8g2nm−4

n
P

i;j g
2
i g

2
jA

ðnÞij
l , where

AðnÞij
l ¼ FðαÞ

l

2ð1þM2
i;nÞ

�
M2

i;nð1 −M2
j;nÞIðαÞl ðM2

i;nÞ
M2

i;n þM2
j;n

þM2
i;n − 1

2
IðαÞl ð1Þ

�
þ ði ↔ jÞ: ð26Þ

All of the AðnÞij
l are positive for arbitrary massive spectra.

As a result, aðnÞl > 0, and so M represents a unitary UV
completion of Mgrav.

V. LARGE-SPIN BEHAVIOR

The spin dependence of partial waves in both our
graviton amplitude M in Eq. (14) and the nongravitational
theory M in Eq. (5) is dictated by the combination

FðαÞ
l IðαÞl ðM2Þ. At large even l, the asymptotic hypergeo-

metric expansion yields, for v > 1,

FðαÞ
l IðαÞl ðvÞ ∼ 2αΓðαÞðv2 − 1Þα−12

vlα−1eðαþlÞarcosh v : ð27Þ

The nongravitational theory thus has partial waves (11)
that decay exponentially at large spin. In contrast, for the

gravitational theory the FðαÞ
l IðαÞl ðM2Þ term enters Eq. (26)

with negative sign, while IðαÞl ð1Þ ¼ ffiffiffi
π

p
Γðα − 1

2
Þ=ΓðαÞ pro-

vides the positive contribution. Hence, at large l, the partial

waves for our graviton amplitude simply scale like FðαÞ
l ,

which for D ¼ 5 is a constant and in higher D scales
as a power law ∼1=l2ðα−1Þ. Thus, at least for D > 5, our
amplitudes generically satisfy the low-spin dominance
observed in other known UV-complete theories [3,9],
despite the presence of infinite towers of higher-spin states.
See Fig. 1 for an illustration.

FIG. 1. Partial waves for the gravitational (solid) and non-
gravitational (dashed) amplitudes calculated in text in Eqs. (11)
and (26), for example theories with a single massive pole at
m ¼ 1 and coupling g ¼ 1, for D ¼ 5 (red) and D ¼ 10 (blue).
Partial waves are nonzero only for even l, but we have
analytically continued here for all l.
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VI. DISCUSSION

In this paper, we have presented an infinite class of novel
four-graviton amplitudes that satisfies the usual S-matrix
unitarity requirements, including perturbative unitarity
at high energies and positivity on the thresholds. It is
straightforward to check that our four-point graviton
amplitude in Eq. (14) satisfies further low-energy con-
straints. For example, both the leading and subleading
Weinberg soft theorems are obeyed, since the low-energy
expansion takes the form [24]

M ¼ κ2R4
X∞
i;j;k¼0

μiμjμksi−1tj−1uk−1;

¼ κ2R4

�
1

stu
þ ðμ21 − 2μ2Þ

�
1

s
þ 1

t
þ 1

u

�
þ � � �

�
; ð28Þ

where μk ¼
P

n g
2
n=m2k

n . The term with the single poles
only affects the subsubleading soft theorem. Moreover, the
Shapiro time delay can be computed as ∂χ=∂E, where χ is
the phase of the S matrix in the eikonal limit s ≫ t ¼ −q⃗2,
where q⃗ is Fourier dual to the impact parameter [2,25,26].
For pure gravity, Mgravjeik ∝ þE4=q⃗2, and our M in
Eq. (14) gives the same (causal) sign; moreover, whenP

n g
2
n ¼ 1, as required for perturbative unitarity, we have

Mjeik ∝ E0=q⃗2, so the leading-order time delay vanishes.
This paper leaves many compelling avenues for future

investigation. Certainly, the existence of these amplitudes
sharpens the necessity of addressing the elephant in the
room: Are there some grounds on which one can rule out
accumulation points—i.e., an infinite number of states with
the same energy—in the S matrix? If not, is it possible to
construct a consistent theory from the amplitudes in
Eq. (14)? Note that our analysis indicates that accumulation
points in gravitational amplitudes are necessarily accom-
panied by an infinite tower of massless higher-spin states.
These extra terms in the t expansion of the s ¼ 0 residue
are suppressed by the mass of the UV state, and therefore
become relevant precisely when the entire massive accu-
mulation-point tower does as well; it is therefore conceiv-
able that these states are not separate entities from the full
accumulation-point multiplet. At face value, the presence of
these terms does not violate no-go theorems à laWeinberg,
since the higher-spin states are not asymptotic states in
these amplitudes. This suggests that the states appearing
at the accumulation points should not be considered as
isolated asymptotic states in the corresponding theory
either. This is suggestive of tensionless limits of string
theory. In fact, the amplitude presented here is reminiscent

of the twisted string amplitudes introduced in Refs. [27,28]
(see also Refs. [29–34]), where the right- and left-handed
worldsheet modes have opposite signs in the two-point
OPE, i.e.,

Xðzi; z̄iÞXðzj; z̄jÞ ∼ log jzijj2 → log zij − log z̄ij: ð29Þ

This modification corresponds to a change in the boundary
condition for the two-point function, which was later
interpreted as a new vacuum on which the theory is
quantized [35]. As a result, e.g., the heterotic Yang-Mills
amplitude becomes

πF4
1

sð1 − sÞ
1

tð1 − tÞ ðuþ 2Þðuþ 1Þ; ð30Þ

where F4 is a quartic form in the field strengths analogous
to R4. Note that 1=½sð1 − sÞ� ¼ 1=sþ 1=ð1 − sÞ, which is
exactly ourAðsÞ in Eq. (12) withm2 ¼ 1. Due to the factor
ðuþ 1Þðuþ 2Þ, this amplitude does not have an accumu-
lation point. It would be interesting to see if there is a
variant of the twisted string amplitude that indeed gives our
result, perhaps related to the asymmetrically twisted string
amplitude of Ref. [36].
Finally, we note that our amplitude differs from string

theory in that our AðsÞ remains asymptotically bounded
both in the physical and unphysical regions of s, while
the Virasoro-Shapiro amplitude does not, by virtue of the
gamma functions. On the other hand, the leading Regge
trajectory in our amplitude has infinite slope (i.e., an
infinite number of spins at a single mass). It would be
interesting to see if these two theories can be viewed as
limits of a broader family and to sculpt out the full space
of consistent triple-product amplitudes UV-completing
gravity, of which both string theory and our class of
amplitudes constitute examples. We leave such investiga-
tions to future work.
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[1] Specifically,

R4 ¼ 32ðR1ÞμνρσðR2ÞμαρβðR3ÞαγνδðR4Þβγσδ

− 8ðR1ÞμνρσðR2ÞμναβðR3ÞραγδðR4Þσβγδ;

plus all other permutations of the labels 1,2,3,4,
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