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We tackle the question of whether regular black holes or other alternatives to the Schwarzschild solution
can arise from an action principle in quantum gravity. Focusing on an asymptotic expansion of such
solutions and inspecting the corresponding field equations, we demonstrate that their realization within a
principle of stationary action would require either fine-tuning, or strong infrared nonlocalities in the
gravitational effective action. This points to an incompatibility between large-distance locality and many of
the proposed alternatives to classical black holes.
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I. INTRODUCTION

Black holes are some of the most fascinating objects in
our Universe. Our current understanding of them is based
on the Schwarzschild solution of general relativity (GR),
and its Kerr and Reissner-Nordström generalizations.
Since the discovery of these solutions, and latest with
the derivation of singularity theorems [1,2], there has been
a heated discussion about the singularities of classical
black holes. The general expectation is that quantum
gravity should ultimately resolve any singularities. Yet,
while the inside of black holes is still under theoretical
investigation, their macroscopic properties and shape are
currently in the spotlight of astrophysical experiments and
observations [3,4].
The construction of a well-defined, predictive and

falsifiable theory of quantum gravity has still not suc-
ceeded. Nonetheless, regular alternatives to classical black
holes have been advanced, both by investigating simplified
quantum gravitational settings, as well as within model-
building approaches applying a “singularity-resolution
principle.” For instance, in some realizations of string
theory, classical black holes could be replaced by fuzzballs
[5–7] or by wormholes [8–10]. Compact objects such as
quasiblack holes [11,12] and gravastars [13] have also
been proposed as viable alternatives to black holes. Other
theories of quantum gravity, including loop quantum
gravity [14–19] and asymptotically safe gravity [20–25]

seem instead to point to “regularized” versions of classical
black holes, with modifications occurring at Planckian
“distances” from the would-be singularity. Well-known
examples of regular black hole models include the
Dymnikova [26], Bardeen [27], Bonanno-Reuter [20],
and Hayward [28] black holes.1 Regardless of the specific
quantum gravity theory, it is a key question whether
spacetimes deviating from the classical Schwarzschild
metric can be found as solutions to effective field equations
stemming from an action principle in quantum gravity.2

This is the topic of this paper.
In the following, we assume that all phenomena in the

Universe, including all matter and interactions, can be
described within a quantum field theoretic framework in
terms of an effective action. We then imagine to integrate
out all matter and gauge fields, as well as quantum-
gravitational fluctuations, so that the resulting effective
action is a functional of the metric only. The question that
we attempt to address is whether one can find an effective
action whose equations of motion are solved by one of the
known alternatives to classical black holes. Concretely, we
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1The viability of these specific models is still uncertain due to
potential instabilities of the inner horizon, and currently under
debate [29–31]. Nonetheless, it is conceivable that the dynamics
of a gravitational collapse could have an important impact on this
question, since it could result in a black hole spacetime with
integrable singularities [32–34] or in a compact object [12], rather
than in a regular black hole. At any rate, the analysis in the
present paper is independent of the outcome of the aforemen-
tioned debate.

2It is known that certain regular black holes can be found from
an action principle coupling GR to nonlinear electrodynamics
[35] or other exotic modifications involving magnetic monopoles
[36]. However, such modifications have not found experimental
confirmation so far. It thus seems unlikely that singularity
resolution in general relativity would arise from deviations to
Maxwell theory, rather than from quantum gravity.
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will focus on the large-distance behavior of static, spheri-
cally symmetric spacetimes, whose metric coefficients
admit an asymptotic expansion in powers of the radial
coordinate, and we will attempt to determine approxima-
tions to the corresponding gravitational effective action.
Such asymptotic corrections to the Schwarzschild metric
are expected, since quantum-gravitational fluctuations
modify the effective field equations by higher-order
curvature operators in such a way that Ricci-flat space-
times are no longer solutions. A prime example for such a
higher-derivative correction is the Goroff-Sagnotti term
[37,38]. We remark in passing that, even though regular
black holes constitute the primary motivation of our work,
our analysis applies to any spherically symmetric, asymp-
totically flat spacetime, regular or not, with or without
event horizons.
Our result is that power-law corrections to the large

distance behavior of the Schwarzschild metric can be
generated by local higher derivative terms, if the corre-
sponding leading-order exponent satisfies a certain lower
bound. For all other power-law corrections, one generically
needs specific nonlocal terms of the Polyakov type [39] in
the effective action. Surprisingly, in this case the leading-
order correction removes the entire kinetic term of the
graviton in Minkowski space, independent of the exponent
of the correction. Alternatively, one would need even
stronger infrared nonlocalities at higher orders in the
curvature expansion. As a key consequence, most of the
known alternatives to classical black holes would likely
require infrared modifications of GR.

II. SETUP

Regular black holes can be interpreted as solutions to
modified Einstein field equations,

Gμν ¼ 8πGNTeff
μν ; ð1Þ

with Teff
μν being an effective energy-momentum tensor,

encoding quantum gravitational and matter effects or exotic
“new physics.” An open, intriguing question is whether
these effective field equations can arise from a principle of
least action. If singularity resolution is to be attributed to
quantum gravity, regardless of the specific model, this
action ought to be a gravitational effective action Γ½g�. The
corresponding regular metric g would thus be a solution to
the corresponding effective field equations.
On these grounds, our investigation is based on an

effective action Γ, which includes all quantum effects.
The quantum equation of motion then reads

δΓ½g�
δgμν

¼ 0: ð2Þ

We will investigate a perturbed Schwarzschild metric in
Schwarzschild coordinates,3

gμν ¼ diag

�
−fttðrÞ;

1

frrðrÞ
; r2; r2 sin θ

�
; ð3Þ

with

fttðrÞ∼1−
2GNM

r
þ ct
rnt

; frrðrÞ∼1−
2GNM

r
þ cr
rnr

: ð4Þ

Here, GN is Newton’s constant and M is the mass of the
corresponding Schwarzschild black hole. Our ansatz for the
perturbed Schwarzschild metric thus only applies to modi-
fied metrics admitting such an asymptotic expansion, e.g.,
the Bardeen [27], Bonanno-Reuter [20], Hayward [28] and
Simpson-Visser [40] spacetimes. All asymptotic relations
in this work are understood in the limit r → ∞, which is the
focus of our investigation. The correction terms are
assumed to be subleading in this limit so that nr; nt > 1,
but otherwise we put no constraints on the power laws. In
this regime, a curvature expansion of the effective action is
expected to be valid, as long as strong nonlocalities are
absent. This entails that our ansatz for Γ reads4

Γ ¼ 1

16πGN

Z
d4 x

ffiffiffiffiffiffi
−g

p �
−R −

1

6
RfRðΔÞR

þ Rμ
νfRicðΔÞRν

μ þOðR3Þ
�
; ð5Þ

where Δ ¼ −gμνDμDν is the d’Alembert operator of the
metric g, and R denotes a generic curvature tensor. The
operator functions fR and fRic are known as form factors,
and are related to the physical renormalization group
running, i.e., the momentum dependence of the graviton
propagator in Minkowski space. Efforts to compute them
from first principles can be found in [24,42–47]. Our aim is
to constrain the form factors by assuming that the metric (3)
with coefficients (4) solves the effective field equations (2)
originating from (5) for large r.
To simplify the presentation, in the following we will

assume that nr ¼ nt ≡ n, so that the radial and the temporal
component of the metric show the same subleading
behavior. We performed the full calculation with unequal
power laws and arrive at the same leading order result,
with n ¼ minðnr; ntÞ.

3This is the most general spherically symmetric, asymptoti-
cally flat spacetime in spherical coordinates. Even modifying the
angular metric coefficients by a multiplicative function Cðr̃Þ, as
in [40] and in most wormholes spacetimes, one can always
perform a coordinate transformation r̃ → r ¼ r̃Cðr̃Þ to recast the
metric into the form (3).

4A similar term quadratic in the Weyl tensor can be absorbed in
the two present quadratic terms, cubic terms, and the topological
Euler characteristic via the Bianchi identity [41].
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Since in the action principle δΓ ¼ 0, the variation acts
linearly on the effective action, δΓ ¼ δΓGR þ δΓR2þ
δΓR3 þ � � �, we will discuss the contribution of the indi-
vidual terms in the action to the equations of motion
independently.

III. GR EQUATIONS OF MOTION

The first step to derive constraints for the form factors is
to compute the contribution δΓGR of the GR action to the
equations of motion. We can focus on the ðrrÞ and ðttÞ
components, since the other components either vanish or
are dependent. For large r, we find to leading order,

�
δΓ
δgtt

;
δΓ
δgrr

�				
GR

∼
r−n−2

16πGN
fcrðn − 1Þ; ðcr − nctÞg: ð6Þ

These terms have to be canceled by those generated by
higher order terms in the effective action.

IV. LOCAL CORRECTIONS

The simplest choice for the form factors is a truncated
Taylor expansion.5 This corresponds to a local modification
to the Einstein-Hilbert action. To lowest order, the form
factors are then constants and simply correspond to the
Stelle terms [49,50], δΓloc

R2 ≃ δΓStelle. These terms however
yield a different leading-order asymptotic power law,

δΓloc

δgtt;rr

				
Stelle

∼ att;rrr−n−4; ð7Þ

for some computable constants att;rr. Including terms with
positive powers of the d’Alembert operator yields contri-
butions which are even more subleading. We thus conclude
that these local terms cannot cancel the GR terms (6).
Similar arguments also apply to all local terms with three

or more powers of the curvature. This is because we
consider an expansion of an asymptotically flat spacetime
about infinite radial distance where all curvature tensors
vanish. This implies that the more curvature tensors an
expression has, the more subleading its contribution to the
field equations is in this limit. Moreover, since the first
contribution of the Ricci tensor to the asymptotic expansion
contains a factor of n in the exponent of the power law in
1=r, terms with more than one Ricci tensor or scalar can
never cancel the GR contribution for n > 0.
The only terms leading to an n-independent power law

are those constructed from the Weyl tensor and at most one
occurrence of the Ricci tensor or scalar: the Weyl tensor of
the Schwarzschild-part of the metric is nonzero, and hence
the leading-order contribution to the field equations is an

n-independent power law. Such terms can thus cancel the
GR contribution (6) for specific values of n.6 The lowest
order correction for which such a cancellation is possible is

Γloc
R3 ¼ 1

16πGN

Z
d4x

ffiffiffiffiffiffi
−g

p ½kRC2RCμν ρσ Cμνρσ

þ kC3Cμν
ρσCρσ

τωCτω
μν�: ð8Þ

Its leading order contribution to the equations of motion has
the form

δΓloc

δgtt;rr

				
R3

∼ btt;rrr−8; ð9Þ

where btt;rr are constants which depend on the cubic
couplings kRC2 , kC3 . This combination of terms thereby
only allows a cancellation for the case n ¼ 6, with the
specific choice

kRC2 ¼ −
cr − 3ct

432GN
2M2

; kC3 ¼ −
cr þ 6ct

216GN
2M2

: ð10Þ

This case has also been investigated in more detail in
[51,52]. It is clear that even higher order terms allow for
cancellations for other specific powers n. In fact, a
cancellation is possible for all integers n with n ≥ 6,
n ≠ 7.7 This can be seen by considering monomials of
the form ½ðΔmRÞðC2ÞkðC3Þl� for integers k, l, m, or similar
monomials with different contractions and distributions of
covariant derivatives, as they contribute to the field equa-
tions with a leading-order power law of the form
∼r−2−6k−9l−2m. Thus, upon confining to local operators
only, our analysis sets an important lower bound on the
value of n. As a consequence, well-known black hole
models as the Hayward spacetime, with

5Such an artificial truncation could lead to the appearance of
fictitious ghosts, but this does not necessarily break unitarity in
the full quantum theory [48].

6The C2 term is an exception in d ¼ 4, as it can be rewritten in
terms of the topological Euler term and a combination of squared
Ricci scalars and tensors.

7Let us remark that the gravitational potential defined from the
geodesic equation, which is related to the gtt-component of the
metric, and the one obtained from a scattering amplitude [53],
need not to agree in general. Indeed, while the former is the
potential acting on an idealized, noninteracting test particle, the
latter is the potential on an interacting scalar field, and thus
accounts for quantum corrections to gravity-matter vertices
which by construction are not included in gtt. As an important
example, the potential derived from the scattering of two massive
scalars on a de Sitter background [54] is manifestly different from
the gtt-component of the Schwarzschild-de Sitter spacetime.
Therefore, our constraints do not apply to the leading-order
corrections to the Newtonian potential found in [55].

SIFTING QUANTUM BLACK HOLES THROUGH THE PRINCIPLE … PHYS. REV. D 106, L021901 (2022)

L021901-3



fttðrÞ ¼ frrðrÞ ¼ 1 −
2MGN

r
r3

r3 þ 2MGN
2

∼ 1 −
2MGN

r
þ 4GN

3M2

r4
; ð11Þ

cannot be solutions to local gravitational effective field
equations. A Hayward-like solution potentially compatible
with a stationary local-action principle would rather be

fttðrÞ ¼ frrðrÞ ¼ 1 −
2MGN

r
r5

r5 þ 2MGN
3
: ð12Þ

Similar considerations apply to other alternatives to
classical black holes that admit an asymptotic expansion
of the form (4), e.g., those discussed in [20,27,28].
Let us remark that, regardless of the specific power n, in

order for the metric (4) to be a solution to the full field
equations, other higher-derivative operators ought to yield
terms in the field equations which cancel both the next-to-
leading contributions to the scaling ∼r−2−6k−9l−2m, as well
as the leading-order scaling produced by the lower-deriva-
tive operators [as those in Eq. (7) and Eq. (9)] eventually
appearing in the effective action. Thus, requiring regular
spacetimes compatible with the asymptotic expansion (4) to
arise from a principle of least (local) action translates into
strong constraints on both the order n of the corrections and
the values of the couplings of the local operators appearing
in the effective action. As a final remark, we note that even
when modifying our ansatz for the metric coefficients (4)
by including the Yukawa terms in [56], the constraints we
have derived remain valid. Indeed, the Yukawa terms in the
metric would contribute to the asymptotic expansion of the
field equation with additional exponential terms whose
overall coefficient must vanish independently of those of
simple power laws. Consequently, this would lead to
additional, independent constraints, and would not modify
those we have derived here.
A cancellation for generic n and the avoidance of the

aforementioned fine-tuning require the presence of non-
local terms in the effective action, which we will dis-
cuss next.

V. NONLOCAL CORRECTIONS

The scaling of the correction terms in Eq. (7) stemming
from Stelle gravity suggest that canceling the GR terms in
Eq. (6) can be achieved by form factors in δΓR2 with an
inverse power of the argument. Specifically, let us consider

fRðΔÞ ¼
α

Δ
; fRicðΔÞ ¼

β

Δ
: ð13Þ

Such terms have been studied before in the context of
cosmology [57–59]. By naive counting of derivatives, this
choice has the chance of providing a contribution to the

equations of motion which can cancel (6) for arbitrary n.
Notably, these terms are not of the form expected from
effective field theory [55], which would rather come in the
form of logarithms. We have checked that logarithms do
not give rise to the correct power law contribution to the
equations of motion.
For both the Ricci scalar and the Ricci tensor term, the

leading-order contribution to the equations of motion
comes from the variation of one of the curvature tensors.
All other variations are easily seen to come with subleading
power laws, which we also have verified explicitly. As a
consequence, their leading-order contributions to the equa-
tions of motion are structurally of the formDDΔ−1R. Thus,
in order to determine the contribution to the field equations
stemming from the nonlocal, quadratic part of the action,
the next step is to evaluate the action of the inverse
d’Alembertian operator on both the Ricci scalar and the
Ricci tensor.
Nonlocal operators such as Δ−1 bring several technical

difficulties with them. For instance, in order to define them,
one has to specify boundary conditions. In our case these
are naturally tied to the zero modes of the corresponding
operators. Specifically, we impose that in the inversion of
the operator, no zero mode contributions are added. The
reason behind this choice is that in the limit of a flat
spacetimewhere the curvature terms vanish, the zero modes
would attribute a finite value to acting with an inverse
d’Alembertian on them.
A second difficulty is to actually compute the action of

the inverse d’Alembertian operator on a curvature tensor. In
the case of fRðΔÞ, we define Δ−1R by solving the equation
Δχ ¼ R for χ, with the aforementioned boundary condi-
tions. This equation can be solved in closed form for
arbitrary static, spherically symmetric metrics. With our
boundary conditions imposed, the solution reads

χðrÞ ¼
Z

∞

r
dx

−1
x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frrðxÞfttðxÞ

p Z
∞

x
dy

ffiffiffiffiffiffiffiffiffiffiffiffi
fttðyÞ
frrðyÞ

s
y2RðyÞ;

ð14Þ
where RðyÞ is the expression of the Ricci scalar for the
metric (3) as a function of the radial coordinate y≡ r.
The integrals converge as long as r is large enough, since
RðrÞ ∼ ðn − 1Þð2cr − nctÞr−n−2 for our ansatz (4) and
n > 1 by assumption. From this expression, it is straight-
forward to derive an asymptotic expansion for χ.
A similar procedure can be carried out for the case of the

Ricci tensor. In this case the inversion of the d’Alembertian
requires solving ΔΣμ

ν ¼ Rμ
ν for the tensor Σ. The index

structure was chosen to simplify the calculation. Indeed, the
symmetries of Rμ

ν and the spherical symmetry of the metric
(3) imply that Σμ

ν must be diagonal, with Σθ
θ ¼ Σφ

φ.
Unfortunately, we were not able to solve this equation
analytically, and thus we resorted to a direct asymptotic
expansion to compute Σ.
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We refrain from presenting the full details of the
calculation since not much can be learned from them.
As an intermediate result, we find that for large r,

1

Δ
R ∼ −

r2

nðn − 1ÞR ∼
ct − 2

n cr
rn

; ð15Þ

1

Δ
Rμ

ν ∼ r−ndiag

�
ct
2
;
ctnðn − 1Þ − 2crðn − 2Þ

2nðn − 3Þ ;

−
crðn − 4Þ þ ctn

2nðn − 3Þ ;−
crðn − 4Þ þ ctn

2nðn − 3Þ
�
: ð16Þ

Matching the resulting contribution to the equations of
motion to cancel the terms in Eq. (6), we find

α ¼ −3; β ¼ −1; ð17Þ

Surprisingly, these effective couplings are independent of
n. Let us note that the appearance of the factor (n − 3) (and
(n − 2) in subleading orders) in the denominators of Σ
simply indicate that for n ¼ 2, 3, logarithmic terms have to
be included in the large-r expansion of Σ. The values of α
and β do not change in these cases.
This result has astonishing consequences for the spec-

trum of the theory, since it implies a vanishing graviton
two-point function in Minkowski space, and thereby a
diverging graviton propagator. In other words, the graviton
would not propagate in this theory.8 This makes the class of
metrics (3) with coefficients (4) physically unacceptable:
asymptotically flat black hole spacetimes admitting the
asymptotic expansion (4) would require either fine-tuning
of both the power-law exponent and the coefficients of the
effective action, or a theory characterized by large-distance
nonlocalities of the form (13) and by a nonpropagating
graviton.
Alternatively, in order to cancel the GR terms (6) while

keeping the standard graviton dispersion relation, one could
trade the Polyakov terms (13) for stronger infrared non-
localities at higher orders in the curvature expansion (5),
e.g., of the form R2Δ−n

2
−2R. However, such nonlocalities

would likely produce observable deviations from GR at
large distance scales.
Our results thus indicate that, as long as the cosmological

constant is negligible, spacetimes with 1 < n < 6, includ-
ing known (spherically symmetric) regular black holes and
wormholes [27,28,40] are ruled out by our considerations.

VI. CONCLUSIONS

Our paper highlights novel, nontrivial restrictions on the
class of modifications to the Schwarzschild geometry
compatible with large-distance locality and a principle of
stationary action in quantum gravity.
Enforcing the validity of a stationary action principle poses

restrictions on the leading-order correction to Schwarzschild
black holes at large distances. Spacetimes with algebraic
metric components which do not satisfy these constraints
cannot be realized within a static, spherically symmetric
setup. Their realization within a principle of least action
would entail the existence of large-distance nonlocalities of
the Polyakov type, as well as a vanishing graviton two-point
function in Minkowski spacetimes—which in turn would
forbid the standard propagation of gravitational waves—or
even stronger infrared nonlocalities at higher order in a
curvature expansion of the effective action. Assuming the
validity of a principle of least action for gravity, the latter class
of spacetimes appears to be ruled out. This includes the well-
known Hayward and Bardeen black holes.
Should our results extend to the rotating case, they would

point at one of the following possibilities:
(i) black holes have algebraic metric coefficients whose

asymptotic expansion obeys a specific power-law
behavior [51,52],

(ii) black holes are realized in the form of Dymnikova
spacetimes, or analogous black holes or wormholes
with transcendental metric components, as it happens
e.g., for black holes in quadratic gravity [56,60,61],

(iii) the cosmological constant, albeit tiny, restores com-
patibility of regular black holes with algebraic metric
components and locality at large distance for arbi-
trary n, or

(iv) the metric description of gravity, quantum field
theory, or the principle of least action fail to provide
an accurate description of our universe, even at large
distances.

Our results resonate with the conclusions of [62], as well
as with novel expectations that even Planck-scale mod-
ifications of classical black holes could have an impact on
large-scale physics [63]. Our investigation thus sheds new
light on the realization of alternatives to classical black
holes within metric approaches to quantum gravity.
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8Note that introducing higher-order derivative terms in the
action could in principle make the graviton two-point function
nonvanishing. Nonetheless, this would not be sufficient to restore
the standard leading-order dispersion relation for the graviton.

SIFTING QUANTUM BLACK HOLES THROUGH THE PRINCIPLE … PHYS. REV. D 106, L021901 (2022)

L021901-5



[1] R. Penrose, Phys. Rev. Lett. 14, 57 (1965).
[2] S. W. Hawking and R. Penrose, Proc. R. Soc. A314, 529

(1970).
[3] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),

Phys. Rev. Lett. 116, 241103 (2016).
[4] K. Akiyama et al. (Event Horizon Telescope Collabora-

tions), Astrophys. J. Lett. 875, L1 (2019).
[5] S. D. Mathur, Fortschr. Phys. 53, 793 (2005).
[6] F. Chen, B. Michel, J. Polchinski, and A. Puhm, J. High

Energy Phys. 02 (2015) 081.
[7] I. Bena, S. Giusto, E. J. Martinec, R. Russo, M. Shigemori,

D. Turton, and N. P. Warner, Phys. Rev. Lett. 117, 201601
(2016).

[8] J. Maldacena, D. Stanford, and Z. Yang, Fortschr. Phys. 65,
1700034 (2017).

[9] D. Marolf and J. E. Santos, Classical Quantum Gravity 38,
224002 (2021).

[10] B. Guo, M. R. R. Hughes, S. D. Mathur, and M. Mehta,
Turk. J. Phys. 45, 281 (2021).

[11] J. P. S. Lemos and O. B. Zaslavskii, Phys. Rev. D 76,
084030 (2007).

[12] C. Barcelo, S. Liberati, S. Sonego, and M. Visser, Phys. Rev.
D 77, 044032 (2008).

[13] P. O. Mazur and E. Mottola, arXiv:gr-qc/0109035.
[14] A. Ashtekar and M. Bojowald, Classical Quantum Gravity

23, 391 (2006).
[15] R. Gambini and J. Pullin, Phys. Rev. Lett. 110, 211301

(2013).
[16] C. Rovelli and F. Vidotto, Int. J. Mod. Phys. D 23, 1442026

(2014).
[17] T. De Lorenzo, C. Pacilio, C. Rovelli, and S. Speziale,

Gen. Relativ. Gravit. 47, 41 (2015).
[18] A. Perez, Rep. Prog. Phys. 80, 126901 (2017).
[19] M. Bojowald, Universe 6, 125 (2020).
[20] A. Bonanno and M. Reuter, Phys. Rev. D 62, 043008

(2000).
[21] B. Koch and F. Saueressig, Classical Quantum Gravity 31,

015006 (2014).
[22] J. M. Pawlowski and D. Stock, Phys. Rev. D 98, 106008

(2018).
[23] A. Platania, Eur. Phys. J. C 79, 470 (2019).
[24] L. Bosma, B. Knorr, and F. Saueressig, Phys. Rev. Lett. 123,

101301 (2019).
[25] J. N. Borissova and A. Eichhorn, Universe 7, 48 (2021).
[26] I. Dymnikova, Gen. Relativ. Gravit. 24, 235 (1992).
[27] J. Bardeen, in Proceedings of GR5, Tiflis, U.S.S.R (1968).
[28] S. A. Hayward, Phys. Rev. Lett. 96, 031103 (2006).
[29] R. Carballo-Rubio, F. Di Filippo, S. Liberati, C. Pacilio, and

M. Visser, J. High Energy Phys. 07 (2018) 023.
[30] A. Bonanno, A.-P. Khosravi, and F. Saueressig, Phys. Rev.

D 103, 124027 (2021).
[31] R. Carballo-Rubio, F. Di Filippo, S. Liberati, C. Pacilio, and

M. Visser, J. High Energy Phys. 05 (2021) 132.

[32] V. N. Strokov, V. N. Lukash, and E. V. Mikheeva, Int. J.
Mod. Phys. A 31, 1641018 (2016).

[33] A. Bonanno, B. Koch, and A. Platania, Classical Quantum
Gravity 34, 095012 (2017).

[34] A. Rignon-Bret and C. Rovelli, Phys. Rev. D 105, 086003
(2022).

[35] I. Dymnikova, Classical Quantum Gravity 21, 4417 (2004).
[36] E. Ayon-Beato and A. Garcia, Phys. Lett. B 493, 149

(2000).
[37] M. H. Goroff and A. Sagnotti, Phys. Lett. 160B, 81 (1985).
[38] M. H. Goroff and A. Sagnotti, Nucl. Phys. B266, 709

(1986).
[39] A. M. Polyakov, Phys. Lett. 103B, 207 (1981).
[40] A. Simpson and M. Visser, J. Cosmol. Astropart. Phys. 02

(2019) 042.
[41] I. G. Avramidi, Heat Kernel and Quantum Gravity

(Springer, New York, 2000), Vol. 64.
[42] N. Christiansen, B. Knorr, J. M. Pawlowski, and A.

Rodigast, Phys. Rev. D 93, 044036 (2016).
[43] B. Knorr and F. Saueressig, Phys. Rev. Lett. 121, 161304

(2018).
[44] B. Knorr, C. Ripken, and F. Saueressig, Classical Quantum

Gravity 36, 234001 (2019).
[45] B. Knorr and M. Schiffer, Universe 7, 216 (2021).
[46] A. Bonanno, T. Denz, J. M. Pawlowski, and M. Reichert,

SciPost Phys. 12, 001 (2022).
[47] J. Fehre, D. F. Litim, J. M. Pawlowski, and M. Reichert,

arXiv:2111.13232.
[48] A. Platania and C. Wetterich, Phys. Lett. B 811, 135911

(2020).
[49] K. Stelle, Phys. Rev. D 16, 953 (1977).
[50] K. S. Stelle, Gen. Relativ. Gravit. 9, 353 (1978).
[51] D. Anselmi, J. High Energy Phys. 05 (2013) 028.
[52] C. de Rham, J. Francfort, and J. Zhang, Phys. Rev. D 102,

024079 (2020).
[53] N. E. J. Bjerrum-Bohr, J. F. Donoghue, and B. R. Holstein,

Phys. Rev. D 67, 084033 (2003); 71, 069903(E) (2005).
[54] R. Ferrero and C. Ripken, arXiv:2112.03766.
[55] J. F. Donoghue, Phys. Rev. Lett. 72, 2996 (1994).
[56] H. Lü, A. Perkins, C. N. Pope, and K. S. Stelle, Phys. Rev. D

92, 124019 (2015).
[57] C. Wetterich, Gen. Relativ. Gravit. 30, 159 (1998).
[58] S. Deser and R. P. Woodard, Phys. Rev. Lett. 99, 111301

(2007).
[59] H. Nersisyan, Y. Akrami, L. Amendola, T. S. Koivisto, J.

Rubio, and A. R. Solomon, Phys. Rev. D 95, 043539 (2017).
[60] H. Lu, A. Perkins, C. N. Pope, and K. S. Stelle, Phys. Rev.

Lett. 114, 171601 (2015).
[61] H. Lü, A. Perkins, C. N. Pope, and K. S. Stelle, Int. J. Mod.

Phys. A 30, 1545016 (2015).
[62] H. Maeda, arXiv:2107.04791.
[63] R. Carballo-Rubio, F. Di Filippo, S. Liberati, and M. Visser,

Classical Quantum Gravity 37, 145005 (2020).

BENJAMIN KNORR and ALESSIA PLATANIA PHYS. REV. D 106, L021901 (2022)

L021901-6

https://doi.org/10.1103/PhysRevLett.14.57
https://doi.org/10.1098/rspa.1970.0021
https://doi.org/10.1098/rspa.1970.0021
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.1002/prop.200410203
https://doi.org/10.1007/JHEP02(2015)081
https://doi.org/10.1007/JHEP02(2015)081
https://doi.org/10.1103/PhysRevLett.117.201601
https://doi.org/10.1103/PhysRevLett.117.201601
https://doi.org/10.1002/prop.201700034
https://doi.org/10.1002/prop.201700034
https://doi.org/10.1088/1361-6382/ac2cb7
https://doi.org/10.1088/1361-6382/ac2cb7
https://doi.org/10.55730/1300-0101.1000
https://doi.org/10.1103/PhysRevD.76.084030
https://doi.org/10.1103/PhysRevD.76.084030
https://doi.org/10.1103/PhysRevD.77.044032
https://doi.org/10.1103/PhysRevD.77.044032
https://arXiv.org/abs/gr-qc/0109035
https://doi.org/10.1088/0264-9381/23/2/008
https://doi.org/10.1088/0264-9381/23/2/008
https://doi.org/10.1103/PhysRevLett.110.211301
https://doi.org/10.1103/PhysRevLett.110.211301
https://doi.org/10.1142/S0218271814420267
https://doi.org/10.1142/S0218271814420267
https://doi.org/10.1007/s10714-015-1882-8
https://doi.org/10.1088/1361-6633/aa7e14
https://doi.org/10.3390/universe6080125
https://doi.org/10.1103/PhysRevD.62.043008
https://doi.org/10.1103/PhysRevD.62.043008
https://doi.org/10.1088/0264-9381/31/1/015006
https://doi.org/10.1088/0264-9381/31/1/015006
https://doi.org/10.1103/PhysRevD.98.106008
https://doi.org/10.1103/PhysRevD.98.106008
https://doi.org/10.1140/epjc/s10052-019-6990-2
https://doi.org/10.1103/PhysRevLett.123.101301
https://doi.org/10.1103/PhysRevLett.123.101301
https://doi.org/10.3390/universe7030048
https://doi.org/10.1007/BF00760226
https://doi.org/10.1103/PhysRevLett.96.031103
https://doi.org/10.1007/JHEP07(2018)023
https://doi.org/10.1103/PhysRevD.103.124027
https://doi.org/10.1103/PhysRevD.103.124027
https://doi.org/10.1007/JHEP05(2021)132
https://doi.org/10.1142/S0217751X16410189
https://doi.org/10.1142/S0217751X16410189
https://doi.org/10.1088/1361-6382/aa6788
https://doi.org/10.1088/1361-6382/aa6788
https://doi.org/10.1103/PhysRevD.105.086003
https://doi.org/10.1103/PhysRevD.105.086003
https://doi.org/10.1088/0264-9381/21/18/009
https://doi.org/10.1016/S0370-2693(00)01125-4
https://doi.org/10.1016/S0370-2693(00)01125-4
https://doi.org/10.1016/0370-2693(85)91470-4
https://doi.org/10.1016/0550-3213(86)90193-8
https://doi.org/10.1016/0550-3213(86)90193-8
https://doi.org/10.1016/0370-2693(81)90743-7
https://doi.org/10.1088/1475-7516/2019/02/042
https://doi.org/10.1088/1475-7516/2019/02/042
https://doi.org/10.1103/PhysRevD.93.044036
https://doi.org/10.1103/PhysRevLett.121.161304
https://doi.org/10.1103/PhysRevLett.121.161304
https://doi.org/10.1088/1361-6382/ab4a53
https://doi.org/10.1088/1361-6382/ab4a53
https://doi.org/10.3390/universe7070216
https://doi.org/10.21468/SciPostPhys.12.1.001
https://arXiv.org/abs/2111.13232
https://doi.org/10.1016/j.physletb.2020.135911
https://doi.org/10.1016/j.physletb.2020.135911
https://doi.org/10.1103/PhysRevD.16.953
https://doi.org/10.1007/BF00760427
https://doi.org/10.1007/JHEP05(2013)028
https://doi.org/10.1103/PhysRevD.102.024079
https://doi.org/10.1103/PhysRevD.102.024079
https://doi.org/10.1103/PhysRevD.67.084033
https://doi.org/10.1103/PhysRevD.71.069903
https://arXiv.org/abs/2112.03766
https://doi.org/10.1103/PhysRevLett.72.2996
https://doi.org/10.1103/PhysRevD.92.124019
https://doi.org/10.1103/PhysRevD.92.124019
https://doi.org/10.1023/A:1018837319976
https://doi.org/10.1103/PhysRevLett.99.111301
https://doi.org/10.1103/PhysRevLett.99.111301
https://doi.org/10.1103/PhysRevD.95.043539
https://doi.org/10.1103/PhysRevLett.114.171601
https://doi.org/10.1103/PhysRevLett.114.171601
https://doi.org/10.1142/S0217751X15450165
https://doi.org/10.1142/S0217751X15450165
https://arXiv.org/abs/2107.04791
https://doi.org/10.1088/1361-6382/ab8141

