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Analog gravity describes fluctuations of hydrodynamic systems in terms of a massless scalar field
propagating on curved spacetimes. This analogy between hydrodynamic and gravitational systems remains
largely unexplored for nonlinear dynamical effects. In this paper, we provide the first description of
dynamical analog spacetimes up to arbitrary order nonlinear perturbations constructed about stationary
solutions. We find a high frequency response that exhibit known properties of perturbed black holes, as well
as a low frequency regime for analog spacetimes with novel characteristics. Our framework more generally
describes nonlinear perturbations of compressible hydrodynamic systems as analogs of nonlinear wave
phenomena on black hole spacetimes.
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I. INTRODUCTION

Unruh established that fluctuations of inhomogeneous
fluids can be described as a massless scalar field propa-
gating on relativistic spacetimes constructed from the
background flow [1]. This result forms the basis of the
analog gravity programme, to investigate gravitational
phenomena through hydrodynamical nongravitating sys-
tems [2–5]. An important class of analog solutions are
dumb hole spacetimes, the acoustic analogs of black holes,
that possess sonic horizon(s) from which phonons cannot
escape. These solutions arise in fluids that transition
from subsonic to supersonic flows, and are realized
from condensed matter systems [6–18] to astrophysical
accretion [19–29].
Analogue phenomena provide an experimental means to

test black hole evaporation and evolution [30–33]. The
analogs of Hawking radiation [34–39], quasinormal modes
]40 ] and superradiance [41] have been detected, confirming

the analogy of dumb holes with black holes. Owing to the
nonlinearity of hydrodynamics and gravitational systems, a
more complete analogy will require a formalism for higher
order perturbations. Several results for backreaction effects
from second order perturbations about stationary analog
spacetimes have been investigated [42–48], but were
assumed to provide small corrections to linear order fluc-
tuations. However, recent experiments have established that
second and higher order perturbations provide observable
late time effects. This includes the effect of second order

fluctuations on the height over time in the draining bath tub
model [48] and the spectrum of Hawking radiation through
the lifetime of dumb holes in Bose-Einstein condensates
[49]. To explain these effects, we require a framework for
late time observables on dynamical analog spacetimes.
In this paper, we provide the first construction of

dynamical analog spacetimes to all orders in perturbation
about a stationary solution. This demonstrates that the
analog paradigm is a more general phenomena than
previously assumed. We address spherically symmetric,
barotropic and inviscid fluids, that are compressible fol-
lowing nonlinear perturbations. Our approach makes use of
the mass accretion rate as an independent variable, which
characterizes the fluid’s compressibility and is of particular
importance in astrophysical accretion [50]. We show that
the time derivative of the Euler equation, in terms of the
fluid mass accretion rate and density, can be recast as a
wave equation. The interpretation of fluctuations on a
dynamical acoustic spacetime follows on expanding the
fields about a stationary solution.
We consider the dynamics of dumb holes to find

properties similar to perturbed black holes, as well as
scenarios with a dynamically shrinking acoustic horizon.
To explore these effects, we consider exponentially
damped, time dependent perturbations of a Bondi flow
accreting into a black hole. The perturbations are consid-
ered in “high” and “low” frequency regimes, which
respectively involve wavelengths smaller than the inner
radius and larger than the outer radius of the accreting fluid.
The high frequency perturbations cause the dumb hole
horizon to grow over time, analogous to black holes.
However low frequency perturbations lead to a shrinking
acoustic horizon, with no known black hole analog.
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II. SYSTEM

The equations for nonrelativistic and inviscid fluids are
the continuity equation

_ρþ ∇⃗ðρv⃗Þ ¼ 0; ð1Þ

and Euler equation

_v⃗þ v⃗ ∇⃗ v⃗þ 1

ρ
∇⃗Pþ ∇⃗Φ ¼ 0: ð2Þ

In these equations, overdots denote time derivatives and ∇⃗
is the spatial derivative. The density, pressure, and velocity
of the fluid are respectively denoted by ρ, P and v⃗, while Φ
is the potential of an external force.
We will consider spherically symmetric and barotropic

flows. The barotropic condition P ¼ PðρÞ allows us to

define a scalar function HðρÞ such that ∇⃗H ¼ 1
ρ ∇⃗P. With

the sound speed cs defined by c2s ¼ ∂P
∂ρ, we find

∂H
∂ρ

¼ c2s
ρ
: ð3Þ

Spherical symmetry implies a spatial dependence on the
radial distance and a nonvanishing radial velocity compo-
nent, which we denote by v. While the fields also depend on
time, we assume a time independent external potential
Φ ¼ ΦðrÞ. Hence Eqs. (1) and (2) simplify to the following
two dimensional equations

_ρþ 1

r2
ðr2ρvÞ0 ¼ 0; ð4Þ

_vþ vv0 þH0 þΦ0 ¼ 0; ð5Þ

where primes now denote derivatives with respect to r in
Eqs. (4) and (5). We define the mass accretion rate

f ¼ ρvr2; ð6Þ

and consider the system in terms of f and ρ. In the case of
Eq. (4) we find from direct substitution

_ρþ 1

r2
f0 ¼ 0: ð7Þ

The time derivative of Eq. (5) can be shown to provide a
wave equation. We first use Eqs. (6) and (7) to find

_v ¼ 1

ρr2

�
_f þ f∂rf

ρr2

�
: ð8Þ

From the expressions for ∂H
∂ρ , v and _v in Eqs. (3), (6), and (8)

respectively, the time derivative of Eq. (5) yields the
following second order equation

∂t

�
1

ρr2
∂tf

�
þ ∂t

�
f

ρ2r4
∂rf

�
þ ∂r

�
f

ρ2r4
∂tf

�

þ ∂r

��
f2

ρ3r6
−

c2s
ρr2

�
∂rf

�
¼ 0: ð9Þ

By defining the “inverse metric” components

gtt ¼ 1

ρr2
; grt ¼ f

ρ2r4
¼ gtr; grr ¼ f2

ρ3r6
−

c2s
ρr2

; ð10Þ

we find Eq. (9) takes the suggestive form

∂μðgμν∂νfÞ ¼ 0: ð11Þ
Equation (11) will describe fluctuations on a curved

background only after perturbatively expanding about a
stationary solution. The solutions of Eqs. (4) and (5) are
generally not the same as those for Eqs. (7) and (11), since
Eq. (11) results from a time derivative of Eq. (5). However,
boundary conditions specify a unique stationary solution of
Eqs. (4) and (5) that manifestly satisfy Eqs. (7) and (11).
Subsequently, a perturbative solution for f from the original
fluid equations will be one of the solutions of Eq. (11)
through a consistently chosen boundary condition in time.
We can further express Eq. (11) as

1ffiffiffiffiffiffiffi
−G

p ∂μð
ffiffiffiffiffiffiffi
−G

p
Gμν

∂νfÞ ¼ 0: ð12Þ

For two dimensional flows, this is achieved by intro-
ducing additional spatial metric components, such as gθθ

and gϕϕ ¼ gθθ

sin θ, that respect spherical symmetry without
modifying Eq. (11). As this transformation does not affect
the causal structure or dynamics, we will consider the
unique two dimensional inverse effective metric gμν with
components given in Eq. (10).

III. NONLINEAR PERTURBATIONS

The flow governed by Eqs. (7) and (11) can perturba-
tively solved about a spherically symmetric stationary
solution, characterized by a constant mass accretion rate
f0 and a time independent density ρ0ðrÞ. In this case, an
nth order expansion of fðr; tÞ and ρðr; tÞ takes the form

fðr; tÞ ¼ f0 þ
Xn
k¼1

ϵkfkðr; tÞ; ð13Þ

ρðr; tÞ ¼ ρ0ðrÞ þ
Xn
k¼1

ϵkρkðr; tÞ; ð14Þ

where ϵ is a dimensionless counting parameter, whose
power identifies the perturbation order. If a general field
Aðr; tÞ constructed from ρ and f has the expansion

Aðr; tÞ ¼ A0ðrÞ þ
Xn
k¼1

ϵkAkðr; tÞ; ð15Þ
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then it is perturbative provided

ϵ
jAlþ1j
jAlj

< 1; l ¼ 0; � � �n − 1: ð16Þ

The equations at order n are coefficients of ϵn on sub-
stituting Eqs. (13) and (14) in Eqs. (7) and (11), while the
solutions are determined iteratively. The coefficients of ϵ0

are identically satisfied by the stationary solution. From the
terms linear in ϵ, Eqs. (7) and (11) give

_ρ1 þ
∂rf1
r2

¼ 0; ∂μðgμνð0Þ∂νf1Þ ¼ 0; ð17Þ

where gμνð0Þ has the coefficients

gttð0Þ ¼
1

ρ0r2
; gtrð0Þ ¼

f0
ρ20r

4
¼grtð0Þ; grrð0Þ ¼

f20
ρ30r

6
−

c2s0
ρ0r2

: ð18Þ

The first order fluctuation f1ðr; tÞ propagates on an
acoustic background constructed entirely from the back-
ground flow. This agrees with known approaches to sta-
tionary analog spacetimes. We can solve Eq. (17) for
f1ðr; tÞ and subsequently for ρ1ðr; tÞ.
The ϵ2 coefficients of Eqs. (7) and (11) are

_ρ2 þ
∂rf2
r2

¼ 0; ð19Þ

∂μðgμνð0Þ∂νf2Þ þ ∂μðgμνð1Þ∂νf1Þ ¼ 0; ð20Þ

with the gμνð1Þ components

gttð1Þ ¼
1

r2ρ0

�
−
ρ1
ρ0

�
; gtrð1Þ ¼

f0
r4ρ20

�
f1
f0

−2
ρ1
ρ0

�
¼grtð1Þ;

grrð1Þ ¼
f20
r6ρ30

�
2
f1
f0

−3
ρ1
ρ0

�
−

c2s0
ρ0r2

�
ρ1
c2s0

∂c2s
∂ρ

jρ0 −
ρ1
ρ0

�
; ð21Þ

where ∂c2s
∂ρ jρ0 represents the derivative of c2s with respect to

ρ, evaluated at ρ0. The usual procedure of first perturbing
the system and then deriving the analog background would
reproduce Eq. (20), which appears as a wave equation with
an effective first order source. However, Eq. (11) informs
us that Eq. (20) and ∂μðgμνð0Þ∂νf1Þ ¼ 0 from Eq. (17) are

collectively a second order fluctuation f0 þ ϵf1 þ ϵ2f2
propagating on an effective first order background with
inverse metric gμνð0Þ þ ϵgμνð1Þ.
The iterative procedure can be carried out to all orders.

At order n we have the equations

_ρn ¼ −
∂rfn
r2

; ð22Þ

∂μðgμνð0Þ∂νfnÞ ¼ −
Xn−1
k¼1

∂μðgμνðkÞ∂νfn−kÞ: ð23Þ

The nth order fluctuation f0 þ � � � þ ϵnfn propagates on an
effective (n − 1)th order background with inverse metric

gμνeffðn−1Þ ¼
Xn−1
k¼0

ϵkgμνðkÞ: ð24Þ

IV. HORIZON VARIATIONS

The inverse metric to all orders can be compactly
represented using Eq. (10), with the order n expression
resulting from Eq. (24). Inverting Eq. (10) provides the
following acoustic metric

gμν ¼
�
gtt gtr
grt grr

�
¼

�
ggrr −ggrt

−ggtr ggtt

�

¼

0
B@ ρr2ð1 − β2Þ f

c2s

f
c2s

− ρr2

c2s

1
CA; ð25Þ

where g ¼ − ρ2r4

c2s
is the determinant of the metric and

β ¼ f
csρr2

is the fluid velocity to sound speed ratio. In units

with the speed of light c ¼ 1, we have 0 < v ¼ f
ρr2 < 1 and

0 < β < 1
cs
. The condition gtt ¼ 0, or equivalently grr ¼ 0,

determines the horizon radius rH

r4H ¼ f2

ρ2c2s
: ð26Þ

The variation of Eq. (26) gives the acoustic horizon change
from any perturbation order to the next

δrH
rH

¼ 1

2

δf
f

−
1

4

δρ

ρ

�
1

c2s

∂c2s
∂ρ

jρ þ 2

�
: ð27Þ

Here ρ, f and rH denote values at a specific order in
perturbation, while δρ, δf and δrH describe their relative
variations to the next order. Using Eq. (7), we deduce

δf
f

¼
R
drr2δ _ρR
drr2 _ρ

: ð28Þ

The relative mass accretion rate change δf
f is thus related to

a spatially averaged change in energy and is expected to be
positive. The relative density change δρ

ρ however is not

constrained. In particular, if it is positive and greater than δf
f ,

Eq. (27) admits a receding acoustic horizon.

V. SIMULATION

We consider the example of a spherically symmetric
adiabatic flow satisfying the isentropic condition P ¼ κργ ,
accreting due to a Newtonian potentialΦ ¼ − 1

r. The sound
speed is c2s ¼ κγργ−1. Bondi demonstrated that there exists
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a unique transonic solution of Eqs. (4) and (5) which passes
through a critical point v0ðrÞ ¼ cs0ðrÞ [51]. The solution
can be derived by specifying γ, κ and the Bernoulli constant

E0 ¼
v20
2
þ c2s0
γ − 1

þΦ: ð29Þ

We assume γ ¼ 1.35, κ ¼ 1 and E0 ¼ 1.001. With the
accretor taken to be a black hole, the fluid velocity can
approach close to the speed of light (v ¼ 1) at the inner
radius. The background solution plots are in the top panel
of Fig. 1, with further details in [52]. The solution has a
mass accretion rate f0 ¼ 0.0129. Using the ρ0ðrÞ, cs0ðrÞ
and f0 solutions, we find the lowest order inverse acoustic
metric components plotted in the bottom panel of Fig. 1,
with the acoustic horizon at rH ¼ 2.362.
We now consider exponentially damped in time e−ωt

perturbations. The accreting fluid has an outer boundary at
r ¼ 102 and an inner boundary at r ¼ 1.002 near the accretor.
The boundary conditions at initial time (t ¼ 0) are chosen to
agreewith the preceding perturbation order, i.e., flþ1ðr; 0Þ ¼
flðr; 0Þ and ρlþ1ðr; 0Þ ¼ ρlðr; 0Þ for l ¼ 1; � � � n. We addi-
tionally fix ρð102; tÞ for all times to match the stationary
solution. The perturbation introduced at t ¼ 0 is considered
up to t ¼ 103, an order of magnitude larger than the spatial
range. This ensures that a perturbative damping up to late
times. The inner and outer spatial boundaries allow us to
consider two frequency ranges. “High frequency” perturba-
tions ωhigh ≥ 1 involve wavelengths that are the size of the
accretor boundary or lower, while “Low frequency” pertur-
bations ωlow ≤ 10−2 involve wavelengths larger than the
outer boundary radius. We will set ωhigh ¼ 103 and

ωlow ¼ 10−3. In all cases, the first order metric solution for
grrð1Þ has the largest amplitude among the inverse metric

components, at a time t ¼ tm and r ¼ 1.002. We use this
in Eq. (16) to fix the perturbation strength ϵ to 0.3

ϵ
jgrrð1Þjðr¼1.002;t¼tmÞ
jgrrð0Þjðr¼1.002Þ

≔ 0.3: ð30Þ

The linear fluctuations are plotted in Fig. 2. In both high
and low frequency cases, the fluctuations f1 about the
background acoustic spacetime involve growing and
decaying modes in the subsonic region, with an increasing
amplitude away from the horizon. This is a generic property
of subsonic mass accretion rate fluctuations noted previ-
ously for traveling wave solutions [53]. In the supersonic
region, only ingoing modes propagate and the averaged
mass accretion rate increases. This agrees with our expect-
ations following Eq. (28).
The density fluctuation ρ1 differs in the high and low

frequency cases. This fluctuation is negligible in the
subsonic region of the background flow. Near the accretor
boundary ρ1 is negative in the high frequency case, while
large and positive in the low frequency case. The negative
density fluctuations in the supersonic region for high
frequency perturbations causes the acoustic horizon to
grow from rHðt ¼ 0Þ ¼ 2.362 to rHðt ¼ 103Þ ¼ 2.468.
Conversely, positive density fluctuations in the low fre-
quency case results in the horizon receding to
rHðt ¼ 103Þ ¼ 2.213. While a larger acoustic horizon at
late times is consistent with the perturbations of black
holes, a receding acoustic horizon under classical
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FIG. 1. The origin is at ðt; rÞ ¼ ð0; 1Þ in all plots. The top panels are solutions for v0ðrÞ (left), cs0ðrÞ (middle) and ρ0ðrÞ (right), with
f0 ¼ 0.0129. These solutions define the inverse acoustic metric components gμνð0Þ plotted in the bottom panels: gttð0ÞðrÞ (left), gtrð0ÞðrÞ
(middle) and grrð0ÞðrÞ (right). We find grrð0Þ ¼ 0 at r ¼ 2.362.
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perturbations has no known black hole analog. This is a
consequence of there being no low energy cut off for
gravitational theories on asymptotically flat spacetimes,
while finite sized hydrodynamic systems do possess one.
Higher order fluctuations support the low frequency

receding horizon effect. The second order solutions and
qualitative properties at higher orders are presented in [52].
To higher perturbation orders, fluctuations in both high and
low frequency regimes are qualitatively those of first order
high frequency fluctuations. This has the effect of causing
the acoustic horizon to grow and prevents an indefinite
shrinking of the horizon. However, we find effective
dynamical metric corrections that are suppressed by ϵn at
order n. This leads to a horizon for the dynamical acoustic
spacetime that does not recover its original size and which is
well approximated by the first order effective metric.

VI. CONCLUSION

We provided a complete dynamical description of analog
spacetimes consistent with all nonlinearities in the fluid
equations for spherically symmetric, inviscid and nonrela-
tivistic flows perturbed about a stationary solution. This

result is a consequence of considering the system in terms of
its mass accretion rate and density. We also identified a new
property of classically receding acoustic horizons that occurs
when the change in density fluctuation from a perturbation
order to the next is positive and greater than the correspond-
ing change in the mass accretion rate fluctuation. For
exponentially damped Bondi accretion flows, this scenario
is realized for perturbation wavelengths larger than the fluid.
It will be interesting to derive dynamical extensions of

known analog spacetimes through our approach. This
requires relating the analog spacetimes in our formalism
with those from the standard approach based on velocity
perturbations of general background flows with possibly
time dependent potentials. Since mass accretion rates can
be defined with respect to all velocity components, we
believe that our formalism is likewise applicable to general
flows with the mass accretion rate encoding properties of
the velocity and background potential. The resulting wave
equation and acoustic spacetime interpretation however
depend on details of the flow and hence require a separate
analysis that we intend to address in future work. We
anticipate time dependent backgrounds and potentials to
manifest in sourced wave equations, and additional wave

FIG. 2. Linearized perturbation results. With high frequency, f1 interferes destructively outside the horizon and constructively
within (top left), while ρ1 is negative close to the accretor (top middle). With low frequency, f1 behaves as in the high frequency case
(bottom left), while ρ1 is positive close to the accretor (bottom middle). The horizon evolution is considered by plotting grr close to
the horizon at t ¼ 0, with the blue plane grr ¼ 0 tracing the horizon over time. The horizon grows from rHðt ¼ 0Þ ¼ 2.362 to
rHðt ¼ 103Þ ¼ 2.468 in the high frequency case (top right) and shrinks from rHðt ¼ 0Þ ¼ 2.362 to rHðt ¼ 103Þ ¼ 2.213 in the low
frequency case (bottom right).
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equations in nonradial flows for each mass accretion rate
defined with respect to the velocity components.
Wave equations for linearized mass accretion rate fluc-

tuations determine the stability of flows, with solutions
providing dispersion relations [53]. We expect modified
dispersion relations from higher order fluctuations, which
along with late time observables, could provide tests of our
formalism in analog experiments [54].
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