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Circular photon orbits and black hole shadows are significantly important issues in physics and
astronomy, and a number of breakthroughs have been witnessed in recent years. Conventionally, the stable
and unstable circular photon orbits are obtained using the effective potential of test particles moving in
black hole spacetime. In this work, a pure geometric approach is developed to calculate these circular
photon orbits and black hole shadow radius. Furthermore, it can be proved that our geometric approach is
completely equivalent to the conventional approach based on effective potentials of test particles.

DOI: 10.1103/PhysRevD.106.L021501

I. BACKGROUND AND INTRODUCTION

Black holes are massive compact objects predicted by
Einstein’s general theory of relativity. They have attracted
large numbers of interests in high-energy physics, astro-
physics and astronomy over the past decades. Significantly
important information on gravitation, galaxies, thermody-
namics and quantum effects in curved spacetime can be
revealed from black holes [1–5]. Recently, huge progresses
in black hole physics have been witnessed. The gravitational
wave signals from binary black hole mergers were detected
by LIGO and Virgo [6,7]. The high resolution images of
supermassive black hole at the center of galaxy M87 were
captured by Event Horizon Telescope (EHT) [8,9].
The circular photon orbit and shadow radius are important

features for black holes. The particle motions, gravitational
lensing, optical imaging and other aspects of black hole can
be studied from these quantities. Since the observation of
black hole image in galaxy M87 by EHT collaboration,
the circular photon orbits and black hole shadow have
became extremely hot topics in physics and astronomy.
Conventionally, these circular photon orbits and black hole
shadow radius can be calculated from the effective potential
of test particles moving in black hole spacetime [10–18]. In
recent years, other approaches on circular photon orbits
(photon sphere, light rings) using topological and geometric
techniques also emerged [19–22].
In the present work, a pure geometric approach is

developed to obtain the stable and unstable circular photon
orbits, as well as black hole shadows. Our approach is
implemented in the optical geometry of black hole space-
time. In this approach, the geodesic curvature and Gauss

curvature in optical geometry turn out to be crucial
quantities to determine the circular photon orbits. The
stability of circular photon orbits is reflected by an elegant
theorem in differential geometry and topology—the
Hadamard theorem. Furthermore, in this work, we also
prove that the geometric approach developed in this work is
completely equivalent to the conventional approach based
on effective potential of test particles.

II. OPTICAL GEOMETRY OF
BLACK HOLE SPACETIME

The optical geometry is a powerful tool to study the
motions of photons (or other massless particles which
travel along null geodesics) in a gravitational field [23–26].
For a four-dimensional spacetime, its optical geometry can
be constructed from the null constraint dτ2 ¼ 0:

dτ2 ¼ gμνdxμdxν|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
spacetime geometry

¼)dτ2¼0
dt2 ¼ gOPij dx

idxj|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
optical geometry

: ð1Þ

The properties of optical geometry are strongly depend on
the symmetries of gravitational field and black hole
spacetime. For a spherically symmetric black hole, its
optical geometry gives a Riemannian manifold [23–25].
However, for a rotational black hole, the corresponding
optical geometry is a Randers-Finsler manifold [26–29].
Further, if we consider particle motions in the equatorial
plane, a two-dimensional manifold can be constructed from
the optical geometry:

dt2 ¼ gOPij dx
idxj|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

optical geometry

¼)θ¼π=2
dt2 ¼ g̃OPij dx

idxj|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
optical geometry ðtwo-dimensionalÞ

: ð2Þ
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In a two-dimensional manifold, a number of elegant
and classical theorems in surface theory and differential
geometry could provide useful tools to study the parti-
cle motions. In this work, our new geometric approach
on circular photon orbits and black hole shadows is
implemented in two-dimensional optical geometry. A
detailed description of optical geometry is given in the
Supplemental Material [30].
There are several key quantities which describe the

geometric properties of optical geometry. It would be
turned out that Gauss curvature and geodesic curvature
in optical geometry play central roles in determining the
circular photon orbits for black holes. The Gauss curvature
is the intrinsic curvature of a two-dimensional surface. The
geodesic curvature is the curvature of one-dimensional
curves lived in two-dimensional curved surface, which
measures how far these curves are from being geodesics.
If γ is a geodesic curve in surface S, then its geodesic
curvature κgðγÞ automatically vanishes.

III. CIRCULAR PHOTON ORBIT

The circular photon orbits are important features of black
holes. They are closely connected with particle motions,
gravitational lensing and black hole shadows. The circular
photon orbits are classified into two categories: the stable
and unstable circular photon orbits. They may exhibit
significantly different features, especially for the geodesics
nearby. For unstable circular photon orbit, when photon
beams have a departure from the circular orbit, they would
either fall into black hole or move to infinity. No bound
photon orbits are admitted near the unstable circular photon
orbit. Conversely, there are many bound photon orbits near
the stable circular photon orbit. These bound photon orbits
may have different shapes. The stable and unstable circular
photon orbits are illustrated in Fig. 1.
In this work, a pure geometric approach is developed to

obtain these circular photon orbits. We choose a class of
stationary and spherically symmetric black holes to show
our geometric approach. For spherically symmetric black
holes with the metric

dτ2 ¼ fðrÞdt2 − 1

fðrÞ dr
2 − r2ðdθ2 þ r2 sin2 θdϕ2Þ; ð3Þ

the optical geometry restricted in the equatorial plane
θ ¼ π=2 gives

dt2 ¼ g̃OPij dx
idxj ¼ 1

½fðrÞ�2 dr
2 þ r2

fðrÞ dϕ
2: ð4Þ

Here, we only restrict to a subclass of static and spherically
symmetric black hole such that the spacetime metric
satisfies gtt × grr ¼ −1 and gθθ ¼ r2. The cases of more
general spherically symmetric and rotational (axisymmet-
ric) black holes are left to future studies.
The circular photon orbits could be determined by Gauss

curvature and geodesic curvature in optical geometry. First,

for a circular photon orbit r ¼ rph, which is a geodesic
curve in optical geometry, its geodesic curvature vanishes
naturally [31–33]

κgðr ¼ rphÞ ¼
1

2
ffiffiffiffiffiffiffi
g̃OPrr

p ∂ logðg̃OPϕϕÞ
∂r

����
r¼rph

¼
�
fðrÞ
r

−
1

2
·
∂fðrÞ
∂r

�
r¼rph

¼ 0: ð5Þ

In this way, the radius of circular photon orbit is obtained.
Here, we should emphasize that an important property of
optical geometry is used in deriving this relation. The null
geodesic curve γ ¼ γðτÞ in the spacetime geometry dτ2 ¼
gμνdxμdxν maintains geodesic in the optical geometry
dt2 ¼ gOPij dx

idxj [25]. Actually, it can be viewed as the
generalization of Fermat’s principle in curved stationary
spacetime [25,26,35].
The following question is how to distinguish stable

photon orbits from unstable photon orbits. The following
Hadamard theorem in differential geometry would answer
this question appropriately.

Hadamard theorem: For a two-dimensional complete
Riemannian manifold with nonpositive Gauss curvature,
there is only one geodesic curve from p to q belong to
the same homotopy class, and this geodesic curve
minimizes the length in this homotopy class [36,37].
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Black Hole

fall into 
black hole

go to infinity

No bound photon orbits are admitted near 
the unstable circular photon orbit

fall into 
black hole go to 

infinity
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photon orbit

The effective potential of photons 
reaches its local maximum
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FIG. 1. The schematic plot of the stable and unstable circular
photon orbits near black holes. In this figure, we choose the
spherically symmetric black hole as a typical example, and the
region covered by blue is the interior of black hole.
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For spherically symmetric black hole, if we restrict the
optical geometry in a two-dimensional equatorial plane, the
Gauss curvature in the Hadamard theorem can be calcu-
lated through [31,32]

K¼−
1ffiffiffiffiffiffiffi
g̃OP

p
2
64 ∂

∂ϕ

0
B@ 1ffiffiffiffiffiffiffi

g̃OPϕϕ
q ∂

ffiffiffiffiffiffiffi
g̃OPrr

p
∂ϕ

1
CAþ ∂

∂r

0
B@ 1ffiffiffiffiffiffiffi

g̃OPrr
p ∂

ffiffiffiffiffiffiffi
g̃OPϕϕ

q
∂r

1
CA
3
75;

¼1

2
fðrÞ ·d

2fðrÞ
dr2

−
�
1

2
·
dfðrÞ
dr

�
2

; ð6Þ

where g̃OP ¼ detðg̃OPij Þ is a determinant of optical metric.
For stable circular photon orbit, there are bound photon

orbits nearby, which may have different shapes. In the
equatorial plane of optical geometry, we can find two points
p and q such that there are at least two geodesic curves (one
is the stable photon orbit, the other is a bound photon orbit)
belong to the same homotopy class. Figure 2 illustrates two
possible bound photon orbits and the corresponding choice
of points p and q. In such cases, the Gauss curvature of
optical geometry should be positive, otherwise it would
violate the Hadamard theorem. On the contrary, for an
unstable circular photon orbit, no bound photon orbits
homotopic to this circular photon orbit exist. Then unstable
circular photon orbit itself forms the whole homotopy class,
which correspond to the negative Gauss curvature in the
Hadamard theorem (we assume the Gauss curvature of
optical geometry is nonzero, otherwise the black hole
spacetime would by flat). Based on the above discussions,
we obtain the following criterion to determine the stable
and unstable circular photon orbits [38]:

K < 0 ⇒ The circular photon orbit r ¼ rph is unstable;

K > 0 ⇒ The circular photon orbit r ¼ rph is stable:

IV. BLACK HOLE SHADOW

A black hole shadow is the dark silhouette of black hole
image in a bright background. The size and shape of black
hole shadows depend not only on black hole parameters,
but also on the position of observers [17]. In this work, we
concentrate on the idealized situation where observer is
located at infinity, and there are no light sources between
the observer and black hole. In this case, the radius of black
hole shadow detected by observer is just the critical value of
impact parameter bcritical. In the gravitational field, light
beams emitted from infinity with impact parameter b ¼
bcritical would reach the unstable circular photon orbit
exactly, as illustrated in Fig. 3.
Following the conventional definition, the impact param-

eter can be expressed as [15]

b≡
����LE

���� ¼
���� r2sin2θ · dϕ=dλfðrÞ · dt=dλ

����; ð7Þ

where E and L is the conserved energy and angular
momentum per unit mass

E ¼ fðrÞ · dt
dλ

; L ¼ r2sin2θ ·
dϕ
dλ

: ð8Þ
Since the impact parameter b≡ L=E is a conserved
quantity along the geodesics, we can calculate the critical
impact parameter bcritical at any specific point along the
photon trajectory. A simple and convenient choice are the
points in the unstable circular photon orbit r ¼ runstable

bcritical ¼
����LE

����
r¼runstable

¼
���� r2

fðrÞ ·
dϕ=dλ
dt=dλ

����
r¼runstable

ð9Þ

where θ ¼ π=2 has been used in the equatorial plane.
The radius of black hole shadow detected by observer

at infinity can be calculated in the optical geometry.
In the spacetime geometry, photon orbits are along light-
like/null geodesics, and their tangent vector satisfies
T · T ¼ gμν

dxμ
dλ

dxν
dλ ¼ 0, with λ to be any affine parameter

of null geodesics. However, when transformed into the
optical geometry, the photon orbits become spatial geo-
desics with vanishing geodesic curvature κg ¼ 0, as we
have emphasized previously [33]. The stationary time
coordinate t in spacetime geometry exactly reduces to
the arc-length parameter/spatial distance parameter in
optical geometry. In the optical geometry, the tangent
vector of arbitrary photon orbits TOP ¼ d=dt with respect
to arc-length parameter t becomes a unit vector (jTOPj ¼ 1).

Black Hole
bound
photon 
orbit 1

bound photon 
orbit 2

stable circular 
photon orbit 

FIG. 2. This figure shows several possible bound photon orbits
near the stable circular photon orbits. These bound photon orbits
could be obtained by perturbation of circular photon orbit at point
p, and they may have different shapes. The bound photon orbit 1
labeled in blue is a closed orbit, and the bound photon orbit 2
labeled in green is an unclosed orbit (just like the Mercury
procession around the Sun). In the equatorial plane of optical
geometry, we can find another point q (we denote the qi for
bound orbit i ¼ 1, 2). When we considering photon orbits
starting from p ending with q, there are at least two different
photon orbits (one is the stable circular photon orbit, and the other
is a bound photon orbit) that can be continuously deformed to
each other. Therefore, in the equatorial plane of optical geometry,
there are two different geodesic curves from p to q belong to the
same homotopy class.
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Here, we restrict the optical geometry in the equatorial
plane, the tangent vector of photon orbits reduces to
TOP ¼ ðdrdt ; dϕdtÞ. Furthermore, for unstable circular photon
orbit, we have the result

r¼ runstable¼ constant⇒
dr
dt

����
r¼runstable

¼0;

⇒ jTOP ·TOPj¼
���� r2

fðrÞ ·
dϕ
dt

·
dϕ
dt

����
r¼runstable

¼1;

⇒ rsh¼bcritical¼
���� r2

fðrÞ ·
dϕ=dλ
dt=dλ

����
r¼runstable

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2unstable

fðrunstableÞ

s
: ð10Þ

This is the analytical expression for a black hole shadow
radius detected by observer located at infinity, and it is

consistent with previous results [13,17]. Based on above
procedures, the shadow radius for arbitrary spherically
symmetric black hole with metric from in Eq. (3) can be
calculated. In the present work, we choose two typical
examples in general relativity—Schwarzschild black hole
and Reissner-Nordström black hole. The circular photon
orbits and black hole shadow radius for these black holes
are summarized in Table I.

V. EQUIVALENCE BETWEEN OUR GEOMETRIC
APPROACH AND CONVENTIONAL APPROACH

The geometric approach developed in this work is
completely equivalent to the conventional approach based
on effective potentials of test particles moving in the
gravitational field. In conventional approach, the circular
photon orbit can be solved by analyzing the extreme points
of effective potential VeffðrÞ. Particularly, the unstable
circular photon orbit r ¼ runstable corresponds to local
maximum of effective potential, and the stable circular
photon orbit r ¼ rstable is the local minimum of effective
potential.
We now demonstrate the equivalence between these two

approaches. In spherically symmetric black hole spacetime,
if we restrict test particles moving in the equatorial plane
θ ¼ π=2, the equation of motion eventually reduces to [14]

1

2
·

�
dr
dλ

�
2

þ VeffðrÞ ¼
1

2
· E2; ð11Þ

where effective potential of test particles is defined by

VeffðrÞ≡ fðrÞ
2

·

�
L2

r2
þ ϵ

�
: ð12Þ

Here, for massless particles ϵ ¼ 0, and for massive particles
ϵ ¼ 1. The circular photon orbit r ¼ rph corresponds to the
extreme point of effective potential [14,15]

Black Hole

fall into 
black hole

go to infinity

unstable circular 
photon orbit

critical orbit

black hole 
shadow 

detected by 
observer 
located at 

infinity

FIG. 3. The black hole shadow and unstable circular photon
orbit. The light beam emitted from infinity with impact parameter
b ¼ bcritical would reach the unstable circular photon orbit
exactly. The light beam emitted with impact parameter b <
bcritical would fall into the black hole.

TABLE I. The circular photon orbit and black hole shadow radius detected by observer at infinity. This table summarize the results for
Schwarzschild black hole and Reissner-Nordström black hole. All quantities calculated using our new geometric approach agree with
the results obtained using conventional approach based on effective potentiala.

Type of black holes Schwarzschild black hole Reissner-Nordström black hole

Metric fðrÞ ¼ 1–2M=r fðrÞ ¼ 1–2M=rþQ2=r2

Geodesic curvature κg ¼ 1=r − 3M=r2 κg ¼ 1=r − 3M=r2 þ 2Q2=r3

Circular photon orbit rph ¼ 3M rph ¼ ð3M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 − 8Q2

p
Þ=2

Gauss curvature K ¼ −2M=r3 þ 3M2=r4 < 0 K ¼ −2M=r3 þ 3ðM2 þQ2Þ=r4 − 6MQ2=r5 þ 2Q4=r6 < 0
(outside black hole horizon, r > 2M) (outside black hole horizon, r > M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
)

Stability rph ¼ 3M is unstable circular orbit rph ¼ ð3M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 − 8Q2

p
Þ=2 is unstable circular orbit

Black hole shadow rsh ¼ bcritical ¼ 3
ffiffiffi
3

p
M rsh ¼ bcritical ¼ ð3Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2−8Q2

p
Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8ð3M2−2Q2þM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2−8Q2

p
Þ

p
aNote that optical geometry is defined outside the black hole horizon, which is r > 2M for a Schwarzschild black hole and

r > M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
for Reissner-Nordström black hole.
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dVeffðrÞ
dr

����
r¼rph

¼ 0;

⇒

�
L2

2r2
·
dfðrÞ
dr

−
L2 · fðrÞ

r3

�
r¼rph

¼ 0; ð13Þ

where we have used ϵ ¼ 0 for massless photons. Note that
the angular momentum L is a conserved quantity along
photon orbit, which is independent of r. Comparing
Eq. (13) with (5), it is clearly demonstrated that they are
equivalent to each other. When r ¼ rph is the extreme point
of effective potential VeffðrÞ, the geodesic curvature
along the circle r ¼ rph vanishes precisely, which makes
it to be the circular photon orbit for spherically symmetric
black holes.
Then we analyze the stability of circular photon orbits.

For unstable circular photon orbit r ¼ runstable, the effective
potential should reach its local maximum [15,18]

d2VeffðrÞ
dr2

����
r¼runstable

< 0;

⇒

�
L2

2r2
·
d2fðrÞ
dr2

−
2L2

r3
·
dfðrÞ
dr

þ 3L2 · fðrÞ
r4

�
r¼runstable

< 0;

⇒

�
L2

2r2
·
d2fðrÞ
dr2

−
L2 · fðrÞ

r4

�
r¼runstable

< 0;

⇒

�
fðrÞ
2

·
d2fðrÞ
dr2

−
fðrÞ · fðrÞ

r2

�
r¼runstable

< 0;

⇒

�
fðrÞ
2

·
d2fðrÞ
dr2

−
�
1

2

dfðrÞ
dr

�
2
�
r¼runstable

< 0: ð14Þ

In the derivation, we have used the relation dfðrÞ=dr ¼
2fðrÞ=r in Eq. (13) for unstable circular photon orbit
repeatedly. Recall the expression for Gauss curvature in
Eq. (6), the last line of this inequality implies that Gauss
curvature must be negative (K < 0). On the contrary, the
stable photon orbit, which corresponds to the local mini-
mum of effective potential, would imply the Gauss curva-
ture to be positive (K > 0). In this way, the equivalence

between our geometric approach developed in this work
and the conventional approach is demonstrated. The
features of these two approaches and their equivalence
are summarized in Table II.

VI. SUMMARY AND PROSPECTS

In this work, a pure geometric approach is developed to
calculate the circular photon orbit and black hole shadow
radius. This approach is quite simple and general, regard-
less of particular metric forms of black hole spacetime. The
Gauss curvature, geodesic curvature in optical geometry
and Hadamard theorem in differential geometry offer a new
pathway to calculate the circular photon orbits and black
hole shadows. This approach indicates that the optical
geometry may give us profound insights on black hole
properties, and it is worthy of extensive investigations.
Furthermore, we demonstrate that our approach is com-
pletely equivalent to the conventional approach based on
effective potentials of test particles.
There are several possible extensions of our geometric

approach in the near future. First, the similar algorithm can
be apply to rotational black holes, whose optical geometry
is a Randers-Finsler manifold. Second, the approach
developed in this work, which is given for massless
photons, can also be generated to the cases of massive
particles. For circular orbits of massive particles, the
utilization of Gauss curvature, geodesic curvature and
Hadamard theorem may take place in the Jacobi geometry
of black hole spacetime, rather than the optical geometry.
The Jacobi geometry can be constructed from the action
principle and constrained canonical momenta of massive
test particles [39,40].
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TABLE II. The features of our geometric approach developed in this work and the conventional approach.

Approach Our geometric approach Conventional approach

Geometry Optical geometry of spacetime Spacetime geometry
(Riemannian/Randers-Finsler geometry) (Lorentz geometry)

Key quantities Gauss curvature KðrÞ Effective potential VeffðrÞ
Geodesic curvature κgðrÞ

Photon orbit Conditions Conditions

Circular photon orbit Zero geodesic curvature Extreme point of effective potential
κgðrÞ ¼ 0

dVeff ðrÞ
dr ¼ 0

Unstable circular photon orbit Zero geodesic curvature and negative Gauss curvature Local maximum of effective potential
κgðrÞ ¼ 0 and KðrÞ < 0

dVeff ðrÞ
dr ¼ 0 and d2Veff ðrÞ

dr2 < 0

Stable circular photon orbit Zero geodesic curvature and positive Gauss curvature Local minimum of effective potential
κgðrÞ ¼ 0 and KðrÞ > 0

dVeff ðrÞ
dr ¼ 0 and d2Veff ðrÞ

dr2 > 0
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