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The lattice regularized pure gauge compact U(1) theory is an ideal laboratory to explore how
confinement is realized as its phase diagram has a confined and a deconfined phase that depends on
the value of the coupling constant, i.e., on . Herein, the connection between confinement and positivity
violation through the Schwinger function associated with the Landau gauge photon propagator is
investigated. The simulations reported show a very clear link between the realization of confinement and
positivity violation of the photon Schwinger function and, therefore, of the photon Kéllén-Lehmann
spectral density. Furthermore, a mass scale that characterizes the decay of the Schwinger function for small
time separations is computed and used to distinguish the two phases of the theory.
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The quanta associated with the fundamental fields of
QCD have never been observed as free particles. However,
in QCD, the hadron spectra and phenomenology are
explained based on the dynamics of quarks and gluons.
Despite all efforts, we still do not have a nonperturbative
solution for QCD and, therefore, the mechanism that
prevents the observation of free quarks and gluons remains
to be understood [1]. Some authors suggest that confine-
ment of quarks is linked with particular classes of gluon
configurations [2] such as non-Abelian monopoles [3-8],
center vortices [9-15], etc., with some of these configu-
rations suggesting the emergence of Abelian dominance in
QCD [9,16-18]. In general, these gluon configurations are
used to give support to a (linearly) rising static potential that
certainly provides an intuitive picture for confinement that
builds on the study of nonrelativistic systems. Explaining
the quark dynamics using a potential is physically appeal-
ing, and static potentials for systems other than meson and
baryons have been computed. As mentioned, these poten-
tials are typically rising functions of the distance between
constituents, for sufficiently large distances between those
constituents. However, the description of the quark dynam-
ics through a static potential is questionable, especially for
the lighter quarks where quantum fluctuations have a
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leading role. Despite its usefulness, the introduction of a
static potential freezes the gluon dynamics and it cannot
give the full picture of the QCD dynamics.

In a quantum field theory the information on the dynam-
ics, such as the spectra, form factors, transport properties,
etc., 1s summarized in its Green functions. These functions
are not necessarily easy to compute, this is particularly true
outside the perturbative solution of the theory, and the
extraction of the required information can be a complex task.
Returning to the problem of the confinement mechanism in
QCD, based on BRST invariance of the QCD action, Kugo
and Ojima [19] suggested a confinement mechanism that
strongly constrains the infrared properties of gluon and
ghost propagators the two-point correlation functions of
pure Yang-Mills theory. Interestingly, the same type of
constrains were predicted using the localized Gribov-
Zwanziger action for QCD [20,21] whose starting point
is completely different, namely the reduction of the func-
tional integration space. Lattice simulations of pure Yang-
Mills theory to access the gluon and ghost propagators, see,
e.g., [22-25] and references therein, did not confirm the
predictions of these approaches for the propagators. Some of
these issues have been solved by extending the formulation
of Gribov-Zwanziger actions; see, €.g., [26,27]. The proper-
ties of the pure Yang-Mills gluon and ghost propagators are
now well established and there is a vast literature on the
subject; see, for example, [28-39] and references therein.

The predictions of Kugo-Ojima mechanism and of the
Gribov-Zwanziger action for the gluon propagator imply
the violation of positivity for the Kéllén-Lehmann gluon
spectral representation, that necessarily invalidate a quan-
tum mechanical probabilistic interpretation for one-gluon
particle states, meaning that the Hilbert space of QCD does
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not include one-gluon particle states. The corresponding
quanta can only appear as components of the wave function
of composite states and, in this sense, they are confined and
cannot be observed as free particles. In principle, that is
what happens with quarks and gluons that contribute only
to the internal structure of hadrons but are at the heart of
the hadronic dynamics. In this sense positivity violations
imply confined quanta. Positivity violation has been
observed both for pure Yang-Mills gluon and ghost
propagators [40-45]. Independently of the confinement
mechanism it turns out that, in non-Abelian Yang-Mills
theories, positivity violation of the Kéllén-Lehmann spec-
tral function is linked also with asymptotic freedom [46].
The violation of positivity condition for the spectral
function associated with two-points functions has also
been reported for O(N) scalar theories [47] and for
QCD at finite temperature [48,49].

Denoting the propagator in (Euclidean) momentum
space by D(p?), its Killén-Lehmann integral representa-
tion, see, e.g., [50], is given by

2 +o0
D(p*) = / dp
Ho

where the spectral function p(u) reads

p(p) =Y _8(u—m3)|(0|OIn) )

p(u)
pr4u’ M)

with O being the field operator associated with the
corresponding quanta, m,, are the masses of the physical
states and |ny) are the physical states at rest, i.e., with
p = 0, that are eigenstates of the four momentum operator.
It follows from the definition that p(u) is positive definite.
The Schwinger function

400 dp i
c= [T )| e
+o0 d'u
= [ 5 pueVH (3)
/ﬂo 2Vh

is given by a sum of positive terms and, therefore, is also
positive definite for all z. From the point of view of testing
confinement through positivity violation, the Schwinger
function allows to check for the positivity of p(u) without
having to invert the integral equation (1). On the other
hand, if C(z) is positive for all ¢, it does not provide any
information on the sign for the spectral function p(u).
Indeed, in this case, the contributions of the negative p(u)
can be canceled by the contributions where p(u) >0
resulting in a positive Schwinger function. In the following,
we will always assume that the propagators have an integral
representation of the Kéllén-Lehmann type. Note that it is
not clear that this assumption holds for confined particles;
see, e.g., [51-56] and references therein.

Compact pure gauge QED allows us to check the
connection between confinement and positivity violation.

Indeed, recently, first principles lattice simulations of the
compact formulation of a pure gauge U(l) theory [57]
addressed the computation of the Landau gauge photon
propagator [58—60]

(A0, (p)) = Volk + ) (8~ R D). (4

where (---) stands for gauge average and V is the lattice
volume, confirm that pure gauge compact QED has two
phases. At low B = 1/e% where e is the bare coupling
constant and f is the coupling constant that appears in the
lattice version of the action, the theory is confining, in the
sense that the corresponding static potential grows linearly
with the distance between the fermions, while at high j
values the theory approaches a free field theory in the
thermodynamic limit. Moreover, these studies also show
that in the confined phase compact QED has a mass gap and
a nontrivial topological structure, while in the deconfined
phase the theory becomes massless and the topology of the
gauge theory becomes trivial' as it should be for a free field
theory. These properties are translated into a Landau gauge
propagator D(p?) that is rather different in both phases; see,
e.g., Figs. 1 and 2 in [59]. The investigation of the Landau
gauge photon propagator confirms previous studies which
show that the transition between the two phases occurs at 3
slightly above unity and that the transition from the confined
to the deconfined phase is first order [61-77].

The question addressed in the current work is to explore
how the connection between the transition from the
confined to the deconfined phase translates into the photon
spectral function. In particular, we aim to investigate the
relation between confinement and positivity violation for
the case of pure gauge compact QED.

The 4D lattice simulations of the compact U(1) gauge
theory considered here use hypercubic lattices with N
points in each direction. For details on the sampling, gauge
fixing, the computation of the gauge fields from the links
and the propagator we refer the reader to [58,59]. Note that
for the computation of the Schwinger function only the so-
called naive momenta are considered. Moreover, the
Schwinger function can be extracted from the Euclidean
momentum propagator considering only timelike momenta.
The lattice Schwinger function is then given by

) = 373 D)™ s

For pure gauge non-Abelian theories the Schwinger func-
tion has been investigated for lattice regularized SU(2) [43]
and SU(3) [78,79] Yang-Mills theories. Further, for pure
gauge theories the Schwinger function was also computed

"The issues related to the topology of QED and its compact
formulation on the lattice are discussed in [58,59].
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within a class of solutions of Dyson-Schwinger equations
[80,81]. In all cases it was observed that C(t) takes positive
and negative values, i.e., the spectral function is not positive
definite. At small 7 the Schwinger function decreases with
time, followed by oscillations at larger ¢ often times are
around zero. The Schwinger function can be described by
two mass scales that are associated the initial decay and
with the period of oscillation observed at larger .

The computation of the spectral function directly from
the propagator is an ill-defined problem that is soluble
after calling for regularization techniques or by introducing
a bias. For non-Abelian gauge theories, direct attempts
to measure the gluon or the ghost spectral density
[45,51,52,82-88] give p(u) that take positive and negative
values for different ranges of x4 and, therefore, confirm
positivity violation in pure gauge Yang-Mills theories.

In [58,59] the Landau gauge photon propagator in
compact pure gauge U(1) theory was computed for various
lattice volumes and p values. Here we calculate the
Schwinger function using the outcome of the simulations
reported before. All the quantities that are shown are bare
quantities. To define a renormalized Schwinger function
one would have to renormalize the photon propagator.
The difficulties of renormalizing the two point correlation
function have been discussed in [59]. However, the
renormalization of the Schwinger function translates into
a global rescale and has no impact on the observed
positivity violation as a function of f. The Schwinger
function for the smallest # = 0.8, where the theory is in the
confined phase, and largest # = 1.2, that is associated with
an essentially free theory, is reported in Fig. 1. In the
confined phase (# = 0.8), that shows a mass gap and a
nontrivial topological structure, C(t) is positive defined for
t < 3, it becomes negative for the first time after r = 3 and
then it oscillates for larger times. This result implies that for
B = 0.8 the spectral function p(u) is not a positive function
and, therefore, there are no one-photon states belonging to
the Hilbert space of the physical states in this phase.
Positivity violation of C(z) is not observed in the decon-
fined phase, where the theory is massless and topologically
trivial, and, therefore, no statement about the positivity of
the spectral function can be made. The results of Fig. 1
suggests that for the compact formulation of QED there is a
connection between confinement and positivity violation.

In order to investigate this connection deeper, the
Schwinger function for various f values computed around
the transition between the two phases is reported in Fig. 2.
Positivity violation of C(¢) and, therefore, of p(u) is seen
for # < 1.005. For larger f# the function C(¢) is always
positive definite and/or becomes compatible with zero at
larger ¢, within one standard deviation, and no positivity
violation can be claimed. In the confined phase, the
oscillations of C(t) at large #’s are difficult to observe
but the data is still compatible with an oscillatory behavior
at larger times. This could be a limitation of using relatively
small lattices in the simulation. Hopefully, an increase in
statistics and in the lattice volume will help identifying the
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FIG. 1. Bare Schwinger function for # = 0.8 and for f = 1.2
computed using a simulation on a 48" lattice.

oscillations with z. This oscillatory behavior is no longer
present for g > 1.005. For the largest f reported, the
Schwinger function is always a smooth positive function
without oscillations; see also the bottom plot in Fig. 1.
Furthermore, we have also checked that for f = 0.8 (con-
fined phase) and f = 1.2 (deconfined phase) the Schwinger
functions for the largest lattice volumes considered in [58],
i.e., the simulations using 96* lattices, reproduce the same
qualitative behavior as observed in Figs. 1 and 2.

At small times the data for C(f) decreases with ¢ both
for the confined and deconfined phase. An effective mass
scale associated with the decay can be measured taking the
definition

C(t+1)
m(t) = —1In c (6)
In the continuum formulation this effective mass scale is
proportional to the first derivative of C(z) at f and it follows
from Eq. (3) that

1

m(r) o 5 / " duplu)e v (7)

In particular m = m(0) is proportional to the integral of the
photon spectral density. The above mass scale has been
considered previously and studied within U(1) and SU(2)
gauge theories and its variation related to positivity
violation of the spectral density [40,42,43]. Indeed, as
demonstrated in these previous works an increase of m(¢)
signals positivity violation. As discussed below, for com-
pact U(1) lattice pure gauge theory, we observe an increase
of m(¢t) at small ¢ in the confined phase and, therefore,
positivity violation occurs in this phase. Our results for the
Schwinger function confirm this result.

In all cases that we have computed the Schwinger function,
C(¢) is a decreasing function of ¢ for small ¢ and, therefore,
m is always positive definite for small z. m = m(0) being
positive definite is not in contradiction with the observed
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FIG. 2. Bare Schwinger function close to the confinement/deconfinement transition.

positivity violation in the confined phase. Indeed, a m > 0
means that the area under the curve y = p(u) for p > 0 is
larger than the area under the curve y = —p(u) where p < 0.
The Schwinger function is a weighted combination of these
two areas and it is the balance of the two contributions that
allows or not to observe positivity violation.

In Fig. 3 this mass for t = 0, given in lattice units, is
reported as a function of the coupling constant 3. m is large
in the confined phase and shows a sudden drop in the
vicinity of the transition toward the deconfined phase. In
the deconfined phase and for the larger #’s m is compatible,
within one standard deviation, with zero. As Fig. 3 shows m
can be used to distinguish the two phases and it takes large
values (in lattice units) in the confined phase. Recall that
the study of the photon propagator also shows that the
confined phase has a mass gap. Further, in Fig. 4 the mass
function m(t) is given for £’s where the Schwinger function
C(¢) has the same sign as C(0), and for the same f given in
Fig. 2. Figure 4 complements the content of Fig. 3 and it
also shows that, in general, m(¢) is an increasing function of
t for small 7 in the confined phase, i.e., positivity violation
of the spectral function occurs in the confined phase, while
in the deconfined phase m(7) is essentially constant and is
compatible with zero within errors. The study of C(z) and
m(t) also shows clearly that, for the confined phase, even

for small ¢ the Schwinger function C(¢) deviates from a
simple exponential decay. This can be understood from the
behavior of m (), see Fig. 4, where m(t) increases with ¢ for
small times.

15
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FIG. 3. Effective mass associated with the decay of C(r) at
t =0 as a function of . The errors were computed assuming
Gaussian error propagation.
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FIG. 4. Effective mass m(¢) associated with the decay of C(z) for the same /3 as in Fig. 2. In all cases, the errors on m(r) were computed
assuming Gaussian error propagation and the mass was defined only when C(¢) is positive definite.

The reported Schwinger function shows an oscillatory
behavior at large ¢ that appears only in the confined phase.
These oscillations define another mass that vanishes in the
deconfined phase, as no oscillations are observed. We made
no attempt to access this second mass scale. Our data
suggests then that the confined phase is characterized by
two mass scales that are associated with the observed decay
of C(r) at small 7 and with the oscillations observed at
larger times. On the other hand for the deconfined phase,
that includes the continuum limit, the theory is conformal
invariant and has no mass scales associated with it.

In summary, the simulations reported here show, once
more, that the nature of the Landau gauge photon propagator
and also its Killén-Lehmann spectral density depend on the
coupling of the compact version of the pure U(1) gauge. In
the confined phase, the Schwinger function and, therefore,

the Killén-Lehmann spectral density are not always positive
definite. On the other hand, the Schwinger function does not
exhibit positivity violation in the deconfined phase, where
the continuum theory is realized. Our results illustrate,
clearly, for the pure gauge compact QED the link between
positivity violation and confinement that is expected to
occur in other theories when confinement occurs.
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