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We derive a first-order, stable and causal, relativistic hydrodynamic theory from the microscopic kinetic
equation using the gradient expansion technique in a general frame. The general frame is introduced from
the arbitrary matching conditions for hydrodynamic fields. The interaction is introduced in the relativistic
Boltzmann equation through the momentum-dependent relaxation time approximation (MDRTA) with the
proposed collision operator that preserves the conservation laws. We demonstrate here for the first time that
not only the general frame choice but also the momentum dependence of microscopic interaction rate,
captured through MDRTA, is imperative for producing the essential field corrections that give rise to a
causal and stable first-order relativistic theory.
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I. INTRODUCTION

The hydrodynamic theory is an effective coarse-grained
formulation of the underlying microscopic dynamics at the
long-wavelength limit, which has served for decades as an
efficient and accessible tool for a vast range of problems in
theoretical physics. However convenient, the relativistic
extension of the first-order dissipative Navier-Stokes (NS)
formalism introduced byLandau-Lifshitz (LL) [1] andEckart
[2] encounters severe issues with instability [3–5] and super-
luminal signal propagation, which pose serious limitations to
the practical application of the theory. Later on, second-order
Muller-Israel-Stewart (MIS) theory [6–8] and some of its
extended versions [9–13] were introduced to remedy these
problems. Recently, a new study was proposed by Bemfica,
Disconzi, Noronha, and Kovtun (BDNK) [14–20] for a first-
order stable and causal theory by defining the out-of-
equilibrium hydrodynamic variables in a general frame other
than LL or Eckart through their postulated constitutive
relations that include both time and space gradients.
In this work,we derive a first-order theory using a gradient

expansion technique in an arbitrary frame where the explicit
expressions of the field redefinition coefficients have been
estimated from the underlying microscopic dynamics. The
homogeneous part of the out-of-equilibrium momentum
distribution has been extracted from the hydrodynamic
matching conditions. The inhomogeneous part obtained

from the Boltzmann equation becomes sensitive to the
system interactions through its collision term. The relaxation
time approximation (RTA) [21] is proven to be a convenient
form for linearization of the collision kernel with a wide
range of applications (see Ref. [22] and references therein),
and its momentum dependence can be related to the micro-
scopic interaction relevant for the medium under consider-
ation [23]. These two facts provide a strongmotivation to use
momentum-dependent relaxation time approximation
(MDRTA) in the relativistic transport equation to obtain
the inhomogeneous part of the solution [24–31]. Here we
propose a new collision operator underMDRTAwhich obeys
the fundamental microscopic and macroscopic conservation
laws irrespective of the particular momentum dependence of
RTA or the matching indices. With this formalism, here we
analytically calculate the values of the coefficients in the
constitutive relations of hydrodynamic field redefinition
from the kinetic theory in a general frame, i.e., for arbitrary
matching conditions.
We further analyze the dispersion relation resulting from

small perturbations around the hydrostatic equilibrium for
this first-order theory to investigate the stability and causality
of the system. It is observed that the first-order field
correction coefficients responsible for generating causal
and stable modes are directly related to the microscopic
dynamics of the system. Even in a general frame where the
first-order theory is expected to be causal and stable, we find
that only nonzero momentum dependence of the relaxation
time gives rise to the causal and stable modes. The stability
and causality conditions critically depend on the particular
momentum dependence of MDRTA. These are the key
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findings of the current work. To the best of our knowledge,
for the first time, a correlation between the interaction
dynamics and the causality and stability of a relativistic
fluid is being reported.
Throughout the paper, we use natural units

(ℏ ¼ c ¼ kB ¼ 1) and a flat space-time with a mostly
negative metric gμν ¼ diagð1;−1;−1;−1Þ.

II. HYDRODYNAMIC FIELD REDEFINITION

The basic idea is to employ the relativistic Boltzmann
transport equation to estimate the out-of-equilibrium one-
particle distribution function fðx; pÞ for a general hydro-
dynamic frame (defined later),

pμ
∂μfðx; pÞ ¼ C½f� ¼ −L½ϕ�: ð1Þ

Here p is the particle four-momenta, and x denotes
the space-time variable, f ¼ fð0Þ þ fð0Þð1� fð0ÞÞϕ with
fð0Þð¼½expðp·uT − μ

TÞ ∓ 1�−1 for bosons and fermions,
respectively) as the equilibrium distribution and ϕ the
out-of-equilibrium deviation; C½f� is the collision inte-
gral, which corresponds to the two-to-two elastic collisions.

It is linearized as L½ϕ� ¼ R
dΓp1

dΓp0dΓp0
1
fð0Þfð0Þ1 ð1�

f0ð0ÞÞð1� f01
ð0ÞÞfϕþ ϕ1 − ϕ0 − ϕ0

1gWðp0p0
1jpp1Þ, with

dΓp ¼ d3p
ð2πÞ3p0, and W is the transition rate that depends

on the cross section of the interactions. In the gradient
expansion technique ϕ is expressed as ϕ ¼ P

r ϕ
ðrÞ, with

ϕðrÞ as the rth-order out-of-equilibrium deviation of the
distribution function.
In general, ϕðrÞ can be expressed as a linear combination

of rth-order field gradients with appropriate tensor coef-
ficients [32]:

ϕðrÞ ¼
X
l

AðrÞ
l XðrÞlþ

X
m

BðrÞμ
m YðrÞm

μ þ
X
n

CðrÞμν
n ZðrÞn

μν ; ð2Þ

where XðrÞl; YðrÞm
μ , and ZðrÞn

μν are the rth-order scalar, vector,
and rank-2 tensor gradient corrections of the l, m, and

nth kind, respectively. Here, AðrÞ
l ; BðrÞμ

m , and CðrÞμν
n are the

unknown coefficient functions of space-time, particle
momentum, and the ratio of rest mass to temperature
z ¼ m=T. We expand the coefficients in a polynomial

basis to extract their values as AðrÞ
l ¼ P∞

s¼0 A
r;s
l ðz; xÞPð0Þ

s ,

BðrÞμ
m ¼P∞

s¼0B
r;s
m ðz;xÞPð1Þ

s p̃hμi, CðrÞμν
n ¼ P∞

s¼0 C
r;s
n ðz; xÞ×

Pð2Þ
s p̃hμp̃νi. Inspired by [33] and being convenient for

the current analysis, we employ an orthogonal polynomial
basis which is partially orthogonal in the scalar sector. For

our case the first two polynomials, Pð0Þ
0 ¼ 1; Pð0Þ

1 ¼ Ẽp, are
not orthogonal, but all other higher polynomials are chosen
to be orthogonal to these two as well as to each other, and

monic (in PðnÞ
s the coefficient of maximum power of Ẽp,

i.e., Ẽp
s is 1). Concisely, they are given by

Pð0Þ
0 ¼ 1; Pð0Þ

1 ¼ Ẽp; Pð1Þ
0 ¼ 1; Pð2Þ

0 ¼ 1; ð3ÞZ
dFpðẼp=τRÞðΔμνpμpνÞnPðnÞ

s PðnÞ
r ∼ δs;r; ð4Þ

with τR the relaxation time of a single particle distribution
function that will be introduced later with more details. The
notations we use are as follows: dFp ¼ dΓpfð0Þð1� fð0ÞÞ,
p̃μ ¼ pμ=T, μ̃ ¼ μ=T, Ẽp ¼ uμpμ=T, p̃hμi ¼ Δμνp̃ν, and

p̃hμp̃νi ¼ Δαβ
μν p̃αp̃β, with T, μ, and uμ the temperature,

chemical potential, and fluid four-velocity of the system at
equilibrium and Δμν ¼ gμν − uμuν.
It is observed that, by virtue of the collision integral

properties L½1� ¼ 0 and L½pμ� ¼ 0 that follow from the
particle number and energy-momentum conservation,
respectively, the coefficients Ar;0

l ; Ar;1
l , and Br;0

m cannot
be determined from the transport equation (1), and hence
they are called the coefficients of the homogeneous
solution. The rest of the coefficients, Ar;s

l ; Br;s
m , and Cr;s

n ,
can be estimated from the transport equation, and they are
called inhomogeneous or interaction solutions. We take the
recourse of the matching conditions, which are constraints
that set the thermodynamic fields (such as temperature,
chemical potential, etc.) to their equilibrium values even in
the presence of dissipation, to extract the coefficients of the
homogeneous part of the distribution function. Each such
matching condition produces one out of an infinite number
of possible “hydrodynamic frames” [19]. From the require-
ment of setting two scalars and one vector homogeneous
coefficients from these constraints, we use the following
three matching conditions,Z

dFpẼi
pϕ¼ 0;

Z
dFpẼ

j
pϕ¼ 0;

Z
dFpẼk

pp̃hμiϕ¼ 0;

ð5Þ
where i ≠ j, i, j, k are non-negative integers. We identify
the set of matching indices (1,2,1) and (1,2,0) to represent
the LL and Eckart frames, respectively. Substituting
Eq. (2) in Eq. (5), we find the homogeneous part in terms

of the interaction part ϕðrÞ
int ¼

P∞
s¼2P

ð0Þ
s
P

lA
r;s
l XðrÞl þ

p̃hμiP∞
s¼1P

ð1Þ
s
P

mB
r;s
m YðrÞm

μ þp̃hμp̃μiP∞
s¼0P

ð2Þ
s
P

nC
r;s
n ZðrÞn

μν

and the matching indices. Using this prescription, the
entire out-of-equilibrium distribution function for any order
becomes

ϕðrÞ ¼ ϕðrÞ
int − Ẽp

�
Ij
D1;0

i;j

Z
dFpẼi

pϕ
ðrÞ
int þ ði ↔ jÞ

�

−
�
Ijþ1

D0;1
i;j

Z
dFpẼi

pϕ
ðrÞ
int þ ði ↔ jÞ

�

−
p̃hνi
Jk

Z
dFpẼk

pp̃hνiϕðrÞ
int : ð6Þ

Here we use the shorthand notation Dm;n
i;j ¼ IiþmIjþn −

IiþnIjþm with the properties Dm;n
i;j ¼ −Dn;m

i;j and
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Dm;n
i;j ¼ −Dm;n

j;i . The moment integrals are defined as

In¼
R
dFpẼn

p, ΔμνJn ¼
R
dFpp̃hμip̃hνiẼn

p. Equation (6)
provides the out-of-equilibrium parts of the two most
general hydrodynamic field variables, namely, the particle
four-flow (Nμ) and the energy-momentum tensor (Tμν),
respectively, for the rth order of gradient correction as

δNðrÞμ ¼
Z

dFppμϕðrÞ; δTðrÞμν ¼
Z

dFppμpνϕðrÞ: ð7Þ

Utilizing Eq. (7), the nonequilibrium correction to the

particle number density (δnðrÞ ¼ uμδNðrÞ
μ ), the energy den-

sity (δϵðrÞ ¼ uμuνδTðrÞ
μν ), pressure (δPðrÞ ¼ − 1

3
ΔμνδTðrÞ

μν ),
energy flux or momentum density (WðrÞα ¼ Δα

μuνδTðrÞμν),
and the particle flux (VðrÞα ¼ Δα

μδNðrÞμ) can be estimated
order by order as

δnðrÞ ¼
Z

dFpðpμuμÞϕðrÞ
int þ aðrÞ

∂n0
∂μ̃

þ uμbðrÞμ T
∂n0
∂T

; ð8Þ

δϵðrÞ ¼
Z

dFpðpμuμÞ2ϕðrÞ
int þ aðrÞ

∂ϵ0
∂μ̃

þ uμbðrÞμ T
∂ϵ0
∂T

; ð9Þ

δPðrÞ ¼ 1

3

Z
dFpfðpμuμÞ2 −m2gϕðrÞ

int þ aðrÞ
∂P0

∂μ̃

þ uμbðrÞμ T
∂P0

∂T
; ð10Þ

WðrÞμ ¼
Z

dFpphμiðpμuμÞϕðrÞ
int − ðϵ0 þ P0ÞΔμνbðrÞν ; ð11Þ

VðrÞμ ¼
Z

dFpphμiϕðrÞ
int − n0ΔμνbðrÞν : ð12Þ

Here,n0, ϵ0, andP0 are the equilibriumvalues of particle num-
ber density, energy density, andpressure, respectively, andaðrÞ

and bðrÞμ are the dimensionless momentum-independent

quantities given by aðrÞ ¼ Iiþ1

D0;1
i;j

R
dFpẼ

j
pϕ

ðrÞ
int þ ði ↔ jÞ,

uμbðrÞμ ¼ Ii
D1;0

i;j

R
dFpẼ

j
pϕ

ðrÞ
int þði↔jÞ, ΔμνbðrÞν ¼− 1

Jk

R
dFpẼk

p×

p̃hμiϕðrÞ
int , which define the homogeneous part of ϕ as

ϕðrÞ
h ¼ aðrÞ þ bðrÞμp̃μ. Adding up the field corrections for

all orders, the most general expressions for Nμ and Tμν are
given by

Nμ ¼ ðn0 þ δnÞuμ þ Vμ; ð13Þ
Tμν ¼ ðϵ0 þ δϵÞuμuν − ðP0 þ δPÞΔμν

þ ðWμuν þWνuμÞ þ πμν; ð14Þ

with πμν the shear stress tensor.

III. FIRST-ORDER THEORY WITH MDRTA

Up to now, the discussion has been completely general,
and the results are applicable for any order in the gradient

expansion. To provide the explicit expression for the
distribution function from Eq. (6), one needs to estimate
the interaction part of the distribution function for a specific
order. For this purpose, we employ here the MDRTA for
solving the relativistic transport equation (1) as a dynamical
model study. The idea is to replace L½ϕ� in Eq. (1) with the
Anderson-Witting-type relaxation kernel, but now we
generalize the relaxation time to be momentum dependent.
For this purpose, we propose here a collision operator
under MDRTA in Eq. (1) as the following:

LMDRTA½ϕ� ¼
ðp · uÞ
τR

fð0Þð1� fð0ÞÞ

×

�
ϕ −

hẼp

τR
Ẽ2
pihẼp

τR
ϕi − hẼp

τR
ẼpihẼp

τR
ϕẼpi

hẼp

τR
ihẼp

τR
Ẽ2
pi − hẼp

τR
Ẽpi2

− Ẽp

hẼp

τR
ẼpihẼp

τR
ϕi − hẼp

τR
ihẼp

τR
ϕẼpi

hẼp

τR
Ẽpi2 − hẼp

τR
ihẼp

τR
Ẽ2
pi

− p̃hνi
hẼp

τR
ϕp̃hνii

1
3
hẼp

τR
p̃hμip̃hμii

�
; ð15Þ

with h� � �i ¼ R
dFpð� � �Þ. Equation (15) readily gives

LMDRTA½ϕ�¼0 if ϕ ¼ aþ bðp · uÞ þ cμphμi with a; b; cμ

being arbitrary momentum-independent coefficients. It sat-
isfies the self-adjoint property as well,

R
dΓpψLMDRTA½ϕ� ¼R

dΓpϕLMDRTA½ψ �. These two combined give the summa-
tion invariant property

R
dΓpψLMDRTA½ϕ� ¼ 0 for ψ ¼

aþ bðp · uÞ þ cμphμi which immediately results in the
conservation laws ∂μNμ ¼ 0 and ∂μTμν ¼ 0microscopically.
These conservation laws do not need to be estimated order by
order and are treated nonperturbatively. The preservation of
particle number and energy-momentum conservation in
LMDRTA½ϕ� is irrespective of the frame indices or particular
momentum dependence of τR. Equation (15) resembles the
novel relaxation time collision operator introduced in [26]
apart from the fact that it uses the polynomial basis given in
Eqs. (3) and (4). The advantage of using this basis is that the
polynomials associated with the homogeneous part of the
solution are in the form of simple exponents, which reduces
the computational complexity significantly.
In the current analysis, the momentum dependence of τR

is expressed as a power law of Ẽp in the comoving frame,
with τ0R the momentum-independent part; the parameter Λ
specifies the power of the scaled energy.
To solve Eq. (1), we adopt a perturbative expansion

introduced in [20]. By decomposing the space-time deriva-
tive, the left-hand side of Eq. (1) gives rise to a number of
time and space derivatives over the fundamental thermo-
dynamic quantities T, μ, and uμ. In popular perturbation
approaches like the Chapman-Enskog method, the time
derivatives are replaced by the spatial ones in order to make
the left-hand side of Eq. (1) orthogonal to zero modes
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(homogeneous solutions). By virtue of the collision oper-
ator LMDRTA given in Eq. (15), the right-hand side of
Eq. (1) now retains only the interaction part of ϕ. It
singularly excludes the zero modes of the linearized
collision operator; i.e., any functions proportional to 1
and pμ are not present from the momentum basis of the
unknown coefficients in Eq. (2). Because of this fact, the
left-hand side of Eq. (1) does not necessarily need to be
orthogonal to zero modes in order to extract the remaining
nonzero mode coefficients, which are themselves orthogo-
nal to zero modes as well as each other. Hence, the
covariant time derivatives appearing on the left-hand side
of Eq. (1) do not need to be exchanged by the spatial
gradients. Employing this method, the inhomogeneous or
interaction part of the first-order out-of-equilibrium dis-
tribution function turns out to be

ϕð1Þ
int

τ0R
¼ −ẼΛ−1

p

�
Ẽ2
p
DT
T

þ ẼpDμ̃þ
�
Ẽ2
p

3
−
z2

3

�
ð∂ · uÞ

þ Ẽpp̃hμi
�∇μT

T
−Duμ

�
þ p̃hμi∇μμ̃ − p̃hμp̃νiσμν

�
;

ð16Þ
where σμν ¼ ∇hμuνi, D ¼ uμ∂μ, and ∇μ ¼ Δμν

∂ν are sym-
metric traceless shear tensor, temporal, and spatial counter-
parts of the total space-time derivative, respectively. Next,
we use Eq. (16) in Eq. (6) to construct ϕð1Þ in order to
calculate the first-order field correction coefficients. From
Eqs. (8)–(12), the first-order thermodynamic field correc-
tions in a general frame and with arbitrary interactions are
given by

δnð1Þ; δϵð1Þ; δPð1Þ ¼ ν1; ε1; π1
DT
T

þ ν2; ε2; π2ð∂ · uÞ
þ ν3; ε3; π3Dμ̃; ð17Þ

Wð1Þμ; Vð1Þμ ¼ θ1; γ1

�∇μT
T

−Duμ
�
þ θ3; γ3∇μμ̃: ð18Þ

The explicit expressions of the field correction coefficients
turn out to be elaborate and complicated functions of the
frame indices i, j, k and the parameter Λ of MDRTA. These
field corrections, along with πð1Þμν ¼ 2ησμν (η is the shear
viscosity), constitute the first-order out-of-equilibrium Nμ

and Tμν from Eqs. (13) and (14), respectively.
Here we end up with 14 field correction coefficients

(ν1;2;3; ϵ1;2;3; π1;2;3; θ1;3; γ1;3, and η). It was shown in [17,19]
that not all coefficients are invariant under the first-order
field redefinition (due to the arbitrariness in the definition
of temperature, fluid four-velocity, and chemical potential
for the out-of equilibrium case). We check that our
coefficients satisfy the combinations fi ¼ πi − εið∂P0

∂ϵ0
Þ
n0
−

νið∂P0

∂n0
Þ
ϵ0

and li ¼ γi −
n0

ϵ0þP0
θi to be frame invariant (i.e.,

independent of the indices i, j, k), which further reduce

to the physical transport coefficients, bulk viscosity
ζ ¼ −f2 þ ð∂P0

∂ϵ0
Þ
n0
f1 þ 1

T ð∂P0

∂n0
Þ
ϵ0
f3, and charge conductivity

kn ¼ l3 −
n0T

ðϵ0þP0Þ l1. The detailed expressions of ζ and kn
with MDRTA are given in [29]. The corrections further
reveal that the LL and Eckart limits of the scalar indices
(i ¼ 1, j ¼ 2 or vice versa) give δnð1Þ ¼ 0; δϵð1Þ ¼ 0 (such
that ζ is entirety taken up by the pressure correction), where
for the vector index, the LL limit (k ¼ 1) gives Wð1Þμ ¼ 0

and the Eckart limit (k ¼ 0) gives Vð1Þμ ¼ 0. Most signifi-
cantly, we find that for the momentum-independent
relaxation time (i.e., for Λ ¼ 0), all the correction coef-
ficients associated with the first-order time derivatives
ðν1; ν3; ε1; ε3; π1; π3; θ1; γ1Þ in Eqs. (17) and (18) identi-
cally vanish for all hydrodynamic frame conditions (irre-
spective of i, j, k values), which will be shown later to have
crucial implications on the causality and stability of the
theory.

IV. STABILITY AND CAUSALITY ANALYSIS

Here we investigate the causality and stability of the
theory by linearizing the conservation equations for small
perturbations of fluid variables around the hydrostatic
equilibrium in the local rest frame, ϵðt;xÞ¼ϵ0þδϵðt;xÞ,
n ¼ n0 þ δnðt; xÞ, Pðt; xÞ ¼ P0 þ δPðt; xÞ, uμðt; xÞ ¼
ð1; 0⃗Þ þ δuμðt; xÞ. In linear approximation, δuμ has only
spatial components to retain the normalization condition.
For convenience, these fluctuations are further expressed in
their plane wave solutions via a Fourier transformation
δψðt; xÞ → eiðωt−kxÞδψðω; kÞ, with wave 4-vector kμ ¼
ðω; k; 0; 0Þ. The resulting dispersion relation for the trans-
verse or shear channel is

ðiωÞ2 þ iω
ðϵ0 þ P0Þ

θ
þ η

θ
k2 ¼ 0; ð19Þ

where we define θ ¼ −θ1. At the small k limit, the
obtained modes are ωT

1 ¼ i η
ðϵ0þP0Þ k

2 þOðk4Þ and

ωT
2 ¼ iðϵ0þP0Þ

θ þOðk2Þ. Both the modes are nonpropagating,
where ωT

1 is a hydrodynamic mode (vanishes at k ¼ 0) and
ωT
2 is a nonhydro mode. Note that ωT

1 is the conventional
shear mode of NS theory. At small k, the stability is
guaranteed if θ > 0, because in that case the imaginary part
of ωT

2 is positive definite and gives rise to exponentially
decaying perturbations. At large k, the modes turn out to be

ωT
1;2 ¼ � ffiffiffiffiffiffiffiffi

η=θ
p

kþ i ðϵ0þP0Þ
2θ þOð1kÞ. These are propagating

modes where causality holds for θ > η, which also guar-
antees the stability condition. Here, θ1 plays a crucial role
in stability and causality of the shear channel. From
Eq. (18) the explicit expression of θ1 turns out to be

θ1 ¼ −τ0RT2

�
JΛþ1 þ

ϵ0 þ P0

T2

JkþΛ

Jk

�
: ð20Þ
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We can see that θ1 ¼ 0 for both k ¼ 1 (LL frame) with any
interaction orΛ ¼ 0 (momentum-independent RTA) for any
general frame. This will give rise to superluminal velocities
in the shear channel. In Fig. 1, the left panel shows θð¼ − θ1Þ
scaled by τ0R as a function of Λ for different vector matching
indices k. Here, θ is always positive for Λ > 0. The right
panel shows the group velocity vg ¼

ffiffiffiffiffiffiffiffi
η=θ

p
which obeys

causality for Λ > 1, where η ¼ τ0RT
2KΛ−1=2 with

ΔαβμνKn ¼
R
dFpp̃hμp̃νip̃hαp̃βiẼn

p. We also see that larger
values of k andΛ reduce group velocity. So, even in a general
frame, the choice of Λ crucially decides the stability and
causality of the shear channel. Throughout the numerical
analysis, the parameters have been set to T ¼ 300 MeV,
m ¼ 300 MeV.
For the longitudinal or sound mode, the dispersion

relation turns out to be a sixth-order polynomial,

ðiωÞ6A6 þ ðiωÞ5A5 þ ðiωÞ4A4 þ ðiωÞ3A3

þ ðiωÞ2A2 þ ðiωÞA1 þ A0 ¼ 0; ð21Þ
with A4¼A0

4þA2
4k

2, A3 ¼ A0
3 þ A2

3k
2, A2 ¼ A2

2k
2 þ A4

2k
4,

A1 ¼ A2
1k

2 þ A4
1k

4, A0 ¼ A4
0k

4 þ A6
0k

6. Equation (21)
agrees with the result obtained in [34], where the coefficient
A’s are functions of ν1;2;3; ε1;2;3; π1;2;3; θ1;3; γ1;3 defined
earlier (the detailed analysis will be reported elsewhere).
Equation (21) cannot be solved analytically, and hence we
present results for the k → 0 limit. At this limit, Eq. (21)
gives three hydrodynamic modes as ωL

6 ¼ iĥ2 knT
ðϵ0þP0Þ k

2 and

ωL
4;5 ¼ �cskþ i Γs

2
k2 þOðk3Þ, with scaled enthalpy per

particle ĥ ¼ ðϵ0 þ P0Þ=n0T, velocity of sound squared
c2s ¼ ð∂P0

∂ϵ0
Þn0 þ 1

ĥ
1
T ð∂P0

∂n0
Þϵ0 , and sound attenuation coeffi-

cients Γs ¼ ½4
3
ηþ ζ þ knT

c2s
ð1T ∂P0

∂n0
Þ2ϵ0 �=ðϵ0 þ P0Þ. Here, ωL

6

and ωL
4;5 are the conventional heat diffusion and sound

modes of the NS theory, respectively.
The remaining nonhydro modes are given by

ðiωLÞ3A6 þ ðiωLÞ2A5 þ ðiωLÞA0
4 þ A0

3 ¼ 0: ð22Þ

Using Routh-Hurwitz criteria, we find the following con-
ditions for stability of the nonhydro modes,

A6 > 0; A5 > 0; A0
3 > 0; ð23Þ

B2 ¼ ðA0
4A5 − A0

3A6Þ=A5 > 0: ð24Þ
Among these coefficients, A0

3 ¼ n0ðϵ0 þ P0Þ is always
positive. The remaining coefficients are given by

A6 ¼
θ1

ðϵ0 þ P0Þ
ĥc2sðν1ϵ3 − ν3ϵ1Þ; ð25Þ

A5 ¼ ĥc2sðν3ϵ1 − ν1ϵ3Þ

− θ1

�
ðν1f þ ν3cÞ þ

1

ĥT
ðϵ1gþ ϵ3dÞ

�
; ð26Þ

A0
4 ¼ ðϵ0 þ P0Þðν1f þ ν3cÞ þ n0ðϵ1cþ ϵ3d − θ1Þ; ð27Þ

with c ¼ J0I3=ðI22 − I1I3Þ, d ¼ −J1I2=ðI22 − I1I3Þ, f ¼
−J0I2=ðI22 − I1I3Þ, g ¼ J1I1=ðI22 − I1I3Þ. The concerned
field correction coefficients are given by

ε1 ¼ τ0R

�
∂ϵ0
∂μ̃

DΛþ1;1
i;j

D0;1
i;j

þ T
∂ϵ0
∂T

DΛþ1;0
i;j

D1;0
i;j

− T2IΛþ3

�
; ð28Þ

ε3 ¼ τ0R

�
∂ϵ0
∂μ̃

DΛ;1
i;j

D0;1
i;j

þ T
∂ϵ0
∂T

DΛ;0
i;j

D1;0
i;j

− T2IΛþ2

�
; ð29Þ

ν1 ¼ τ0R

�
∂n0
∂μ̃

DΛþ1;1
i;j

D0;1
i;j

þ T
∂n0
∂T

DΛþ1;0
i;j

D1;0
i;j

− TIΛþ2

�
; ð30Þ

ν3 ¼ τ0R

�
∂n0
∂μ̃

DΛ;1
i;j

D0;1
i;j

þ T
∂n0
∂T

DΛ;0
i;j

D1;0
i;j

− TIΛþ1

�
: ð31Þ

The coefficients ν1, ε1 vanish both for i ¼ 1, j ¼ 2
(LLþ Eckart) ∀Λ and also at Λ ¼ 0 for all frame choices.
Note that ν3, ε3 obey the same but also vanish for Λ ¼ 1 at
all frames. The coefficients make A5 and A0

4 vanish for
Λ ¼ 0 and A6 vanish for both Λ ¼ 0 and 1 at any frame.
From Fig. 2 we can see that A6 becomes positive for Λ > 1,
but it becomes negative for the region Λ ¼ 0 to 1 excluding
the end points. This is shown in the inset of Fig. 2, where
we can see that in this region higher values of the frame
indices make the situation worse with larger negative values
of A6, resulting in more increased instability. This is the

FIG. 1. θ1 and vg as a function of Λ in general frames. FIG. 2. A6 as a function of Λ in general frames.
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essence of the current work. In short, we conclude that a
general frame and the nature of underlying interactions are
both crucial for the stability and causality of a first-order
theory. Figure 3 shows the dependency of A5 and B2 on Λ
for different frames, which turns out to be positive for
general frames and Λ > 0.

V. CONCLUSION

In this work, a first-order, relativistic stable, and causal
hydrodynamic theory has been derived in a general frame
from the Boltzmann transport equation, where the system

interactions are introduced via the microscopic particle
momenta captured through τR and an appropriate collision
operator LMDRTA. We have shown that in order to hold
stability and causality at first-order theories, besides a
general frame, the system interactions need to be carefully
taken into account. The conventional momentum-inde-
pendent RTA leads to acausality by diverging the shear
modes even in a general frame. The momentum depend-
ence employed through MDRTA is shown to subtly
control the stability and causality of the theory in a
general frame.
We believe that this correlation between system dynam-

ics (microscopic interactions) and relativistic hydrodynam-
ics (macroscopic frame variables), along with the precise
estimation of causality and stability conditions, makes the
current work an acceptable first-order hydrodynamic
theory, ready for practical applications.
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