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In quantum field theory, a consistent prescription to define and deform integration contours in the
complex energy plane is needed to evaluate loop integrals and compute scattering amplitudes. In some
nonlocal field theories, including string field theory, interaction vertices contain transcendental functions of
momenta that can diverge along certain complex directions, thus making it impossible to use standard
techniques, such as Wick rotation, to perform loop integrals. The aim of this paper is to investigate the
viability of several contour prescriptions in the presence of nonlocal vertices. We consider three “different”
prescriptions and establish their (in)equivalence in local and nonlocal theories. In particular, we prove that
all these prescriptions turn out to be equivalent in standard local theories, while this is not the case for
nonlocal theories where amplitudes must be defined first in Euclidean space, and then analytically
continued to Minkowski. We work at one-loop level and focus on the bubble diagram. In addition to
proving general results for a large class of nonlocal theories, we show explicit calculations in a string-
inspired nonlocal scalar model.

DOI: 10.1103/PhysRevD.106.126028

I. INTRODUCTION

In perturbative quantum field theory several techniques
are required to evaluate loop integrals and compute
scattering amplitudes consistently with analyticity and
unitarity. Some of the analyticity properties of an amplitude
can be linked to physical observables through the condition
of unitarity (i.e., optical theorem); for instance, disconti-
nuities (branch cuts) are physically related to decay rates
and cross sections. Therefore, when calculating loop
integrals it is crucial to prescribe the correct rules for the
deformation of an integration contour in the complex
energy plane in order to circumvent poles and pinchings.
In standard theories, interaction vertices are local (i.e.,

polynomials in momenta); thus loop integrands that are
made of products of propagators and vertices usually
converge to zero in the limit of large loop momenta,
e.g., jk0j → ∞ where jk0j is the modulus of the loop
energy. It is this property that allows the use of several
techniques for the deformation of a contour in the complex
energy plane and the evaluation of loop integrals, for
instance, the Cauchy theorem applied to infinite-radius
semicircles and the Wick rotation. However, if the starting

bare Lagrangian contains nonlocal (nonpolynomial) differ-
ential operators, standard properties may fail to be valid and
the usual methods to compute loop integrals cannot be
applied.
An example characterized by nonlocal vertices is string

field theory [1–7]: a nonlocal quantum field theory whose
Feynman rules can be shown to reproduce the same
expressions of the perturbative amplitudes computed in
the world-sheet approach. In string field theory the inter-
action among strings is described via vertices containing
transcendental functions of the momenta of the following
type:

Vðk1;…; knÞ ∼ e
P

n
i;j¼1

αijki·kj ; ð1Þ

where αij are constant coefficients. The simplest case is the
Witten three-vertex for the open tachyon [1–4] whose
interaction potential is given by1 VðϕÞ ∼ ðeα□ϕÞ3, or in
momentum space Vðk1; k2; k3Þ ∼ e−αðk

2
1
þk2

2
þk2

3
Þ, α being a

positive constant. Another example is given by p-adic
string [8–12] that provides an effective tree-level
Lagrangian description of the Veneziano amplitude; in this
case the operator e−α□ appears in the kinetic term.
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1Throughout this work we work with the mostly positive
convention for the metric signature, η ¼ diagð−1;þ1;þ1;þ1Þ,
and adopt natural units, ℏ ¼ 1 ¼ c. With these conventions the
d’Alembertian operator is defined as □ ¼ ∂μ∂

μ ¼ −∂2t þ ∇2,
∇2 ¼ ∂i∂

i being the Laplacian operator.
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More general Lagrangians containing similar nonlocal
operators were analyzed even before string theory in
Ref. [13–18] (see also references therein) to achieve
finiteness of loop integrals, and more recently intensive
investigations have been made for both matter and gravity
sectors [19–27], especially in relation to the problem of
ghosts and renormalizability in higher-derivative theories
of gravity [28–39].
A generic nonlocal scalar Lagrangian reads [23,25]

L¼ 1

2
ϕð□−m2Þϕ−Vðϕ̃Þ; ϕ̃¼ e−

1
2
γð−□Þϕ; ð2Þ

where m is a mass parameter and γðzÞ is required to be an
entire function of z ¼ −□ in order to avoid additional
degrees of freedom other than the one corresponding to
□ ¼ m2. Since the operator eγð−□Þ is invertible one can
make the field redefinition ϕ ¼ e

1
2
γð−□Þϕ̃ and, after inte-

grating by parts, the above Lagrangian can be written in the
following equivalent form:

L ¼ 1

2
ϕ̃eγð−□Þð□ −m2Þϕ̃ − VðϕÞ: ð3Þ

It is clear that as long as γð−□Þ is an entire function the
propagator does not have any additional poles despite the
presence of higher (infinite) order derivatives.
The transcendental operators can make loop integrals

convergent in the ultraviolet regime but, at the same time,
the integrands can diverge along some complex direction
because je−γðk2Þj → ∞ in the limit jk0j → ∞ and for some
angle ϑ of the complex loop energy k0 ¼ jk0jeiϑ. Thus, any
integration contour that extends to infinity in the complex
plane would give a divergent contribution to a loop integral.
This means that standard techniques such as the Wick
rotation, or usual choices of contours with semicircles of
infinite radius, are not viable for the type of nonlocal
theories introduced above.
To overcome these difficulties in the context of string

field theory, Pius and Sen [6] introduced a new prescription
to define and deform the integration contour consistently
with the conditions of analyticity and unitarity. Such a
prescription is quite general and applies to a wider class of
nonlocal quantum field theories. In fact, subsequent works
were made by other authors who investigated analyticity
and unitarity for more generic nonlocal Lagrangians
[40–44]. However, the explanation of some crucial details
of the new prescription may sometime appear not entirely
clear; for example, several statements about amplitudes
defined in Minkowski or Euclidean signature can be

misleading. Moreover, full analytic computations are often
absent, and the equivalence of the new prescription to
others in the standard local quantum field theory is usually
given for granted and never proven.
In this work we wish to investigate and clarify several

aspects of viable contour prescriptions in a wide class of
nonlocal field theories. We mainly work with the one-loop
bubble diagram but also comment on other types of
diagrams and higher loops. The paper is organized as
follows.

Section II: We first consider the case of local (poly-
nomial) vertices. We introduce three “different” con-
tour prescriptions that we call Minkowski, Euclidean,
and Schwinger, and show their equivalence. Discus-
sing the local case first will turn out to be very
instructive and useful for the subsequent analysis of
the nonlocal case.

Section III: We discuss the same prescriptions in the
context of field theories with nonlocal (nonpolyno-
mial) vertices. In this case, we show that not all the
prescriptions are equivalent. Indeed, Euclidean and
Schwinger are well-defined and equivalent, whereas
the Minkowski one gives divergent results because of
the presence of singularities at infinity along certain
directions in the complex energy plane. Besides giving
proofs for generic nonlocal theories, we also perform
fully analytic and explicit computations in a string-
inspired nonlocal model.

Section IV: We summarize and discuss the relevance of
our results, and how they can be extended to more
complicated diagrams and higher loops. We discrimi-
nate between theory formulations in Minkowski and
Euclidean space, and emphasize the importance of
initially defining nonlocal quantum field theories in
Euclidean signature. Finally, we make concluding
remarks and comment on future works.

Appendix: We briefly review the unitarity condition on
the S-matrix and its formulation via the optical
theorem. We prove one-loop unitarity with nonlocal
vertices. This appendix will also be useful to clarify
convention and notations that we use for propagators,
vertices, and amplitudes in the main text.

II. LOCAL VERTICES

In this section we discuss standard and alternative
methods to evaluate one-loop bubble diagrams in quantum
field theories with local (polynomial) vertices. In particular,
we are interested in the following type of scalar integral:

Mðpi; pfÞ ¼ −i
Z
C

dk0

2π

Z
d3k
ð2πÞ3

ð−iÞVðpi; k; p − kÞ
k2 þm2 − iϵ

ð−iÞVðk; p − k; pfÞ
ðp − kÞ2 þm2 − iϵ

; ð4Þ
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where pi and pf are the ingoing and outgoing external four-
momenta, p is the total external momentum defined as the
sum of all the ingoing (or, equivalently, outgoing) mo-
menta, C is the integration contour in the complex k0 plane,
and −iϵ with ϵ > 0 is the usual Feynman shift of the poles.
Since we are considering a theory with local vertices,
Vðpi; k; p − kÞ and Vðk; p − k; pfÞ are polynomial func-
tions of the external and internal momenta. For simplicity
we are taking the two masses of the two internal propa-
gators to be equal. In the case of a cubic or quartic vertex
the one-loop integral (4) corresponds to Feynman diagrams
of the type shown in Fig. 1.
For local theories it is enough to focus on constant

vertices because all the information about poles and
pinching singularities is contained in the denominators
of the internal propagators. Therefore, in this section we
work with V ¼ −iλ, where λ is some coupling constant,
and analyze the following integral:

Mðp2Þ ¼ ð−iÞλ2
Z
C

dk0

2π

Z
d3k
ð2πÞ3

1

k2 þm2 − iϵ

×
1

ðp − kÞ2 þm2 − iϵ
; ð5Þ

where the dependence of the amplitude on p2 follows from
Lorentz invariance as we will explicitly show below.
The integrand contains four real poles in k0, two for each

propagator:

Q1¼−ωk⃗þ iϵ; Q2¼p0−ωp⃗−k⃗þ iϵ;

Q3¼ωk⃗− iϵ; Q4¼p0þωp⃗−k⃗− iϵ; ð6Þ

where ωk⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þm2

p
and ωp⃗−k⃗ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp⃗ − k⃗Þ2 þm2

q
; see

Fig. 2(a) for a picture of their possible location in the
complex k0 plane.
When performing the integral some of the poles move

around in the complex plane and can pinch the integration
contour C from two opposite sides (after taking the ϵ → 0
limit). The only possible pinchings (for physical values of
the external momenta) happen when either Q1 ¼ Q4 or
Q2 ¼ Q3, namely when

p0 ¼ �ðωk⃗ þ ωp⃗−k⃗Þ: ð7Þ

Since we are interested in positive external energies
Re½p0� > 0, then it is enough to discuss only the pinching
with the “þ” sign, i.e., Q2 ¼ Q3. The same discussion will
also apply to the other pinching.
The most delicate part in the evaluation of the one-loop

integral (5) is the choice of contour C, and of the
prescription to be used for its deformation, in such a
way that poles and pinchings can be circumvented in a
consistent way. In what follows we investigate in detail

FIG. 1. Type of diagrams corresponding to the one-loop
integral in Eq. (4). (a) A one-loop diagram that can represent
a scattering process, e.g., ϕϕ → ϕϕ with ϕ4 interaction; p ¼
p1 þ p2 ¼ p3 þ p4 is the total external momentum and k the
loop momentum. The imaginary part of this diagram can
correspond to an elastic cross section. (b) A one-loop diagram
that can represent a process in which the propagator of a scalar
field ϕ (dashed line) is corrected by the one-loop contribution due
to another scalar field χ (solid line). The imaginary part is related
to a decay rate for the process ϕ → χχ.

FIG. 2. (a) Location of the four poles of the integrand in Eq. (5) in the complex k0 plane. (b) Clockwise contour integration C for the
evaluation of the k0-integral in (5) according to the Minkowski prescription. The limit of the infinite radius of the semicircle is
understood.
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three “different” prescriptions for the definition and the
deformation of the integration contour in the complex
energy plane, and also prove their equivalence in the
presence of polynomial vertices. We name these prescrip-
tions: Minkowski, Euclidean, and Schwinger.

A. Minkowski prescription

The distinguishing feature of the Minkowski prescription
is that all the external momenta (in particular the energy p0)
are kept real, i.e., do not have to be analytically continued
to complex values, and the k0-integral is performed along
the real axis R. The Feynman shift p2 → p2 − iϵ (or,
equivalently, m2 → m2 − iϵ in the massive case) takes care
of how to circumvent both poles and pinching singularities.
The Minkowski prescription for the evaluation of inte-

grals such as (5) consists of the following set of rules:
(1) Keep all components of the external momenta real,

i.e., p0 ∈ R and p⃗ ∈ R3, but analytically continue
the internal energies to a complex value, i.e., k0 ∈ C,
while keeping k⃗ ∈ R3.

(2) Given that the integrand in Eq. (5) converges to zero
in the limit jk0j → ∞, recast the k0-integral along R
in a suitable form by making use of Cauchy theorem
and/or Wick rotation.

(3) Evaluate the resulting integral with a finite ϵ, and
send it to zero (ϵ → 0) at the end of the computation.
The Feynman shift −iϵ will take care of how to
circumvent the pinching singularities.

We now show explicitly two equivalent ways to imple-
ment the Minkowski prescription.
a. Minkowski (1). We can evaluate the integral (5)

considering the integration contour C in Fig. 2(b), and
invoking the Cauchy theorem we can write

Z
R
dk0gðk0Þ ¼

Z
C
dk0gðk0Þ

¼ −2πi½Resfgðk0Þgk0¼Q3

þ Resfgðk0Þgk0¼Q4
�; ð8Þ

where gðk0Þ stands for the integrand of the k0-integral
in (5), and we used the fact that the contribution of the
semicircle vanishes at infinity due to the convergent
behavior of the propagators. The overall minus sign comes
from the clockwise orientation of the contour C in Fig. 2(b).
By computing the two residues we obtain

Mðp2Þ ¼ λ2
Z
R3

d3k
ð2πÞ3

1

2ωk⃗2ωp⃗−k⃗

�
1

p0 þ ωk⃗ þ ωp⃗−k⃗
−

1

p0 − ωk⃗ − ωp⃗−k⃗ þ iϵ

�
; ð9Þ

from which the presence of pinching singularities becomes manifest. In the first denominator we took the limit ϵ → 0 as we
are only interested in positive external energies p0 > 0, and in such a case only the second term can be singular and need to
be treated with the Feynman shift.
By using the formula

1

x� iϵ
¼ P:V:

�
1

x

�
∓ iπδðxÞ; ð10Þ

where P.V. stands for the Cauchy Principal value, we can write

Mðp2Þ ¼ λ2
Z
R3

d3k
ð2πÞ3

1

2ωk⃗2ωp⃗−k⃗

�
1

p0 þ ωk⃗ þ ωp⃗−k⃗
− P:V:

�
1

p0 − ωk⃗ − ωp⃗−k⃗

��

þ iπλ2
Z
R3

d3k
ð2πÞ3

1

2ωk⃗2ωp⃗−k⃗
δðp0 − ωk⃗ − ωp⃗−k⃗Þ: ð11Þ

The above integral has both real (first line) and imaginary
(second line) contributions. The real part needs some
further regularization because of the ultraviolet divergences
for large loop momenta, while the imaginary component is
finite and its value is constrained by the unitarity condition
on the S-matrix (i.e., the optical theorem); see also
Appendix. It is instructive to explicitly compute the
imaginary part of the amplitude for all the prescriptions

we investigate in this paper as a consistency check. For the
sake of completeness, below we will compute the full
amplitude (5) (both real and imaginary parts) with a more
convenient method [see Eq. (18)].
We can easily evaluate the imaginary part of Eq. (11) by

going to the center-of-mass frame in which p⃗ ¼ 0, and

making the change of variable ωk⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 −m2

p
≡ ω we

obtain
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Im½Mðp2Þ�¼πλ2
Z
R3

d3k
ð2πÞ3

1

4ω2
δðp0−2ωÞ

¼ λ2

16π

Z
∞

−∞
dω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2−m2

p

ω
θðω−mÞδðp0=2−ωÞ

¼ λ2

16π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0Þ2−4m2

p
p0

θðp0−2mÞ; ð12Þ

which coincides with the amplitude’s discontinuity
ð2iÞ−1½Mðp0 þ iϵÞ −Mðp0 − iϵÞ� in this case of the
bubble diagram; the theta function θðxÞ is equal to 1
for x ≥ 0 and to 0 for x < 0. From Eq. (12) it is clear that
Mðp2Þ is analytic everywhere in the p0-complex plane
except on the real axis where there is a branch cut starting
at the branch point p0 ¼ 2m; in the case of negative
external energies p0 < 0 we would get a symmetric
branch cut with branch point p0 ¼ −2m. The result
(12) is consistent with the Cutkosky rules and unitarity
(see Appendix).
The two conditions on the presence of branch cuts can be

expressed through a single Lorentz invariant inequality

−p2 ≥ 4m2, and the imaginary part of the amplitude can be
recast in the following Lorentz invariant form:

Im½Mðp2Þ� ¼ λ2

16π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−p2 − 4m2

p
ffiffiffiffiffiffiffiffiffi
−p2

p θð−p2 − 4m2Þ: ð13Þ

The discontinuity on the real axis is physical, and it can
describe a decay rate or a cross section of processes that are
kinematically allowed for external energies above the
threshold 2m.
b. Minkowski (2). A second method to implement the

Minkowski prescription is to express the k0-integral along
the real axis R as an integral over the imaginary axis
I ¼ ½−i∞; i∞�.
By using the Feynman parametrization formula

1

AB
¼

Z
1

0

dx
1

½Aþ ðB − AÞx�2 ; ð14Þ

with A ¼ ðp − kÞ2 þm2 − iϵ and B ¼ k2 þm2 − iϵ, we
can recast the integral (5) as

Mðp2Þ ¼ ð−iÞλ2
Z
R

dk0

2π

Z
d3k
ð2πÞ3

Z
1

0

dx
1

½ðp − kÞ2 þm2 þ ðk2 − ðp − kÞ2Þx − iϵ�2

¼ ð−iÞλ2
Z

1

0

dx
Z
R

dk0

2π

Z
d3k
ð2πÞ3

1

½ðk − pð1 − xÞÞ2 þ p2xð1 − xÞ þm2 − iϵ�2

¼ ð−iÞλ2
Z

1

0

dx
Z
R

dk0

2π

Z
d3k
ð2πÞ3

1

½k2 þ Δ − iϵ�2 ; ð15Þ

where in the last step we have made the change of variable
k → kþ pð1 − xÞ and defined Δ≡ p2xð1 − xÞ þm2.
The integrand now has two double poles �Ωk⃗ ≡

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þ Δ

p
∓ iϵ whose location is shown in Fig. 3(a)

for values of the external momenta below the threshold
(i.e., −p2 < 4m2 which ensures k⃗2 þ Δ > 0). Given such
poles location, we consider the integration contour in
Fig. 3(a) and apply the Cauchy theorem to the two closed
contours in the first and third quadrants which do not
contain any pole. By doing so, and taking the infinite-radius
limit, we getZ

∞

−∞
dk0þ

Z
−i∞

þi∞
dk0¼0⇔

Z
∞

−∞
dk0¼

Z
i∞

−i∞
dk0¼ i

Z
∞

−∞
dk4;

ð16Þ

where in the last step we have made the change of variable
k0¼ ik4 such that k2¼ðk4Þ2þ k⃗2≥0. The four-dimensional
Euclidean integral over k is ultraviolet divergent and can be
computed by implementing a regularization prescription.
For instance, by using Pauli-Villars we obtain

Mðp2Þ ¼
Z

1

0

dx
Z

dk4

ð2πÞ4
1

ðk2 þ ΔÞ2

¼ −
λ2

16π2

Z
1

0

dx log

�
Δ
Λ2

�
; ð17Þ

where Λ is the cutoff energy scale (or renormalization
scale). By working below the threshold, i.e., with Δ > 0,
we get [45]

Mðp2Þ ¼ λ2

16π2

�
2 − log

�
m2

Λ2

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2ðp2 þ 4m2Þ

p
p2

× log

�
p2 þ 2m2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2ðp2 þ 4m2Þ

p
2m2

��
; ð18Þ

which is the complete expression of the amplitude (5)
containing both real and imaginary parts. The first term in
the square brackets is unphysical as it can be absorbed in a
redefinition of Λ, the second is the divergent piece that can
be eliminated through renormalization, while the third term
is the physical finite contribution.
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We can analytically continue the logarithm to external
momenta −p2 > 4m2 (which also implies p2 þ 2m2þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2ðp2 þ 4m2Þ

p
< 0) by using the Feynman shift

p2 → p2 − iϵ, i.e., logðxþ iϵÞ ¼ logð−xÞ þ iπ for x < 0.
Then, we obtain the following expression for the real part
valid above the threshold:

Re½Mðp2Þ� ¼ λ2

16π2

�
2 − log

�
m2

Λ2

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−p2 − 4m2

p
ffiffiffiffiffiffiffiffiffi
−p2

p
× log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−p2 − 4m2

p
þ

ffiffiffiffiffiffiffiffiffi
−p2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−p2 − 4m2

p
−

ffiffiffiffiffiffiffiffiffi
−p2

p ��
; ð19Þ

while the imaginary part coincides with (13) as expected.
In the massless case, the full expression for the amplitude

(18) reduces to

Mðp2Þ ¼ λ2

16π2

�
2 − log

�
p2

Λ2

��
: ð20Þ

In this case, the branch point is p2 ¼ 0, and the imaginary
part of the amplitude reads

Im½Mðp2Þ� ¼ λ2

16π
θð−p2Þ: ð21Þ

Hence, we have shown two ways of implementing the
Minkowski prescription for the computation of the one-
loop integral (5).
Before concluding this section, let us note that Eq. (16)

for the k0-integral can be equivalently obtained by perform-
ing the Wick rotation k0 ¼ eiϑk4 from ϑ ¼ 0 to ϑ ¼ π=2
[see Fig. 3(b)]. In this case, the convergence property of the
integrand in the limit jk0j → ∞ guarantees that no con-
tribution from infinity arises when performing the Wick
rotation in the complex k0 plane. As we will see in Sec. III,

the same technique is not well-defined in the presence of
nonlocal vertices.

B. Euclidean prescription

We now introduce a second prescription to define and
deform the integration contour C in (5). The name
“Euclidean” that we give to this prescription is motivated
by the fact that, in this case, the external energies can be
complex valued. In particular, the amplitude is initially
defined as a function of purely imaginary external energies,
and the integration contour is initially assumed to coincide
with the imaginary axis I ¼ ½−i∞; i∞�.
The Euclidean prescription was elaborated in detail in

the context of string field theory [6] but it is quite general
and, obviously, also works in standard local quantum field
theories. It consists of the following rules:
(1) Complexify both external and internal energies, i.e.,

k0 ∈ C and p0 ∈ C, respectively, while keeping k⃗ ∈
R3 and p⃗ ∈ R3. In particular, define the initial
amplitude to be a function of purely imaginary
external energies: p0 ¼ eiϑp4 with p4 ∈ R, and
ϑ ¼ π=2 initially.

(2) Define the k0-integration contour C to initially
coincide with the imaginary axis I ¼ ½−i∞; i∞�,
and such that its ends are kept fixed at �i∞.2 Any
deformation of the contour must happen in finite-
distance regions of the complex k0 plane.

FIG. 3. (a) Location of the double poles�Ωk⃗ in the complex k0 plane and integration contour used in Eq. (16) to go from the real axis
to the imaginary axis. The limit of infinite radius for the closed contours is understood. (b) Wick rotation from ϑ ¼ 0 (real axis) to
ϑ ¼ π=2 (imaginary axis) as an equivalent way to obtain Eq. (16).

2To be more precise, it is sufficient that the imaginary parts of
the ends are kept fixed at �i∞, while the real parts can also be
nonzero but still finite, i.e., ends ¼ A� � i∞ with 0 < Aþ < C
and −C < A− < 0, where C is a positive and finite real number.
In this subsection we only work with A� ¼ 0, but nonzero values
of A� will be needed to prove the equivalence between the
Euclidean and the Schwinger prescriptions in Sec. II D 2.

LUCA BUONINFANTE PHYS. REV. D 106, 126028 (2022)

126028-6



(3) Perform suitable deformations of the contour to
circumvent poles and pinchings, while analytically
continuing p0 ¼ eiϑp4 to physical real values, i.e.,
ϑ ¼ π=2 → ϑ ¼ 0, and take ϵ → 0 at the end of the
computation.

This prescription relies on the crucial assumption that the
integrand of the amplitude is convergent along the imagi-
nary axis in the limits k0 → �i∞. This is indeed the case
for Eq. (5) and for all the types of nonlocal theories we will
analyze in Sec. III. According to the Euclidean prescription
the Feynman shift −iϵ is not enough to take care of poles
and pinching singularities, the complexification of p0 is
necessary. Unlike the Minkowski prescription, in general
the k0-integral over C does not need to be equal to an
integral over R (this will become more clear in the case of
nonlocal vertices in Sec. III).
Let us remark that through the Euclidean prescription we

are making an off-shell continuation from an (amputated)
Green’s function to a scattering amplitude. This type of
analytic continuation is expected to not work for theories in
which the masslessness of external legs is protected by
gauge invariance. These issues, together with more general
analyticity properties of the amplitudes and the uniqueness
of analytic continuation, were reviewed and generalized in
the context of string field theory in Ref. [7].
Let us now evaluate the integral in Eq. (5) using the

Euclidean prescription. We are going to consider two
equivalent computations distinguished by a different choice
of internal momenta: (i) k and p − k; (ii) kþ p=2 and
k − p=2. Different choices of the internal momenta running
through the loops correspond to different locations of the
poles in the complex k0 plane; this can alter the imple-
mentation of the prescription but without changing its main
essence. It may happen that certain choices of internal
momenta make some computation manifestly simpler (this
will indeed be the case in Sec. III E when dealing with a

specific nonlocal model). Therefore, it is worthwhile to
show how the prescription works for at least two different
choices of internal momenta.

1. Internal momenta k and p− k

We start considering the choice of internal momenta k
and p − k, whose corresponding integral exactly corre-
sponds to the expression in (5). According to the rules
above, we defineMðp2Þ such that the integration contour C
initially coincides with the imaginary axis I ¼ ½−i∞; i∞�,
and we take p0 ∈ C to be purely imaginary in such a way
that the initial position of the poles satisfies the set of
inequalities Re½Q1� < Re½Q2� < 0 < Re½Q3� < Re½Q4�,
namely Q1, Q2 lie to the left of the imaginary axis and
Q3, Q4 to the right.
Since we are interested in analytically continuing to

positive real external energies, Re½p0� > 0, the only pinch-
ing we have to worry about is p0 ¼ ωk⃗ þ ωp⃗−k⃗ (i.e.,
Q2 ¼ Q3). Let us divide the analysis into three regions;
see also Refs. [6,41].

(i) In the region Re½p0� < ωp⃗−k⃗, the pole Q2 is still to
the left of the imaginary axis and no pinching
singularity can appear; thus the integral can be
computed with C ¼ I and turns out to be purely real.

(ii) In the regionRe½p0� > ωp⃗−k⃗, the poleQ2 is to the right
of the imaginary axis. In such a case, the integration
contour C must be deformed according to the rules of
the Euclidean prescription in order to keep Q1, Q2 to
the left and Q3, Q4 to the right, and to maintain the
ends of the contour fixed at �i∞; see Fig. 4(b).

Subsequently, we can topologically deform the
contour as shown in Fig. 4(b), and get two discon-
nected integration contours where I ¼ ½−i∞;þi∞�
and Cr is an anticlockwise oriented circle around Q2.
The total integration contour is nowgiven by the union
C ¼ I ∪ Cr.

FIG. 4. Illustration of the integration contour C in the complex k0 plane according to the Euclidean prescription; the ends of C are kept
fixed at �i∞. The detailed description of the contour deformation is provided in the main text.
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The same type of deformation also works when
Q2 moves to the right of Q3, i.e., when
Re½p0� > ωk⃗ þ ωp⃗−k⃗, and it remains valid after p0

is analytically continued to real values and ϵ → 0.
As already expected from the pinching condition

(7), the region of the complex k0 plane responsible for
a nonvanishing imaginary part of the amplitude (5) is
Re½Q2� ¼ Re½Q3�, namely p0 ¼ ωk⃗ þ ωp⃗−k⃗ in the
limit of real external energy and ϵ → 0.

(iii) In the region Re½p0� ¼ ωp⃗−k⃗, the pole Q2 lies on the
imaginary axis, and the contour C ¼ I must be
deformed in such a way that the pole Q2 is circum-
vented with a semicircle of infinitesimal radius.
Thus, in this case, the k0-integral is given by the
Cauchy principal value along I plus the contribution
from the semicircle.

Therefore, according to the Euclidean prescription the
amplitude (5) can be split into two parts:

Mðp2Þ ¼ ð−iÞλ2
Z
I∪Cr

dk0

2π

Z
R3

d3k
ð2πÞ3

1

k2 þm2 − iϵ
1

ðp − kÞ2 þm2 − iϵ
¼ MIðp2Þ þMCrðp2Þ; ð22Þ

where MIðp2Þ is the contribution coming from the contour I, while MCrðp2Þ is the one from Cr.
We can explicitly show thatMIðp2Þ is real. Since I is far from the poles, we can take real external energies p0 ∈ R and

ϵ → 0. Then, by changing the variable k0 → −ik0 we get

MIðp2Þ ¼ λ2
Z
R4

d4k
ð2πÞ4

1

ðk0Þ2 þ k⃗2 þm2

1

−ðp0 þ ik0Þ2 þ ðp⃗ − k⃗Þ2 þm2
: ð23Þ

The complex conjugate is given by

M�
Iðp2Þ ¼ λ2

Z
R4

d4k
ð2πÞ4

1

ðk0Þ2 þ k⃗2 þm2

1

−ðp0 − ik0Þ2 þ ðp⃗ − k⃗Þ2 þm2

¼ λ2
Z
R4

d4k
ð2πÞ4

1

ðk0Þ2 þ k⃗2 þm2

1

−ðp0 þ ik0Þ2 þ ðp⃗ − k⃗Þ2 þm2

¼ MIðp2Þ; ð24Þ

where in the last step we have made the change of variable k0 → −k0.
We now evaluate the contribution coming from Cr using the residue theorem applied to the pole Q2 ¼ p0 − ωp⃗−k⃗ and

obtain

MCrðp2Þ ¼ −λ2
Z
R3

d3k
ð2πÞ3

Θðp0 − ωp⃗−k⃗Þ
2ωp⃗−k⃗

1

p0 þ ωk⃗ − ωp⃗−k⃗

1

p0 − ωk⃗ − ωp⃗−k⃗ þ iϵ
; ð25Þ

where the Heaviside theta function Θðp0 − ωp⃗−k⃗Þ takes into account the fact that the integral over Cr is nonzero only when
Re½Q2� ≥ 0, and it is defined as

ΘðxÞ ¼
8<
:

1; x > 0;

1=2; x ¼ 0;

0; x < 0:

ð26Þ

Note that when the simple pole Q2 is on the imaginary axis, it only contributes half as compared to the case in which it lies
entirely in the first quadrant.
By using the identity (10) we can write

MCrðp2Þ ¼ −λ2
Z
R3

d3k
ð2πÞ3

Θðp0 − ωp⃗−k⃗Þ
2ωp⃗−k⃗

1

p0 þ ωk⃗ þ ωp⃗−k⃗
P:V:

�
1

p0 − ωk⃗ − ωp⃗−k⃗

�

þ iπλ2
Z
R3

d3k
ð2πÞ3

1

2ωk⃗2ωp⃗−k⃗
δðp0 − ωk⃗ − ωp⃗−k⃗Þ: ð27Þ
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For p0 > ωp⃗−k⃗ the contribution in the first line is real, while
the one in the second line is imaginary. We can immediately
notice that the expression of the imaginary part coincides
with the one obtained via the Minkowski prescription in
Eq. (11). It is less trivial to explicitly check the same for the
real part, but below we will prove the equivalence between
the two prescriptions which will definitely confirm that the
real contributions should indeed coincide.
a. Remark 1. The expression (27) is valid only when

p0 > ωp⃗−k⃗, but not if p
0 ¼ ωp⃗−k⃗. When the poleQ2 lies on

I we have p0 ¼ ωp⃗−k⃗ and Θðx ¼ 0Þ ¼ 1=2; this corre-

sponds to a zero-measure subset of R3 which does not

contribute to (27). In particular, the condition p0 ¼ ωp⃗−k⃗
makes the delta in the second term of Eq. (27) vanish.
Therefore, in this case, the contribution to the imaginary
part of the amplitude is zero, and the integral over I in
Eq. (23) must be interpreted as a Cauchy principal value.

2. Internal momenta k + p=2 and k− p=2

Let us now make the same computation with a different
choice of internal momenta. By changing the variable
k → kþ p=2, we can recast (5) in the following equivalent
form:

Mðp2Þ ¼ ð−iÞλ2
Z
C

dk0

2π

Z
R3

d3k
ð2πÞ3

1

ðkþ p=2Þ2 þm2 − iϵ
1

ðk − p=2Þ2 þm2 − iϵ
: ð28Þ

The four poles of the integrand are now given by

P1¼−
p0

2
−ωk⃗þp⃗=2þ iϵ; P2¼

p0

2
−ωk⃗−p⃗=2þ iϵ;

P3¼−
p0

2
þωk⃗þp⃗=2− iϵ; P4¼

p0

2
þωk⃗−p⃗=2− iϵ; ð29Þ

where ωk⃗�p⃗=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk⃗� p⃗=2Þ2 þm2

q
; see Fig. 5(a) for a

picture of their possible location in the complex k0 plane.
Pinching singularities can happen when P1 ¼ P4 or
P2 ¼ P3, namely when

p0 ¼ �ðωk⃗þp⃗=2 þ ωk⃗−p⃗=2Þ: ð30Þ

Since we are interested in positive external energies
Re½p0� > 0, then it is enough to only discuss the pinching
P2 ¼ P3; an analog discussion will apply to P1 ¼ P4.

According to the rules of the Euclidean prescription
outlined above, and analogously to the other choice of
internal momenta (k and p − k) discussed in the previous
subsection, we define Mðp2Þ such that the integration
contour C initially coincides with the imaginary axis
I ¼ ½−i∞; i∞�. Moreover, we take p0 ∈ C to be purely
imaginary in such a way that initially P1, P2 lie to the left of
the imaginary axis, and P3, P4 to the right. Then, the
contour must be deformed by circumventing poles and
pinchings while keeping the ends fixed at�i∞ as shown in
Fig. 5(b). Subsequently, we can topologically deform C and
transform it to the union of three disconnected contours
C ¼ I ∪ Cr;2 ∪ Cr;3, where Cr;2 is an anticlockwise-ori-
ented circle around the pole P2, and Cr;3 is a clockwise-
oriented circle around the pole P3; see Fig. 5(b).
Therefore, according to the Euclidean prescription the

amplitude (28) can be split into three contributions:

Mðp2Þ ¼ ð−iÞλ2
Z
I∪Cr;2∪Cr;3

dk0

2π

Z
R3

d3k
ð2πÞ3

1

ðkþ p=2Þ2 þm2 − iϵ
1

ðk − p=2Þ2 þm2 − iϵ

¼ MIðp2Þ þMCr;2ðp2Þ þMCr;3ðp2Þ; ð31Þ

where MIðp2Þ is the contribution coming from the contour I, while MCr;2ðp2Þ and MCr;3ðp2Þ are the ones coming from
Cr;2 and Cr;3, respectively. Their explicit expressions are

MIðp2Þ ¼ ð−iÞλ2
Z
I

dk0

2π

Z
d3k
ð2πÞ3

1

ðkþ p=2Þ2 þm2

1

ðk − p=2Þ2 þm2
; ð32Þ

MCr;2ðp2Þ ¼ −λ2
Z
R3

d3k
ð2πÞ3

Θðp0=2 − ωk⃗−p⃗=2Þ
2ωk⃗−p⃗=2

1

p0 þ ωk⃗þp⃗=2 − ωk⃗−p⃗=2

1

p0 − ωk⃗þp⃗=2 − ωk⃗−p⃗=2 þ iϵ
; ð33Þ

and
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MCr;3ðp2Þ ¼ −λ2
Z
R3

d3k
ð2πÞ3

Θðp0=2 − ωk⃗þp⃗=2Þ
2ωk⃗þp⃗=2

1

p0 − ωk⃗þp⃗=2 þ ωk⃗−p⃗=2

1

p0 − ωk⃗þp⃗=2 − ωk⃗−p⃗=2 þ iϵ
: ð34Þ

By using the formula (10), we can extract the imaginary part of the amplitude:

Im½Mðp2Þ� ¼ Im½MCr;2ðp2Þ þMCr;3ðp2Þ� ¼ λ2
Z
R3

d3k
ð2πÞ3

1

2ωk⃗þp⃗=22ωk⃗−p⃗=2
δðp0 − ωk⃗þp⃗=2 − ωk⃗−p⃗=2Þ

× ½Θðωk⃗þp⃗=2 − ωk⃗−p⃗=2Þ þ Θðωk⃗−p⃗=2 − ωk⃗þp⃗=2Þ�: ð35Þ

If k⃗ · p⃗ ≠ 0, we can have the two possibilities ωk⃗þp⃗=2 > ωk⃗−p⃗=2 or ωk⃗þp⃗=2 < ωk⃗−p⃗=2, and in either case the imaginary part of
the amplitude reads

Im½Mðp2Þ� ¼ λ2
Z
R3

d3k
ð2πÞ3

1

2ωk⃗þp⃗=22ωk⃗−p⃗=2
δðp0 − ωk⃗þp⃗=2 − ωk⃗−p⃗=2Þ; ð36Þ

and by changing variable k⃗ → k⃗ − p⃗=2, it will coincide with the expressions in Eqs. (11) and (27).

FIG. 5. (a) Location of the poles (29) of the integrand in Eq. (28). (b),(c) Deformation of the contour C in the complex k0 plane
according to the Euclidean prescription applied to the amplitude (28) with internal momenta kþ p=2 and k − p=2. (d) Integration
contour when the poles lie on the imaginary axis; in this case the k0-integral must be interpreted as the Cauchy principal value. This
happens, for instance, when working in the center-of-mass frame where the pinching condition reads Re½P2� ¼ 0 ¼ Re½P3�.
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a. Remark 2. The formula (36) was obtained assuming
that the poles P2 and P3 do not lie on the imaginary axis. In
the opposite scenario, the integral (28) should be inter-
preted as the Cauchy principal value plus two infinitesimal
semicircles around the poles; see Fig. 5(d). This happens
when working in the center-of-mass frame because p⃗ ¼ 0

implies k⃗ · p⃗ ¼ 0, and the pinching condition reduces to

p0 ¼ 2ωk⃗; ð37Þ

and thus we have Re½P2� ¼ 0 ¼ Re½P3� at the pinching. In
this case, MCr;2 and MCr;3 take into account the contribu-
tions from the two semicircles in Fig. 5(d), and the
arguments of both Heaviside thetas in Eq. (35) are zero;
each of them contributes with half value, i.e., Θð0Þ ¼ 1=2.
Therefore, the total contribution to the imaginary part
of the amplitude will still be the same [because
Θð0Þ þ Θð0Þ ¼ 1].
It is also worthwhile to note that this scenario is not

realized for the other choice of internal momenta, k and
p − k, discussed before; see the remark at the end of Sec. II
B 1. In that case, when the poles lie on the imaginary axis,
the contribution to the imaginary part of the amplitude is
always zero. Whereas for this second choice of internal
momenta the imaginary part can be nonzero even when the
poles lie on the imaginary axis because both the Heaviside
theta function ΘðxÞ and the delta δðyÞ can have the same
argument x ¼ y; thus when x ¼ 0 the delta δð0Þ still
contributes to the integral in Eq. (35). Indeed, this happens
in the center-of-mass frame as Θðp0=2 − ωk⃗Þδðp0 −
2ωk⃗Þ → Θð0Þδð0Þ ¼ 1=2 (under the integral sign).
The remark just made will prove to be very important in

Sec. III E, where we will perform a full analytic compu-
tation in a specific nonlocal model by implementing the
Euclidean prescription with the choice of internal momenta
kþ p=2 and k − p=2.

C. Schwinger prescription

We now introduce a third prescription to evaluate the
integral in Eq. (5). We call it Schwinger prescription3

because it involves the use of the Schwinger parametriza-
tion, and it consists of the following rules:
(1) Rewrite the propagators in integral form via the

Schwinger parametrization, taking k0 ∈ C and
k⃗ ∈ R3, while the external energy does not neces-
sarily need to be complexified.

(2) Recast the amplitude as an integral over the Schwinger
parameters. To circumvent the pinching singularity and
make the integral convergent above the threshold,
analytically continue the Schwinger parameters to
complex values and deform the integration contour
in a suitable way.

(3) Evaluate the resulting integral and analytically con-
tinue the external energy to real physical values by
implementing the Feynman shift p2 → p2 − iϵ or by
complexifying p0.

Unlike the Euclidean prescription, the Schwinger does not
necessarily require that the amplitude initially depends on
purely imaginary external energies.
Let us now apply this prescription to the integral (5). We

rewrite the propagators by using the Schwinger parametri-
zation:

1

k2 þm2
¼

Z
∞

0

dt1 e−t1ðk
2þm2Þ;

1

ðp − kÞ2 þm2
¼

Z
∞

0

dt2 e−t2ððp−kÞ
2þm2Þ; ð38Þ

where t1 and t2 are sometime called Schwinger parameters.
The two integrals are convergent as long asRe½k2 þm2� > 0

and Re½ðp − kÞ2 þm2� > 0. By using the above formula for
the propagators, assuming that C ¼ ½−i∞; i∞�,4 making the
change of variable k0 → ik0, and integrating on the full loop
momentum k, we can recast the amplitude (5) in the
following form:

Mðp2Þ ¼ λ2
Z

∞

0

dt1

Z
∞

0

dt2

Z
d4k
ð2πÞ4 e

−t1ðk2þm2Þe−t2ððp−kÞ2þm2Þ

¼ λ2
Z

∞

0

dt1

Z
∞

0

dt2e−p
2t2e−m

2ðt1þt2Þ
Z

d4k
ð2πÞ4 e

−k2ðt1þt2Þe2k·pt2

¼ λ2

16π2

Z
∞

0

dt1

Z
∞

0

dt2
e−p

2 t1t2
t1þt2e−m

2ðt1þt2Þ

ðt1 þ t2Þ2
; ð39Þ

3It is worthwhile to mention that in the context of string theory some authors refer to this prescription with the name of iϵ-prescription
[46–48] because the Feynman shift p2 → p2 − iϵ (orm2 → m2 − iϵ) is needed to make the Schwinger parametrization well-defined and
the integral convergent.

4Note that in the presence of local vertices, it is not necessarily needed that the integration contour C initially coincides with the
imaginary axis. For instance, one can start from C ¼ R, and then Wick rotate to I . However, this is not possible in the presence of
nonlocal vertices as we will discuss in Sec. III.
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where we have used the four-dimensional spherical coor-
dinates to go from the second to the third line, i.e.,
d4k ¼ k3 sin α2 cos θdkdαdθdφ, with 0 ≤ k ≤ ∞, 0 ≤ α;
θ ≤ π, and 0 ≤ φ ≤ 2π.
Besides the ultraviolet divergences that are now trans-

lated to small values of the ti’s, it is easy to check that the
integral (39) diverges also in the double limit t1; t2 → ∞
when the inequality −p2 > 4m2 holds true, and this
divergence is related to the pinching singularity and the
imaginary part of the amplitude. The inequality−p2 > 4m2

also implies that the real part of ðp − kÞ2 þm2 cannot be
kept always positive, thus going against the validity of the
Schwinger parametrization (38).
According to the Schwinger prescription outlined above,

the divergence for external momenta above the threshold
(−p2 > 4m2) can be avoided by analytically continuing the
Schwinger parameters to complex values, ti ∈ C, and
deforming the contour as shown in Fig. 6. The ti’s run
from 0 to t0, and from t0 to t0 þ i∞, where t0 is some large
positive real number such that the final result should not
depend on its explicit value. See Refs. [46–48] for the
implementation of this prescription in the context of string
theory.

To understand why this choice of contour can make the
integral convergent for any value of the internal and
external momenta, we can first apply it to one of the
propagators in Eq. (38). We have

1

ðp − kÞ2 þm2
¼

Z
t0

0

dt2 e−t2ððp−kÞ
2þm2Þ þ

Z
t0þi∞

t0

dt2 e−t2ððp−kÞ
2þm2Þ

¼
Z

t0

0

dt2 e−t2ððp−kÞ
2þm2Þ þ i e−t0ððp−kÞ2þm2Þ

Z
∞

0

dτ e−iτððp−kÞ2þm2Þ; ð40Þ

where in the second integral we have made the change
of variable t2 ¼ t0 þ iτ. Notice that even when
Re½ðp − kÞ2 þm2� < 0, the second integral can still be
convergent if Im½ðp − kÞ2 þm2� < 0, and this can happen
either by complexifying p0 such that Im½ðp0 − k0Þ2� > 0,
or using the Feynman shiftm2 → m2 − iϵ (with ϵ > 0). The
integrals can be computed, and the final result will give
back the rational form of the propagator without any
dependence on t0, as expected.
The same logic for the choice of contour applies to the

one-loop amplitude in Eq. (39). We show the explicit
computation only for the imaginary part that is ultraviolet
finite. Since an imaginary contribution appears only above
the threshold, we directly work in the regime −p2 > 4m2,
and choose new integration variables that are more suitable
for those values of the external momentum.
By making the additional change of variable

u ¼ t1 þ t2; v ¼ t1 − t2; ð41Þ

whose Jacobian determinant is equal to 1=2, the integral
(39) can be recast as

Mðp2Þ ¼ λ2

32π2

Z
∞

0

du
Z

∞

−∞
dv

e−uðp2=4þm2Þ

u2
e
p2v2

4u : ð42Þ

The integral in v is a Gaussian ð−p2 > 4m2 > 0Þ and gives
Z

∞

−∞
dv e

p2v2

4u ¼ 2
ffiffiffi
π

pffiffiffiffiffiffiffiffiffi
−p2

p ffiffiffi
u

p
; ð43Þ

thus (42) becomes

Mðp2Þ ¼ λ2

16π2

ffiffiffi
π

pffiffiffiffiffiffiffiffiffi
−p2

p Z
∞

0

du
e−uðp2=4þm2Þ

u3=2
θð−p2 − 4m2Þ:

ð44Þ

We now deform the integration contour u ∈ ½0;∞� as done
for the ti’s in Fig. 6 by integrating from 0 to u0, and from u0
to u0 þ i∞, where u0 is some positive large real number, so
that we obtain

Z
u0

0

du
e−uðp2=4þm2Þ

u3=2
þ
Z

u0þi∞

u0

du
e−uðp2=4þm2Þ

u3=2
: ð45Þ

FIG. 6. The integration contour for the integral (39) over the
Schwinger parameters t1; t2 ∈ C.
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We are only interested in the imaginary part which is finite;
thus we can neglect all the real terms. Moreover, only
some of the contributions from the second integral in
Eq. (45) are imaginary. By making a further change of
variable u ¼ u0 þ iw, and shifting p2 → p2 − iϵ (or
m2 → m2 − iϵ), we can perform the second integral in
(45) and pick its imaginary part

ie−u0ðp2=4þm2Þ
Z

∞

0

dw
e−wðp2=4þm2Þe−wϵ

ðu0þ iwÞ3=2 → i
ffiffiffi
π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−p2−4m2

q
;

ð46Þ

where the arrow means that we are neglecting the real
contributions and the limit ϵ → 0þ is understood in the
calculation.
Thus, inserting the last expression in Eq. (44), the

imaginary part of the one-loop amplitude (39) matches
the one in Eq. (13), consistent with Minkowski and
Euclidean prescriptions.
a. Remark 3. The choice of contour just discussed may

appear quite involved. However, an equivalent and more
practical way to apply the Schwinger prescription is the
following: work with imaginary external energies, i.e.,
p0 ¼ ip4 (p4 ∈ R) such that p2 > 0; perform the integral
in Eq. (39) or (44) that is manifestly convergent for
spacelike external momenta; analytically continue p0 to
real physical values at the end of the calculation. One can
check that the application of this alternative procedure to
(44) would give exactly the same result for the imaginary
part. In Sec. III E we will implement the Schwinger
prescription in this alternative way to explicitly compute
both real and imaginary parts of the bubble amplitude in a
nonlocal model, and we will also verify the consistency of
the result in the local limit.

D. Equivalence between the prescriptions

We discussed three prescriptions to define and deform
the integration contour in the complex k0 plane for the
amplitude in Eq. (5). We explicitly showed that all of them
give the same result for the imaginary part, but we have not
yet checked the consistency for the real part. More
generally, we are now going to prove that the three
prescriptions are all equivalent in the presence of local
vertices. In this subsection we will refer to the Minkowski,

Euclidean, and Schwinger prescriptions with the abbrevia-
tions MP, EP, and SP, respectively.

1. Equivalence between MP and EP

Let us first show that MP and EP are equivalent. MP
gives the result in Eq. (8) for the amplitude (5), namely

Mðp2Þ ¼ −2πi½Resfgðk0Þgk0¼Q3
þ Resfgðk0Þgk0¼Q4

�;
ð47Þ

where gðk0Þ stands for the integrand of the k0-integral in
Eq. (5); the integral in d3k is included in the definition
of gðk0Þ.
According to EP the integration contour C must initially

coincide with the imaginary axis I ¼ ½−i∞; i∞�, and its
ends must be kept fixed while deforming it and analytically
continuing the external energy to real value. Since in the
case of local vertices the integrand gðk0Þ converges to zero
in the limit jk0j → ∞, we can recast the integral over I
as an integral over a closed semicircle CΓ as shown in
Figs. 7(a)–7(c). Let us divide the proof into three regions.

(i) In the region Re½p0� < ωp⃗−k⃗ illustrated in Fig. 7(a),
the pole Q2 is still to the left of the imaginary axis,
and we can write

Mðp2Þ ¼
Z
I
dk0gðk0Þ ¼

Z
CΓ

dk0gðk0Þ

¼ −2πi½Resfgðk0Þgk0¼Q3

þ Resfgðk0Þgk0¼Q4
�; ð48Þ

which coincides with (47).
(ii) In the region Re½p0� ¼ ωp⃗−k⃗ illustrated in Fig. 7(b),

the pole Q2 lies on the imaginary axis. In this
case, the contour I must be deformed as shown in
Fig. 7(b). By using the residue theorem we obtain
again the same expression as in (48) which, in turn,
coincides with (47).

(iii) In the region Re½p0� > ωp⃗−k⃗ illustrated in Fig. 7(c),
the poleQ2 lies to the right of the imaginary axis. We
can still rewrite the integral over I as one over CΓ,
but we need to take into account the additional
anticlockwise-oriented contour Cr encircling Q2.
Thus, the total integration contour is now given
by C ¼ CΓ ∪ Cr, and we get

Mðp2Þ ¼
Z
CΓ

dk0gðk0Þ þ
Z
Cr

dk0gðk0Þ

¼ −2πi½Resfgðk0Þgk0¼Q3
þ Resfgðk0Þgk0¼Q4

þ Resfgðk0Þgk0¼Q2
� þ 2πi½Resfgðk0Þgk0¼Q2

�
¼ −2πi½Resfgðk0Þgk0¼Q3

þ Resfgðk0Þgk0¼Q4
�; ð49Þ
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which again coincides with the MP result in Eq. (47).
We showed that EP is equivalent to MP. To prove the

equivalence we could also start from MP and use Wick
rotation to transform the integral over R as an integral over
I , and then apply the rules of EP to compute (47). Hence,
both prescriptions give the same result for both real and
imaginary parts of the amplitude (5).

2. Equivalence between EP and SP

Let us now show that EP is equivalent to SP. According
to SP the integration contour in the complex ti planes must
be deformed as discussed in the previous subsection and
shown in Fig. 6. When applying this deformation to the
integral (39), the terms involving the integration from t0 to
t0 þ i∞ are convergent as long as k2 þm2 and ðp − kÞ2 þ
m2 have negative imaginary parts. This happens if k0 and
p0 − k0 lie in either the first or the third quadrant, namely
when

Im½k0�Re½k0�>0 and Im½p0−k0�Re½p0−k0�>0: ð50Þ

If we can deform the contour prescribed by EP in such a
way that the conditions in Eq. (50) are always satisfied,
then we have proven that EP is equivalent to SP. Such a
contour deformation indeed exists, and we have shown a
possible one in Fig. 7(d) (see also Ref. [47]). This
deformation requires that the external energy p0 takes
complex values in order to keep the conditions (50) always
true. The imaginary parts of the ends of the integration
contour are kept fixed at �i∞, while the real parts can
acquire finite real values consistently with the rules of EP
(see also the remark in footnote 2).
We also proved that EP and SP are equivalent, and thus

the two computations of integral (5) made with the rules of
EP and SP must give the same result for both real and
imaginary parts.

FIG. 7. (a),(b),(c) The integration contours in complex k0 plane used to prove the equivalence between MP and EP prescriptions. Each
of them corresponds to a different region of values for external and internal momenta: (a) Re½p0� < ωp⃗−k⃗; (b) Re½p0� ¼ ωp⃗−k⃗;

(c) Re½p0� > ωp⃗−k⃗. (d) The integration contour in the complex k0 plane used to prove the equivalence between EP and SP prescriptions.

The cross represents the external energy p0.
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3. Equivalence between MP and SP

Since we proved the equivalence between MP and EP,
and between EP and SP, then it follows that also the
prescriptions MP and SP must be equivalent. Therefore,
there is no need to show an explicit proof for this third
equivalence.
One important point to emphasize is that the proofs of

equivalence between MP and the other two prescriptions
strongly rely on the property that the integrand in (5)
converges in the limit jk0j → ∞ for any complex direction.
Indeed, thanks to this property we can use the contours in
Figs. 7(a)–7(c)and we can Wick rotate the real axisR in the
complex plane. However, as we explain below, this is not
possible in the presence of some nonlocal vertices.

III. NONLOCAL VERTICES

So far we have analyzed in great detail the computation
of the bubble diagram in the presence of local vertices with
three equivalent prescriptions for the choice and deforma-
tion of the integration contour in the complex k0 plane. In
this section we are going to perform an analog study in the
context of quantum field theories of the type shown in
Eq. (2), in which the interaction vertices are nonlocal
(nonpolynomial) functions of derivatives or momenta.
In particular, we focus on the following one-loop bubble

diagram:

Mðp2Þ ¼ ð−iÞλ2
Z
C

dk0

2π

Z
R3

d3k
ð2πÞ3

×
e−γðk2Þ

k2 þm2 − iϵ
e−γððp−kÞ2Þ

ðp − kÞ2 þm2 − iϵ
; ð51Þ

where we have chosen the vertices in Eq. (4) to be
proportional to the exponentials e−γðk2Þ and e−γððp−kÞ2Þ.
The function γ is assumed to be an entire function to
ensure that no additional pole appears in the integrand of
(51), and it is such that e−γðk2Þ converges to zero in the limit
k0 → A� i∞, where A is some finite real constant. This
means that the singularity structure of (51) is the same as
the one in the local case (5) [42]; i.e., poles and pinching
singularities are still given by Eqs. (6) and (7), respectively.
For simplicity, but without any loss of generality, we work
with the normalization γð−m2Þ ¼ 0.
We are now going to discuss the application of

Minkowski, Euclidean, and Schwinger prescriptions to
the computation of the integral (51). We should immedi-
ately notice that the property of the function γ of being
entire is crucial for our next discussion. Indeed, from the
well-known Liouville theorem in complex analysis it
follows that a nonconstant entire function must diverge
along some directions in the complex k0 plane because of
essential singularities at infinity. This means that tech-
niques involving Wick rotation or choices of contours that

extend to infinity are not well-defined in the presence of
nonlocal vertices because they introduce unwanted diver-
gences. This creates problems for the implementation of the
Minkowski prescription.

A. Failure of Minkowski prescription

To better understand the problem of singularities at
infinity, let us consider two explicit examples with the
entire functions γðk2Þ ¼ ðk2 þm2Þ=M2

s and γðk2Þ ¼
ðk2 þm2Þ2=M4

s , where Ms is an energy scale at which
nonlocal effects are expected to become important, and
it is mathematically needed to make the exponent
dimensionless.

(i) By considering complex energies k0 ¼ κeiϑ with
κ ≥ 0, for the first choice of the entire function we
have

e−m
2=M2

s e−k
2=M2

s ¼ e−m
2=M2

s eðk0Þ2=M2
s e−k⃗

2=M2
s

¼ e−m
2=M2

s eðκ2 cos 2ϑÞ=M2
s

× eiðκ2 sin 2ϑÞ=M2
s e−k⃗

2=M2
s ; ð52Þ

which diverges in the limit κ → ∞ along the
directions −π=4 < ϑ < π=4 and 3π=4 < ϑ < 5π=4;
see Fig. 8(a).

(ii) For the second entire function, the dominant factor
in the κ → ∞ limit is given by

e−ðκ4 cos 4ϑÞ=M4
s ; ð53Þ

which diverges at infinity along the directions π=8 <
ϑ < 3π=8 and 9π=8 < ϑ < 11π=8; see Fig. 8(b).

This feature makes it impossible to use neither the
contours in Figs. 2(b), 3(a), and 7(a)–7(c), nor the Wick
rotation in Fig. 3(b). This shows the failure of Minkowski
prescription to evaluate loop integrals in the context of the
nonlocal quantum field theories under investigation.
Although this seems to be a very serious problem, it so

happens that well-defined prescriptions to define and
compute amplitudes with nonlocal vertices can still be
found. In fact, as mentioned in the Introduction, this type of
nonpolynomial functions appear in string field theory, and
in that context the Euclidean prescription was introduced
and shown to give unitary amplitudes [6]. Consequently,
several works [41–44] have implemented the same pre-
scription to show unitarity for more general nonlocal
models such as the ones in Eqs. (2) and (3).
We will now show that both Euclidean and Schwinger

prescriptions can be applied to compute the integral
in Eq. (51).

B. Euclidean prescription

The rules of the Euclidean prescription introduced in
Sec. II B can be applied to (51); indeed all the required
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properties are satisfied also in the presence of nonlocal vertices. According to this prescription the contour has fixed ends
with imaginary parts �i∞ (see also footnote 2), and any deformation happens in finite distance regions of the complex k0

plane. This ensures that no unwanted divergence appears during the evaluation of the integral (51).
According to the Euclidean rules in Sec. II B the amplitude (51) can be split into two parts:

Mðp2Þ ¼ ð−iÞλ2
Z
I∪Cr

dk0

2π

Z
R3

d3k
ð2πÞ3

e−γðk2Þ

k2 þm2 − iϵ
e−γððp−kÞ2Þ

ðp − kÞ2 þm2 − iϵ

¼ MIðp2Þ þMCrðp2Þ; ð54Þ

where MIðp2Þ is the contribution coming from the contour I, while MCrðp2Þ is the one from Cr.
Also in the nonlocal case we can explicitly show that MIðp2Þ is real. Since I is far from the poles, we can take real

external energies p0 ∈ R and ϵ → 0. Then, by making the change of variable k0 → −ik0 we get

MIðp2Þ ¼ λ2
Z
R4

d4k
ð2πÞ4

e−γððk0Þ2þk⃗2Þ

ðk0Þ2 þ k⃗2 þm2

e−γð−ðp0þik0Þ2þðp⃗−k⃗Þ2Þ

−ðp0 þ ik0Þ2 þ ðp⃗ − k⃗Þ2 þm2
; ð55Þ

whose complex conjugate is given by

M�
Iðp2Þ ¼ λ2

Z
R4

d4k
ð2πÞ4

e−γððk0Þ2þk⃗2Þ

ðk0Þ2 þ k⃗2 þm2

e−γð−ðp0−ik0Þ2þðp⃗−k⃗Þ2Þ

−ðp0 − ik0Þ2 þ ðp⃗ − k⃗Þ2 þm2

¼ λ2
Z
R4

d4k
ð2πÞ4

e−γððk0Þ2þk⃗2Þ

ðk0Þ2 þ k⃗2 þm2

e−γð−ðp0þik0Þ2þðp⃗−k⃗Þ2Þ

−ðp0 þ ik0Þ2 þ ðp⃗ − k⃗Þ2 þm2

¼ MIðp2Þ; ð56Þ

where in the last step we have made the change of variable k0 → −k0.

FIG. 8. (a) Regions of convergence (white color) and divergence (gray color) for the entire function e−k
2=M2

s ; it diverges at infinity
along the complex directions −π=4 < ϑ < π=4 and 3π=4 < ϑ < 5π=4. (b) Regions of convergence (white color) and divergence (gray
color) for the entire function e−k

4=M4
s ; it diverges at infinity along the complex directions π=8 < ϑ < 3π=8 and 9π=8 < ϑ < 11π=8.
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We now evaluate the contribution coming from Cr by using the residue theorem applied to the pole Q2 ¼ p0 − ωp⃗−k⃗:

MCrðp2Þ ¼ −λ2
Z
R3

d3k
ð2πÞ3

Θðp0 − ωp⃗−k⃗Þ
2ωp⃗−k⃗

½e−γðk2Þ�k0¼Q2

p0 þ ωk⃗ − ωp⃗−k⃗

½e−γððp−kÞ2Þ�k0¼Q2

p0 − ωk⃗ − ωp⃗−k⃗ þ iϵ
; ð57Þ

where we remind the reader that the Heaviside theta function Θðp0 − ωp⃗−k⃗Þ takes into account that the integral over Cr is
nonzero only when Re½Q2� ≥ 0, and it is defined in Eq. (26).
By using the identity (10) we can write

MCrðp2Þ ¼ −λ2
Z
R3

d3k
ð2πÞ3

Θðp0 − ωp⃗−k⃗Þ
2ωp⃗−k⃗

½e−γðk2Þe−γððp−kÞ2Þ�k0¼Q2

p0 þ ωk⃗ − ωp⃗−k⃗
P:V:

�
1

p0 − ωk⃗ − ωp⃗−k⃗

�

þ iπλ2
Z
R3

d3k
ð2πÞ3

1

2ωk⃗2ωp⃗−k⃗
½e−γðk2Þe−γððp−kÞ2Þ�k0¼Q2

δðp0 − ωk⃗ − ωp⃗−k⃗Þ: ð58Þ

Let us evaluate the imaginary part (second line) explicitly to check the consistency of the Euclidean prescription with
unitarity also in nonlocal theories.
By using

R
d3k
ð2πÞ3

1
2ωk⃗

¼ R
d4k
ð2πÞ4 2πθðk0Þδðk2 þm2Þ and δðx2 − y2Þ ¼ ½δðxþ yÞ þ δðx − yÞ�=2jyj, we obtain

Im½MCrðp2Þ� ¼ π2λ2
Z

d4k
ð2πÞ4 ½e

−γðk2Þe−γððp−kÞ2Þ�k0¼Q2
θðk0Þδðk2 þm2Þθðp0 − k0Þδððp − kÞ2 þm2Þ

¼ π2λ2
Z

d4k
ð2πÞ4 θðk

0Þδðk2 þm2Þθðp0 − k0Þδððp − kÞ2 þm2Þ; ð59Þ

where we have used the normalization γð−m2Þ ¼ 0. Thus, we can write

Im½Mðp2Þ� ¼ Im½MCrðp2Þ� ¼ πλ2
Z
R3

d3k
ð2πÞ3

1

2ωk⃗2ωp⃗−k⃗
δðp0 − ωk⃗ − ωp⃗−k⃗Þ

¼ λ2

16π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−p2 − 4m2

p
ffiffiffiffiffiffiffiffiffi
−p2

p θð−p2 − 4m2Þ: ð60Þ

The last equations show that the standard Cutkosky rules
are still satisfied also in nonlocal quantum field theories5;
see Refs. [41–43] and also Appendix.
We have performed the computation only for the choice

of internal momenta k and p − k; it should now be clear
how to implement the Euclidean prescription for the choice
kþ p=2 and k − p=2 also in the nonlocal case. Actually,
we will use the latter choice of internal momenta to perform
a full analytic computation for a nonlocal model in
Sec. III E.
Before concluding this subsection, let us emphasize that

the Euclidean prescription is very powerful because it
allows one to identify and compute the imaginary part
of an amplitude for a generic entire function γðk2Þ. In this
respect, in the presence of generic nonlocal vertices it turns

out to be more suitable than the Schwinger prescription as
we now explain.

C. Schwinger prescription

All the assumptions required for the use of the
Schwinger prescription are also satisfied by the amplitude
(51) with nonlocal vertices. By using the Schwinger para-
metrization for the propagators in Eq. (38), we can rewrite
the integral (51) as

Mðp2Þ ¼ −iλ2
Z

∞

0

dt1

Z
∞

0

dt2

Z
d4k
ð2πÞ4 e

−t1ðk2þm2Þ

× e−t2ððp−kÞ2þm2Þe−γðk2Þe−γððp−kÞ2Þ; ð61Þ

which is convergent in the double limit t1; t2 → ∞ as long
as the Schwinger parametrization is well-defined, namely if
Re½k2 þm2� > 0 and Re½ðp − kÞ2 þm2� > 0. Also in this
case, one can make the contour deformation ½0;∞� →
½0; t0� ∪ ½t0; i∞� for the integrals over t1, t2 as shown in
Fig. 6, and analytically continue internal and external

5For the bubble diagram (51) under investigation not only is
unitarity respected but the expression of the imaginary part
coincides with the local result (up to a normalization factor).
However, for more complicated diagrams—such as the triangle
and box—unitarity is still respected but the expressions of the
imaginary parts are nontrivially modified by nonlocality.
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energies in such a way that Im½−ðk0Þ2� < 0 and
Im½−ðp0 − k0Þ2� < 0. This procedure will ensure the con-
vergence of the integral for large values of ti and will take
care of possible pinching singularities.
By looking at Eq. (61) we understand that further

manipulations require the explicit form of the entire
function γðk2Þ, even to extract information about the
imaginary part. This shows why the Schwinger prescription
is less suitable than the Euclidean to perform loop compu-
tations and prove unitarity in generic nonlocal theories.

It is still instructive to work with a specific nonlocal
vertex, simple enough to evaluate the imaginary part
explicitly and check the consistency with unitarity. Thus,
in the remainder of this subsection we assume the entire
function to be a polynomial of degree one of k2, i.e.,

γðk2Þ ¼ ðk2 þm2Þ=M2
s and

γððp − kÞ2Þ ¼ ððp − kÞ2 þm2Þ=M2
s ; ð62Þ

and thus the one-loop amplitude (61) reads

Mðp2Þ ¼ λ2
Z

∞

0

dt1

Z
∞

0

dt2

Z
d4k
ð2πÞ4 e

−t1ðk2þm2Þe−t2ððp−kÞ2þm2Þe−ðk2þm2Þ=M2
s e−ððp−kÞ2þm2Þ=M2

s

¼ λ2

16π2

Z
∞

0

dt1

Z
∞

0

dt2
e
−p2ðt1þ1=M2

s Þðt2þ1=M2
s Þ

t1þt2þ2=M2
s e−m

2ðt1þt2þ2=M2
sÞ

ðt1 þ t2 þ 2=M2
sÞ2

; ð63Þ

where we have made the change of variable k0 → ik0 and
then used spherical coordinates. Note that, unlike the case
of local vertices, we chose C ¼ I ¼ ½−i∞; i∞� as the initial
integration contour for the k0-integral because starting from
R is not well-defined as discussed above; see also footnote
4. As already mentioned in the Introduction, the type of
entire functions in Eq. (62) are typical of string field theory
[1–7] and p-adic string [8–12].
We can notice a similarity between the expressions in (63)

and (39): the only difference is that t1, t2 are both shifted by
1=M2

s . This suggests the additional change of variable

s1 ¼ t1 þ 1=M2
s and s2 ¼ t2 þ 1=M2

s ; ð64Þ

which gives

Mðp2Þ ¼ λ2

16π2

Z
∞

1

M2
s

ds1

Z
∞

1

M2
s

ds2
e−p

2 s1s2
s1þs2e−m

2ðs1þs2Þ

ðs1 þ s2Þ2
: ð65Þ

Let us remind the reader that the ultraviolet divergence in the
local case was associated with the limits t1, t2 → 0. If we
compare (65)with (39)we notice that the only difference lies
in the lower ends of the integration contour, and indeed the
main role of nonlocality in this case is to improve the
ultraviolet behavior of the amplitude since s1, s2 never take
zero values. Instead, the behavior of the amplitude in the
double limit s1; s2 → ∞ is the same as in the local theory,
and a divergence appears for −p2 > 4m2, i.e., above the
threshold.
All the steps from Eqs. (41)–(46) performed in Sec. II C

can be identically repeated for the integral (65) by replacing
ti with si, and in the end we would get an expression for the
imaginary part of the amplitude that coincides with the one
obtained through the Euclidean prescription in Eq. (60).

D. (In)equivalence between the prescriptions

Unlike the case of local vertices in Sec. II, the
Minkowski prescription is pathological in the presence
of nonlocal vertices. Thus, of the three prescriptions we
introduced only Euclidean and Schwinger can be used to
compute amplitudes in a consistent way. This also implies
that we need to prove only the equivalence between
Euclidean and Schwinger.
The same proof presented in Sec. II D 2 applies to the

case of nonlocal vertices too. Starting with the Euclidean
prescription we can always find a contour deformation such
as the one in Fig. 7(d), such that the Schwinger para-
metrization remains well-defined and the conditions (50)
can be satisfied. The contour in Fig. 7(d) is well-defined for
the one-loop amplitude (51) because the entire functions
γðk2Þ are defined such that e−γðk2Þ converges to zero in the
limit k0 → Aþ i∞, A being a finite real constant.
Hence, Euclidean and Schwinger are equivalent also in

the presence of nonlocal vertices. It is worth mentioning
that such an equivalence was proven in the context of string
theory first at one loop [47], and later at all orders in
perturbation theory [48].

E. An explicit example

We now analyze a nonlocal scalar model whose
Lagrangian is inspired by the truncated open tachyon in
string field theory [1–3]:

L ¼ 1

2
ϕð□ −m2Þϕ −

λ

3!
ðeð□−m2Þ=2M2

sϕÞ3; ð66Þ

where the chosen entire function is γð□Þ ¼
−ð□ −m2Þ=M2

s , and we work with a positive nontachyonic
real mass. We do not worry about whether the Lagrangian
(66) is interesting from a physical point of view but we just
use it as a mathematical toy model to apply the contour
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prescriptions and the techniques discussed above.6 Of
course, we should expect that the amplitudes for the model
(66) respect unitarity, and indeed we will show it explicitly
at one-loop order for the bubble diagram.
The corresponding one-loop bubble amplitude reads

Mðp2Þ ¼ −iλ2
Z
C

dk0

2π

Z
dk3

ð2πÞ3
e−ðk2þm2Þ=M2

s

k2 þm2 − iϵ

×
e−½ðp−kÞ2þm2�=M2

s

ðp − kÞ2 þm2 − iϵ
: ð67Þ

Our aim is to perform a full analytic computation of the
one-loop integral (67) by using both Euclidean and
Schwinger prescriptions, as well as show explicitly that
they give the same result for both real and imaginary parts
of the amplitude. Although we start with a nonvanishing
mass parameter, we are going to take the massless limit
(m ¼ 0) to evaluate also the real part analytically for both
prescriptions. Thus, in the end we are going to work with
the massless version of the Lagrangian (66). This explicit
computation will be very instructive to clarify several
aspects discussed in this paper so far.

1. Euclidean prescription

We start with the Euclidean prescription and choose to
work with the internal momenta kþ p=2 and k − p=2; thus
we apply the steps in Sec. II B 2 to the integral

Mðp2Þ ¼ −iλ2
Z
C

dk0

2π

Z
dk3

ð2πÞ3
e−½ðkþp=2Þ2þm2�=M2

s

ðkþ p=2Þ2 þm2 − iϵ

×
e−½ðk−p=2Þ2þm2�=M2

s

ðk − p=2Þ2 þm2 − iϵ
: ð68Þ

In this case the poles and the pinching singularity condition
are given by Eqs. (29) and (30), respectively; see Fig. 5(a)
for the location of the poles, and Figs. 5(b)–5(d) for the
choice of the integration contour C in the complex k0 plane.
According to the Euclidean prescription we write the

amplitude as done in Eq. (31):

Mðp2Þ ¼ MIðp2Þ þMCr;2ðp2Þ þMCr;3ðp2Þ; ð69Þ

where I ¼ ½−i∞; i∞� and Cr;2 and Cr;3 are the contours
around the poles P2 and P3.
For simplicity we work in the center-of-mass frame

(p⃗ ¼ 0); i.e., we implement the contour prescription in
Fig. 5(d) (see also the remark at the end of Sec. II B 2).
a. Evaluation of MI . By making the change

of variable k0 → ik0, and going to four-dimensional
spherical coordinates d4k ¼ ρ3 sin α2 sin θdρdαdθdφ, with
0 ≤ k ≤ ∞, 0 ≤ α; θ ≤ π, 0 ≤ φ ≤ 2π, and k0 ¼ ρ cos α,
we obtain

MIðp2Þ ¼ λ2
Z

dk4

ð2πÞ4
e−½ðkþp=2Þ2þm2�=M2

s

ðkþ p=2Þ2 þm2

e−½ðk−p=2Þ2þm2�=M2
s

ðk − p=2Þ2 þm2

¼ λ2
eðp0Þ2=2M2

s−2m2=M2
s4π

ð2πÞ4
Z

∞

0

dρ ρ3
Z

π

0

dα
sin2αe−2ρ

2=M2
s

ðρ2 − ðp0Þ2=4þm2Þ2 þ ðp0Þ2ρ2cos2α

¼ −
λ2eðp0Þ2=2M2

s−2m2=M2
s

4π2ðp0Þ2
Z

∞

0

dρ ρe−2ρ
2=M2

s

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ2 − ðp0Þ2=4þm2Þ2 þ ðp0Þ2ρ2

ðρ2 − ðp0Þ2=4þm2Þ2

s �
: ð70Þ

In the massless case we can evaluate the integral (70) analytically. Indeed, by settingm ¼ 0 and reinstating ðp0Þ2 → −p2, if
we make the additional change of variables z ¼ ρ2, we get

MIðp2Þ ¼ λ2
e−p

2=2M2
s

8π2p2

�Z
−p2=4−ε

0

dz
2ze−2z=M

2
s

zþ p2=4
þ
Z

∞

−p2=4þε
dz

ðp2=2Þe−2z=M2
s

zþ p2=4

�
; ð71Þ

where the limit ε → 0 is understood. We can explicitly evaluate the two integrals, and up to leading order in ε (in the limit
ε → 0) we obtain

MIðp2Þ ¼ λ2

16π2

�
2M2

s

p2
ðe−p2=2M2

s − 1Þ þ Ei

�
−p2

2M2
s

�
− 2EiðεÞ

�
; ð72Þ

where we have absorbed constant factors in the infinitesimal parameter ε and introduced the exponential integral function

6We could also work with a quartic nonlocal potential λ
4!
ðeð□−m2Þ=2M2

sϕÞ4, or even higher order λ
n! ðeð□−m2Þ=2M2

sϕÞn. In all these cases the
bubble diagram in Eq. (67) will still be the same, with the only difference that the number of external legs would be 2n − 4.
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EiðxÞ ¼ −
Z

∞

−x
dt
e−t

t
: ð73Þ

The divergent term EiðεÞ in Eq. (72) will be canceled by an equal and opposite contribution coming from MCrðp2Þ as we
now show.
b. Evaluation of MCr;2 þMCr;3 . By computing the residues at the poles P2 ¼ p0=2 − ωk⃗−p⃗=2 and

P3 ¼ −p0=2þ ωk⃗þp⃗=2, we obtain

MCr;2ðp2Þ ¼ −λ2P:V:
�Z

d3k
ð2πÞ3

Θðp0=2 − ωk⃗−p⃗=2Þe
½ðp0−ωk⃗−p⃗=2Þ2−ω2

k⃗þp⃗=2
�=M2

s

2ωk⃗−p⃗=2ðp0 − ωk⃗−p⃗=2 þ ωk⃗þp⃗=2Þðp0 − ωk⃗−p⃗=2 − ωk⃗þp⃗=2Þ
�

þ iπλ2
Z

d3k
ð2πÞ3

Θðp0=2 − ωk⃗−p⃗=2Þ
2ωk⃗−p⃗=22ωk⃗þp⃗=2

δðp0 − ωk⃗−p⃗=2 − ωk⃗þp⃗=2Þ ð74Þ

and

MCr;3ðp2Þ ¼ −λ2P:V:
�Z

d3k
ð2πÞ3

Θðp0=2 − ωk⃗þp⃗=2Þe
½ðp0−ωk⃗þp⃗=2Þ2−ω2

k⃗−p⃗=2
�=M2

s

2ωk⃗þp⃗=2ðp0 þ ωk⃗−p⃗=2 − ωk⃗þp⃗=2Þðp0 − ωk⃗−p⃗=2 − ωk⃗þp⃗=2Þ
�

þ iπλ2
Z

d3k
ð2πÞ3

Θðp0=2 − ωk⃗þp⃗=2Þ
2ωk⃗−p⃗=22ωk⃗þp⃗=2

δðp0 − ωk⃗−p⃗=2 − ωk⃗þp⃗=2Þ; ð75Þ

where the Heaviside theta function ΘðxÞ was defined in Eq. (26).
To evaluate the Cauchy principal value integrals we go to the center-of-mass frame for simplicity; i.e., we set p⃗ ¼ 0 for

the time being, and we rewrite the result in a Lorentz invariant form after. In the center-of-mass frame the
two contributions in the first lines of Eqs. (74) and (75) turn out to be equal. Thus, by going to spherical coordinates
and making the change of variable z ¼ ωk⃗p

0=2, we can write

MPV
Cr;2

ðp2Þ ¼ MPV
Cr;3

ðp2Þ ¼ −
λ2eðp0Þ2=M2

s

4

Z
d3k
ð2πÞ3

Θðp0 − 2ωk⃗Þe−2p
0ωk⃗=M

2
s

p0ωk⃗ðp0=2 − ωk⃗Þ

¼ −
λ2eðp0Þ2=M2

s

8π2ðp0Þ2
Z

∞

p0m
2

dz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4z2 − ðp0Þ2m2

q Θðp0 − 4z=p0Þe−4z=M2
s

ðp0Þ2=4 − z
: ð76Þ

In the massless case we can evaluate the integral (76) analytically. Indeed, by setting m ¼ 0 and reinstating ðp0Þ2 → −p2,
up to leading order in ε (in the limit ε → 0) we obtain

MPV
Cr;2

ðp2Þ ¼ MPV
Cr;3

ðp2Þ ¼ −
λ2e−p

2=M2
s

4π2p2

Z
−p2=4−ε

0

ze−4z=M
2
s

p2=4þ z

¼ λ2

32π2

�
−
2M2

s

p2
ðe−p2=M2

s − 1Þ − 2Ei

�
−
p2

M2
s

�
þ 2EiðεÞ

�
; ð77Þ

where again we absorbed constant factors in the infinitesi-
mal parameter ε. The last term in Eq. (77) is divergent and,
as promised, it will be crucial for the cancellation of the
other divergent term in Eq. (72).
We now compute the two contributions in the second

lines of Eqs. (74) and (75) that are responsible for a
nonvanishing imaginary part. As discussed at the end of
Sec. II B 2, in the center-of-mass frame we have (under the
integral sign)

Θðp0=2 − ωk⃗Þδðp0 − 2ωk⃗Þ → Θð0Þδð0Þ ¼ 1

2
; ð78Þ

namely the Heaviside theta function contributes with a
factor of 1=2. Therefore, the imaginary parts of Eqs. (74)
and (75) are given by

Im½MCr;2ðp2Þ� ¼ Im½MCr;3ðp2Þ�

¼ πλ2

2

Z
d3k
ð2πÞ3

1

4ω2

k⃗

δðp0 − 2ωk⃗Þ

¼ λ2

32π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0Þ2 − 4m2

p
p0

θðp0 − 2mÞ: ð79Þ
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The Lorentz invariant form can be obtained by replacing
ðp0Þ2 → −p2, and the massless limit reads

Im½MCr;2ðp2Þ� ¼ Im½MCr;3ðp2Þ� ¼ λ2

32π
θð−p2Þ: ð80Þ

c. Full amplitude. We now have all the ingredients to
write down the full expressions for both real and imaginary
parts of the amplitude (67) in the massless case:

Mðp2Þ ¼ Re½Mðp2Þ� þ iIm½Mðp2Þ�; ð81Þ

where

Re½Mðp2Þ� ¼ MIðp2Þ þMPV
Cr;2

ðp2Þ þMPV
Cr;3

ðp2Þ

¼ λ

16π2

�
2M2

s

p2
ðe−p2=2M2

s − e−p
2=M2

s Þ

þ Ei

�
−

p2

2M2
s

�
− 2Ei

�
−
p2

M2
s

��
ð82Þ

and

Im½Mðp2Þ� ¼ Im½MCr;2ðp2Þ� þ Im½MCr;3ðp2Þ�

¼ λ2

16π
θð−p2Þ: ð83Þ

It is worthwhile to mention that the same one-loop
computation was performed in Ref. [43] for a nonlocal
model whose Lagrangian is the same as (66) with the only
difference that a quartic potential was considered instead of
a cubic [the bubble diagram (67) is the same for both
models]. Our results (82) and (83) for the final expression
of the amplitude agree with the ones in [43]. The authors in
[43] also correctly noticed some of the problems related to
the Minkowski prescription but then to evaluate the bubble
diagram they assumed that a contour such as the one in
Fig. 3(a) and the Wick rotation in Fig. 3(b) can be
“formally” used in the presence of nonlocal vertices.

Although this formal procedure happens to give the correct
result for the bubble diagram, it can be misleading and
hides essential details. In this respect, we believe that our
analysis—especially the explanation in Sec. II B 2—is
more rigorous from a mathematical point of view and
fully clarifies why the expressions (82) and (83) for real and
imaginary parts of the amplitude are correct. In particular,
our analysis clearly explains why the imaginary contribu-
tion to the amplitude is nonzero when the poles lie on the
imaginary axis in the center-of-mass frame.

2. Schwinger prescription

We now perform the computation of the same one-loop
amplitude (67) in the massless case by using the Schwinger
prescription introduced in Secs. II C and III C. In particular,
as explained in the remark at the end of Sec. II C we
implement the prescription in a more practical way: we
perform the full integral working with imaginary external
energies, i.e., p0 ¼ ip4 with p4 ∈ R such that p2 > 0, and
analytically continue to real physical energies at the end.
We focus directly on the massless limit of the one-loop

amplitude (67),

Mðp2Þ ¼ λ2
Z

dk4

ð2πÞ4
e−k

2=M2
s e−ðp−kÞ2=M2

s

k2ðp − kÞ2 ; ð84Þ

where the integration measure is dk1dk2dk3dk4, with
k4 ¼ −ik0. Some of the initial steps to evaluate the above
integral were already shown in Sec. III C, but for the sake of
clarity we now repeat them and show all the details of the
calculation.
By using the Schwinger parametrization for the two

Euclidean propagators,

1

k2
¼
Z

∞

0

dt1e−t1k
2

;
1

ðp−kÞ2¼
Z

∞

0

dt2e−t2ðp−kÞ
2

; ð85Þ

the integral (84) can be recast as

Mðp2Þ ¼ λ2
Z

∞

0

dt1

Z
∞

0

dt2

Z
d4k
ð2πÞ4 e

−ðt1þ1=M2
sÞk2e−ðt2þ1=M2

sÞðp−kÞ2

¼ λ2
Z

∞

0

dt1

Z
∞

0

dt2e−p
2ðt2þ1=M2

sÞ
Z

d4k
ð2πÞ4 e

−k2ðt1þt2þ2=M2
sÞe2k·pðt2þ1=M2

sÞ: ð86Þ

By going to four-dimensional spherical coordinates d4k ¼ k3 sin α2 cos θdkdαdθdφ, with 0 ≤ k ≤ ∞, 0 ≤ α;
θ ≤ π, 0 ≤ φ ≤ 2π, and p · k ¼ jpjjkj cos α, we obtain

Z
d4k
ð2πÞ4 e

−k2ðt1þt2þ2=M2
sÞe2k·pðt2þ1=M2

sÞ ¼ M4
s

16π2
e

p2

M2
s

ðM2
s t2þ1Þ2

M2
s ðt1þt2Þþ2

½M2
sðt1 þ t2Þ þ 2�2 : ð87Þ

Performing the additional change of integration variables
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s1 ¼ t1 þ
1

M2
s
; s2 ¼ t2 þ

1

M2
s
; ð88Þ

the integral (86) becomes

Mðp2Þ ¼ λ2

16π2

Z
∞

1

M2
s

ds1

Z
∞

1

M2
s

ds2
e−p

2 s1s2
s1þs2

ðs1 þ s2Þ2
: ð89Þ

One can notice that the last integral is convergent as p2 ≥ 0
in Euclidean signature. By performing the double integra-
tion we get

Mðp2Þ ¼ λ2

16π2

�
2M2

s

p2
ðe−p2=2M2

s − e−p
2=M2

s Þ

þEi

�
0;−

p2

2M2
s

�
− Ei

�
0;−

p2

M2
s

�
þ Γ

�
0;

p2

M2
s

��
;

ð90Þ

where Γða; zÞ is the incomplete Gamma function defined as

Γða; zÞ ¼
Z

∞

z
dt ta−1e−t; ð91Þ

in our case a ¼ 0.
The compact expression in Eq. (90) is still defined for

spacelike external momenta, i.e., p2 > 0. However, we are
interested in physical energies and timelike momenta
p2 < 0. For negative arguments (p2 < 0) the incomplete
Gamma function Γð0; xÞ satisfies the following relation:

lim
ϵ→0þ

Γð0; x� iϵÞ ¼ −Eið−xÞ ∓ iπ; for x < 0: ð92Þ

In our case we need to use Eq. (92) with −iϵ, so that the
one-loop amplitude in Minkowski signature acquires an
imaginary component:

Mðp2Þ ¼ Re½Mðp2Þ� þ iIm½Mðp2Þ�; ð93Þ

where

Re½Mðp2Þ� ¼ λ2

16π2

�
2M2

s

p2
ðe−p2=2M2

s − e−p
2=M2

s Þ

þ Ei

�
−

p2

2M2
s

�
− 2Ei

�
−
p2

M2
s

��
; ð94Þ

which coincides with (82), and

Im½Mðp2Þ� ¼ λ2

16π
θð−p2Þ; ð95Þ

which matches the expression (83).
Hence, we have verified analytically that Schwinger and

Euclidean prescriptions give the same result for the

computation of the amplitude (67) (in the massless case).
Let us emphasize again that the results are consistent with
the Cutkosky rules and unitarity; see also Appendix.

3. Local limit

As a further consistency check of the Euclidean and
Schwinger prescriptions applied to the amplitude (67)
(in the massless case) we can take the local limit
(jp2j=M2

s ≪ 1) of (90) and verify that the known local
result in Eq. (20) is recovered.
By expanding in Taylor series the amplitude (90) for

small jp2j=M2
s ≪ 1 we obtain

Mðp2Þ ¼ λ2

16π2

�
1 −

γE
2
− log 2 − log

�
p2 − iϵ
M2

s

��
; ð96Þ

which coincides with (20) once we identify
M2

s ¼ 2Λ2e1þγE=2, γE being the Euler-Mascheroni constant.
Therefore, we verified that our result is consistent with the
local limit, as expected.
It is worth mentioning that our computation of the bubble

diagram (67) can also be seen as a regularization method to
compute the bubble diagram in the local case, where Ms is
now interpreted as a regulator instead of a fundamental
energy scale. Indeed, the result in Eq. (96) is the same that
we would get by using dimensional regularization or Pauli-
Villars.

IV. DISCUSSION AND CONCLUSIONS

In Secs. II and III we discussed in great detail three
“different” prescriptions for the evaluation of the bubble
diagram in the presence of local (5) and nonlocal vertices
(51). We noticed that, while all the prescriptions are valid
and equivalent in the presence of local vertices, the
Minkowski prescription fails when nonlocal vertices are
introduced. Moreover, the Euclidean prescription turns out
to be more suitable than Schwinger to compute the
imaginary part of an amplitude in a generic nonlocal
model. We also performed an explicit and fully analytic
calculation in a string-inspired nonlocal model and con-
firmed that Euclidean and Schwinger prescriptions give the
same result.
a. Other diagrams and higher loops. One natural

question to ask is how and whether Euclidean and
Schwinger can be generalized to more complicated ampli-
tudes and to higher loops. Both prescriptions have been
proven to be valid at all orders in perturbation theory in the
context of string theory [48]. For more general nonlocal
theories the Euclidean prescription has been used for the
verification of Cutkosky rules at all orders in perturbation
theory [41,42], and explicit computations of imaginary
parts have been performed for other types of one-loop (box
and triangle) [41,49] and two-loop diagrams (sunset) [41].
For example, in the case of the triangle diagram it was
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shown that the anomalous threshold does not contribute to
the imaginary part of the amplitude; i.e., it does not affect
the optical theorem, similar to the local case. To extend our
analysis, one should study the triangle and box diagrams in
nonlocal theories by means of the Schwinger prescription
and show that the result coincides with the one obtained
through the Euclidean prescription. A proof of the equiv-
alence between Euclidean and Schwinger at higher order in
perturbation theory and for generic nonlocal theories is still
lacking. More explicit computations of both real and
imaginary parts for more complicated diagrams and at
higher loops in specific models (as we did in Sec. III E) are
also still missing. Therefore, future investigations are surely
needed along these directions.
b. Minkowski vs Euclidean. One interesting feature that

needs further discussion is the failure of the Minkowski
prescription in the presence of nonlocal vertices. We
learned that the integration contour in the complex k0

plane cannot be R ¼ ½−∞;∞� because of unwanted diver-
gences. Indeed, we emphasized that the initial contour
must be chosen to coincide with the imaginary axis
C ¼ I ¼ ½−i∞; i∞�, and that the amplitude must initially
depend on purely imaginary energies in order for the poles
to have a certain location relative to the contour. In other
words, the amplitude must be defined in Euclidean sig-
nature, and analytically continued to Minkowski after. The
inverse procedure, from Minkowski to Euclidean, is not
well-defined.
This is not the only known example of quantum field

theories that are pathological if initially defined in
Minkowski. For instance, in theories with higher-derivative
kinetic terms such as sixth-order Lee-Wick models [50,51]
—whose propagators contain additional pairs of complex
conjugate poles—the amplitudes need to be initially
defined in Euclidean signature; otherwise unitarity would
be violated and standard renormalizability properties would
be spoiled [52–55]. The same happens in theories with
fakeon propagators [55]. In all these cases, the analytic
structure of the integrands (i.e., propagators and vertices) is
somehow modified: (i) in the presence of nonlocal vertices
essential singularities at infinity are introduced; (ii) in Lee-
Wick theories pairs of complex conjugate poles appear and
their locations discriminate between computations per-
formed in the Minkowski or Euclidean signature, prevent-
ing the use of the usual Wick rotation [53,54]; (iii) in
fakeon models the Feynman shift in the propagator is
replaced by an alternative prescription that introduces
fictitious pairs of complex conjugate poles such that only
a one-way nonanalytic Wick rotation from Euclidean to
Minkowski can be well-defined [55].
An important message we would like the reader to

appreciate is the following: the fact that amplitudes can
be defined in both Minkowski and Euclidean, and that they
can be analytically continued from one signature to the
other either way, is a very special feature of quantum field

theories with two-derivative kinetic operators and local
vertices. However, this happens to be just a coincidence.
Indeed, when going beyond standard theories and working
in more complicated setups, e.g., with higher powers of
inverse momentum in the propagator and/or nonlocal
vertices, it becomes clear that amplitudes must be initially
defined in the Euclidean signature, and that a consistent set
of (alternative) rules must be prescribed in order to define
the analytic continuation to Minkowski. This also means
that the definition of an amplitude and the prescription to
deform the integration contour can be model-dependent.
There are, in fact, at least two further reasons to justify

the formulation of a generic quantum field theory (local or
nonlocal) and the definition of its amplitudes in the
Euclidean signature. In addition to the fact that in more
general theories unitarity can be respected only if ampli-
tudes are initially defined in Euclidean space, we also point
out the following:

(i) Typically the functional path integral is convergent
only if the theory is initially defined in Euclidean
signature.

(ii) Strictly speaking the power counting analysis and
the discussion/proof of renormalizability of a theory
is well-defined only in the Euclidean signature.

Therefore, the failure of the Minkowski prescription in
alternative theories, such as the ones investigated in
Sec. III, is not really a problem because the corresponding
quantum field theory can be consistently formulated in
Euclidean space. Physical observables depending on real
momenta can be obtained via analytic continuation accord-
ing to a certain prescription.
Let us also clarify that our discussion does not imply that

string theory must be initially defined in Euclidean space.
In fact, in the context of string perturbation theory the
failure of the Minkowski prescription should not be seen as
a problem of the general framework, but only as an issue of
the string field theory formulation in which the exponential
vertices appear. In fact, in other formulations amplitudes
might be well-defined in Minkowksi already from the
beginning; e.g., this can be the case in the worldsheet
formulation.
c. Outlook. In this paper, we only worked with propa-

gators possessing the standard real poles. However, more
general nonlocal theories admitting extra pairs of complex
conjugate poles have been proposed [56,57]. It will be very
interesting to investigate whether the prescriptions analyzed
in this work can be generalized in the presence of extra
complex conjugate poles, and whether a unitary S-matrix
can be formulated for these more complicated theories
too [58].
Furthermore, we only focused on scalar theories, but it

would be interesting to apply Euclidean and Schwinger
prescriptions to amplitudes involving more complicated
tensorial structures. In recent years several approaches to
formulate a unitary and renormalizable quantum field
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theory of the gravitational interaction have been proposed.
In particular, interesting ideas to solve the ghost problem
[59] in higher-derivative gravity were put forward in both
local [54,60–65] and nonlocal theories [22,28–30], and also
at the nonperturbative level [66,67]. In the context of
nonlocal gravity explicit computations of amplitudes,
e.g., at one-loop, are still lacking in the literature. For
future works it will be very interesting to perform these
computations and extract from them information on physi-
cal observable such as decay rates and cross sections for
processes involving (nonlocal) gravitons.
Hence, many interesting aspects concerning scattering

amplitudes and unitarity in nonlocal quantum field theories
deserve further investigation, and indeed more work is
expected to come in the future.
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APPENDIX: UNITARITY AND OPTICAL
THEOREM

We briefly review the notion of unitarity of the S-matrix,
and we verify explicitly some of the statements made in the
main text about optical theorem and Cutkosky rules in the
context of nonlocal field theories. This appendix is also
important to fix notations and conventions used for
propagators, vertices, and amplitudes in the main text.
Given a Fock spaceW, the S-matrix operator can evolve

an initial state jai ∈ W into a final state jbi ¼ Sjai ∈ W.
Then, probability conservation hbjbi ¼ hajai implies the
unitarity condition on the S-matrix [68]:

S†S ¼ 1: ðA1Þ

By writing S ¼ 1þ iT, where T is the so-called transfer
matrix, we can recast the unitarity condition as

iðT† − TÞ ¼ T†T; ðA2Þ

which is the operatorial form of the optical theorem. The
identity (A2) is very useful to prove unitarity in perturbative
quantum field theories [69], and to compute cross sections
and decay rates [45].
Let us now introduce the matrixM, whose elements are

defined through the following relation

hbjTjai ¼ ð2πÞ4δð4ÞðPb − PaÞhbjMjai; ðA3Þ

where Pb and Pa are the total outgoing and ingoing
momenta, respectively. Moreover, we use the completeness
relation

1 ¼
X
fng

Yn
l¼1

Z
d3kl
ð2πÞ3

1

2ωl
jfklgihfklgj; ðA4Þ

where the summation is over all possible sets fng of
intermediate states jfklgi containing l momenta and ωl ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2l þm2

l

q
are the frequencies (energies) for each single

momentum kl.
By using Eqs. (A3) and (A4), we can recast Eq. (A2) as

follows:

i½hbjM†jai − hbjMjai�

¼
X
fng

Yn
l¼1

Z
d3kl
ð2πÞ3

1

2ωl
ð2πÞ4

× δð4Þ
�
Pa −

Xn
l¼1

kl

�
hbjM†jfklgihfklgjMjai; ðA5Þ

which must hold order by order in perturbation theory.
The simplest application of the formula (A5) is the case

in which the left-hand side (lhs) is equal to 2ImfhbjMjaig.
Some examples are given by the 2 → 2 one-loop diagram
constructed with quartic vertices, and the 1 → 1 one-loop
diagram constructed with cubic vertices; see Fig. 1 for an
illustration of such diagrams.
The diagrammatic form of the optical theorem for the

amplitudes associated with the Feynman diagrams in Fig. 1
reads

ðA6Þ

ðA7Þ

where
R
dΠb is a short notation for the phase-space integral

in Eq. (A5) and the sum is taken over the final states labeled
by b. The intermediate steps of the above two equations
take into account the so-called cutting rules (or Cutkosky
rules) [70], where the matrix elements hfklgjMjai and
hbjM†jfklgi ¼ ðhfklgjMjbiÞ� contribute to the left and to
the right of the cut dashed line, respectively. For instance,
the square on the right-hand side of Eq. (A7) means

, with , and sim-

ilarly for (A6).
In this work we were interested in investigating contour

prescriptions to evaluate one-loop integrals such as (51)
where interaction vertices are nonlocal (i.e., nonpolynomial
in momenta). Let us now check the validity of the two
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identities (A6) and (A7) for a generic class of nonlocal field theories, and thus prove one-loop unitarity explicitly. For
instance, we can work with a nonlocal model such as the one in Eq. (2) with cubic potential, and thus the bubble diagram is
the one in Fig. 1(b) and in Eq. (A7); the same result will be valid for Fig. 1(a) and Eq. (A6). See also Ref. [6] for the first
satisfactory discussion, to our knowledge, of unitarity with nonlocal vertices in the context of string field theory.
The Feynman rules for the Lagrangian (2) with cubic potential are

Propagator∶ Πðk2Þ ¼ −i
k2 þm2 − iϵ

;

Vertex∶ Vðk1; k2; k3Þ ¼ −iλe−1
2
½γðk2

1
Þþγðk2

2
Þþγðk2

3
Þ�: ðA8Þ

Given an external momentum p and a loop momentum k, the bubble amplitude reads

Mðp2Þ≡ hpjMjpi

¼ ð−iÞð−iλÞ2
Z
C

dk0

2π

Z
R3

d3k
ð2πÞ3

ð−iÞe−γðk2Þ
k2 þm2 − iϵ

ð−iÞe−γððp−kÞ2Þ
ðp − kÞ2 þm2 − iϵ

: ðA9Þ

Obviously, if γ ¼ 0 we recover the local case in Eq. (5). To prove that the amplitude (A9) satisfies the optical theorem (A5),
and thus unitarity, we should verify the identity (A7), i.e., the validity of the Cutkosky rules for the diagram in Fig. 1(b).
In Sec. III we computed the imaginary part ofMðp2Þ [see Eq. (60)]. Thus, we already know the result for the lhs of the

optical theorem (A5):

lhs¼ i½M�ðpÞ−MðpÞ�
¼2Im½Mðp2Þ�

¼2πλ2
Z
R3

d3k
ð2πÞ3

1

2ωk⃗2ωp⃗−k⃗
δðp0−ωk⃗−ωp⃗−k⃗Þ; ðA10Þ

where we have used the relation hpjM†jpi ¼ ðhpjMjpiÞ� ¼ M�ðp2Þ.
Let us now evaluate the rhs of (A5). For the bubble diagram, we have one set of intermediate states characterized by

n ¼ 2, l ¼ 1, 2, internal momenta k1, k2, frequencies ω1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗21 þm2

q
, ω2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗22 þm2

q
, and Pa ¼ p∶

rhs ¼
Z
R3

d3k1
ð2πÞ3

Z
R3

d3k2
ð2πÞ3

1

2ω12ω2

ð2πÞ4δð4Þðp − k1 − k2ÞhpjM†jk1; k2ihk1; k2jMjpi: ðA11Þ

By using the relations

ðA12Þ

and

ðA13Þ

where we imposed the normalization γð−m2Þ ¼ 0, and going from a three-dimensional to a four-dimensional integralR d3ki
ð2πÞ3

1
2ωi

¼ R d4ki
ð2πÞ4 2πθðk0i Þδðk2i þm2Þ, we can recast (A11) as
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rhs ¼ ð2πÞ2λ2
Z

d4k
ð2πÞ4 e

−γðk2Þe−γððp−kÞ2Þθðk0Þδðk2 þm2Þθðp0 − k0Þδððp − kÞ2 þm2Þ

¼ ð2πÞ2λ2
Z

d4k
ð2πÞ4 θðk

0Þδðk2 þm2Þθðp0 − k0Þδððp − kÞ2 þm2Þ; ðA14Þ

where we replaced k2 ¼ p − k1, redefined k≡ k1, and imposed again γð−m2Þ ¼ 0.
Then, by using the property δðx2 − y2Þ ¼ ½δðxþ yÞ þ δðx − yÞ�=2jyj Eq. (A14) becomes

rhs ¼ ð2πÞ2λ2
Z

d4k
ð2πÞ4 θðk

0Þθðp0 − k0Þ 1

2ωk⃗2ωp⃗−k⃗
½δðk0 − ωk⃗Þ þ δðk0 þ ωk⃗Þ�½δðp0 − k0 − ωp⃗−k⃗Þ þ δðp0 − k0 þ ωp⃗−k⃗Þ�

¼ 2πλ2
Z
R3

d3k
ð2πÞ3

1

2ωk⃗2ωp⃗−k⃗
δðp0 − ωk⃗ − ωp⃗−k⃗Þ; ðA15Þ

which coincides with Eq. (A10). Thus, we have shown that the optical theorem is satisfied for the bubble diagram in the
nonlocal theory (2), i.e., we verified the identities (A6) and (A7).
Furthermore, the Cutkosky rules [70] are manifest, especially from Eq. (A14). This means that when computing a

discontinuity across the real axis (lhs of the optical theorem) each internal propagator can be replaced as

−i
k2 þm2 − iϵ

→ 2πθðk0Þδðk2 þm2Þ: ðA16Þ
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