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In this work, we first derive the corrections to the instanton configuration of the flavored gauge field in
the D4–D8 model with generic flavor numbers. Then, as the instanton configuration on the D8-branes
represents equivalently baryon in this model, keeping our corrections in hand, we systemically study the
spectrum of baryon, heavy-light baryon, or heavy-light meson and find it is possible to fit the experimental
data with the meson data in this model. We also briefly outline how to include the interaction of glueball
and heavy-light meson or baryon with our corrections, evaluate numerically the decay rate of the heavy-
light meson or baryonic matter involving glueball. Since it is possible to fit all the spectra with the same
choice of the parameters to the experimental data, we believe our corrections improve the framework of
D4–D8 model and the corrected instanton configuration is also useful to investigate other properties of
baryon in holography.
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I. INTRODUCTION

QCD, as the characteristic strong coupling gauge theory,
has been expected to be analyzed by the gauge-gravity
duality and AdS=CFT since holography of gravity was
proposed in the 1990s [1–4]. Along this direction, there are
several holographic frameworks for QCD attracting great
interests in the last two decades, e.g., [5–8]. Among these
works, the D4–D8 model, i.e., the Witten-Sakai-Sugimoto
model [9,10], as a top-down approach based on the
underlying string theory, becomes famous and successful
in the process of time because this model includes mostly
all the fundamental elements ofQCD in a very simpleway so
that it could reproduce various elementary features of QCD,
e.g., deconfinement and chiral phase transition [11–18],
baryon spectrum [19–24], glueball spectrum [25–29], the
interaction of glueball andmeson or baryon [30,31], the theta
term [32–38].
Specifically, the D4–D8 model consists of Nc coincident

D4-branes as colors and a stack of Nf pairs of probe D8-
and anti D8-branes (D8=D8-branes) as flavors vertical to
the D4-branes. The open string on the Nc D4-branes and
Nf D8=D8-branes is respectively in the adjoint represen-
tation of UðNcÞ and UðNfÞ which is therefore identified as

gluon and meson. The open string connecting Nc D4-
branes and Nf D8=D8-branes is in the fundamental rep-
resentation of UðNcÞ and UðNfÞ which is accordingly
identified as the fundamental chiral quark. In the large Nc
limit, the bulk geometry is described by the type IIA
supergravity which can be solved by the bubble configu-
ration of the D4-branes compactified on a circle with size of
M−1

KK since the dual theory will exhibit confinement in this
geometry below the energy scaleMKK . The supersymmetry
would also break down below MKK when the periodic and
antiperiodic condition is respectively imposed to the gauge
boson and supersymmetric fermion along the circle, as it is
illustrated in Fig. 1. Hence there are only two parameters in
this model which are the energy scale MKK and ’t Hooft
coupling λ. And it is possible to fit the meson spectrum in
the D4–D8 model to the experimental data by setting
MKK ¼ 949 MeV; λ ¼ 16.6 as [9,10]. Note that this choice
of the parameters is named as the meson data of the D4–D8
model in this work.
Following the idea in Witten’s [39], baryon vertex, as a

D4-brane wrapped on S4, can be further introduced into the
D4–D8 model. Analyzing the charge of D4- and D8-brane,
the baryon vertex is recognized as the instanton solution of
the gauge field on the D8-brane [40], hence the
Hamiltonian of the collective modes, whose eigenvalue
would be interpreted as the baryon spectrum, can be
derived by additionally employing the idea of Skyrmions
in the moduli space of instanton [41], as it is discussed in
[19]. Besides, the glueball field in this model is identified as
the bulk gravitational polarization since it is sourced by
gauge invariant operator as the energy-momentum tensor of
the gluon [25–29] in the dual theory. In this sense, when the
bulk gravitational polarization is taken into account, there
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must be open/close string interaction which is the inter-
action of bulk close string and the open strings on various
D-branes (i.e., the flavor D8=D8-branes and the baryon
vertex), since the gravitational polarization is excited by the
bulk closed string. Thus the effective action of the D8-brane
will include the coupling terms of the bulk gravitational
polarization and the world volume gauge field or instanton,
which can be interpreted as the interaction of glueball and
meson or baryon. Resultantly, when we derive the
Hamiltonian of the collective modes of baryon, it will
arise a time-dependent term describing the decay of baryon
involving glueball as [30,31]. Altogether, the D4–D8
model could be treated basically as a holographic version
of QCD.
Since the subject of this work is the corrections to

holographic baryon in the D4–D8 model, our concern
would be the instanton solution of the gauge field on the
D8-brane and the associated Hamiltonian of the collective
modes. The motivation of this work comes from [19,22–
24,30,31]. In [19], it turns out the effective action of the D8-
brane in the strong coupling limit (i.e., the ’t Hooft coupling
λ goes to infinity λ → ∞) is pure Yang-Mills action, so that
the instanton solution to the non-Abelian spatial part of the
gauge field can be chosen as the SUð2Þ Belavin–Polyakov–
Schwarz–Tyupkin (BPST) solution which represents the
Euclidean instanton. However the baryon spectrum based
on the BPST instanton in [19] is unable to fit the
experimental data of baryon when the meson data in this
model is employed even if the framework in [19] is
generalized into three-flavor case [20]. The same problem
also appears in [22,23] where the meson data in the D4–D8
model is abandoned. The most likely reason could be that
the derivation in [19,20,22,23] is strictly valid in the limit of
λ → ∞ while λ is a finite number in realistic QCD. To
figure out this issue, [24] proposes a possible correction to
the two-flavored instanton solution in this model. Since the
two-flavored baryon spectrum is unrealistic, the baryon
spectrum with the correction proposed in [24] may not fit
the experimental data well enough when the meson data in
this model is picked up. Nonetheless, in this work, we

attempt to generalize the corrections to SUð2Þ instanton
into the case of SUðNfÞ instanton as [20]. Afterwards, we
obtain the corrected baryon spectrum with generic flavor
number Nf. Take into account the symmetries of isospin
and angular momentum, we find the corrected baryon
spectrum with Nf ¼ 3 fits very well to the experimental
data by picking up the meson data in this model. Moreover,
when the heavy flavor is introduced into this model as
[22,23,35], the corrected heavy-light baryon spectrum also
fits well to the experimental data with the meson data in this
model. And we also derive the Nf ¼ 2 heavy-light baryon
spectrum in order to fit the experimental data of heavy-light
meson, since the heavy-light meson could be treated as a
quasibaryon [42–44]. Picking up our corrections, the
heavy-light meson spectrum with meson data in this model
fits well to the experimental data of the lowest D-mesons.
Finally, the bulk gravitational polarization is introduced
with our corrections to the instanton, so it is able to describe
the decay of the heavy-light meson involving the glueball in
this framework.1 Despite the corrections to the decay rate of
the heavy-light baryon by following [30,31], it is out of
reach to fit the experimental data exactly since the
experimental data of glueball is less clear. Nonetheless,
we overall believe our corrections to the instanton as
baryon improve the framework of D4–D8 approach since
it is able to fit both the spectra of meson and baryon with
same choice of the parameters, even if the heavy flavor is
included.
The outline of this paper is as follows. In Sec. II, we

collect the essential parts of the D4–D8 model. In Sec. III,
we derive our corrections to the BPST instanton solution
with generic Nf as a generalization of [24]. Then compare
our corrected baryon spectrum with the experimental data
in the case of Nf ¼ 3. In Sec. IV, we include the heavy

FIG. 1. The D-brane configurations in the D4–D8 model. Left: the bubble bulk geometry on fU; x4g plane produced by Nc coincident
D4-branes. Right: the Nf pairs of D8=D8-branes (blue line) and baryon vertex (green point) as probes in the bulk. The effective theory
below the energy scale MKK is confined and nonsupersymmetric.

1Since the lightest glueball mass is evaluated around
1000 MeV by lattice QCD, it is mostly produced in the decay
of baryon or baryonic meson, e.g., [45–47]. And it is also a
motivation to include the interaction of glueball and baryon or
heavy-light meson in the framework of D4–D8 model.
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flavor in the D4–D8 model, obtain the heavy-light baryon
spectrum with our corrections and fit the experimental data
of the heavy-light meson. In Sec. V, we briefly outline how
to describe the interaction of glueball and baryon or
baryonic matter with our corrections, then evaluate the
decay rate of heavy-light meson involving glueball numeri-
cally. The final section is the summary and discussion.

II. BARYON AS INSTANTON IN D4–D8 MODEL

In this section, let us collect the essential substance of the
instanton configuration and the derivation of baryon
spectrum in the D4–D8 model from [9,10,19,20].

A. The D4–D8 model

The D4–D8 model consists of Nc coincident D4-branes
and a stack of Nf pairs of probe D8=D8-branes in the large
Nc limit. The bulk geometry is described by type IIA
supergravity in 10-dimension (10d) given as [9],

ds2 ¼
�
U
R

�
3=2

½ημνdxμdxν þ fðUÞðdx4Þ2�

þ
�
R
U

�
3=2

�
dU2

fðUÞ þU2dΩ2
4

�
;

eϕ ¼ gs

�
U
R

�
3=4

; F4 ¼ dC3 ¼
2πNc

Ω4

ϵ4;

fðUÞ ¼ 1 −
U3

KK

U3
: ð2:1Þ

This gravity solution describes the bubble configuration
of the spacetime ending on U ¼ UKK as it is illustrated in
Fig. 1. The D4-branes extend along fxμ; x4g where the
index μ, ν runs over 0,1,2,3. The field ϕ; C3 is respectively
the dilaton and Ramond-Ramond 3-form in the type IIA
superstring theory. Here ϵ4, Ω4 ¼ 8π2=3 is the volume
form, the volume of a unit S4 and R refers to the radius of
the bulk which relates to the string coupling gs and string
length ls as R3 ¼ πgsNcl3s . Note that the direction x4 is
compactified on S1 with a period δx4 as x4 ∼ x4 þ δx4, so,
above the size δx4, the supersymmetry is broken down in
the low-energy effective theory on the D4-branes once the
periodic and antiperiodic condition is imposed to the boson
and fermion along S1 [4]. In order to avoid the conical
singularity at U ¼ UKK, we can define the Kaluza-Klein
mass MKK as,

MKK ¼ 2π

δx4
¼ 3U1=2

KK

2R3=2 ; ð2:2Þ

which specifies the dual theory is effectively four-dimen-
sional confining Yang-Mills (YM) theory. By examining
the dual theory on a probe D4-brane, the variables in terms
of field theory can be expressed as,

R3 ¼ 1

2

g2YMNcl2s
MKK

; UKK ¼ 2

9
g2YMNcMKKl2s ;

gs ¼
1

2π

g2YM
MKKls

; ð2:3Þ

where gYM refers to the Yang-Mills coupling constant in the
dual theory.
The Nf pairs of probe D8=D8-branes embedded into the

bulk geometry (2.1) are perpendicular and antipodal to the
compactified direction x4 as it is displayed in Fig. 1. The
action of D8-brane is given by the Dirac-Born-Infeld (DBI)
plus Wess-Zumino (WZ) action as

SD8 ¼ SDBI þ SWZ;

SDBI ¼ −T8

Z
D8=D8

d9xe−ϕSTr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ðgαβ þ 2πα0F αβÞ

q

SWZ ¼ ð2πα0Þ3T8

Z
D8=D8

C3TrF 3; ð2:4Þ

where the index α, β runs over the D8-brane, T8 ¼
ð2πÞ−8l−9s is the tension of the D8-brane and F refers to
the UðNfÞ Yang-Mills gauge field strength on the D8-
branes. Expand the DBI action up to quadratic term and
integrate the WZ action by part, the action (2.4) becomes,

SD8 ¼ SYM½A� þ SCS½A�;

SYM½A� ¼ −κ
Z

d4xdzTr

�
1

2
hðzÞF 2

μν þ kðzÞF 2
μz

�
;

SCS½A� ¼ Nc

24π2

Z
ω
UðNfÞ
5 ðAÞ;

hðzÞ ¼ ð1þ z2Þ−1=3; kðzÞ ¼ 1þ z2 ð2:5Þ

where the formulas are expressed in MKK ¼ 1 and the
parameter κ is given as,

κ ¼ aλNc; a ¼ 1

216π3
; λ ¼ g2YMNc: ð2:6Þ

We have used the dimensionless Cartesian coordinate z
given by

U ¼ UKKð1þ z2Þ1=3: ð2:7Þ

Here A refers to the UðNfÞ Yang-Mills gauge potential
associated toF asF ¼ dAþ iA ∧ Awhich does not have
components along S4 and is independent on S4. The gauge

Chern-Simons (CS) 5-form ω
UðNfÞ
5 ðAÞ is given as,

ω
UðNfÞ
5 ðAÞ ¼ Tr

�
AF 2 −

i
2
A3F −

1

10
A5

�
: ð2:8Þ
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Therefore the following concern is to describe the baryon
with the action presented in (2.5).

B. The classical instanton solution

According to the gauge-gravity duality, baryon in the
D4–D8 model is recognized as the D4-brane wrapped on S4

[39] presented in (2.1) which is illustrated in Fig. 1. On the
other hand, by analyzing the charge of the D4- and D8-
brane, in the D4–D8 model, baryon can be identified as the
instanton configuration of the gauge field on the D8-branes
[40]. Hence the instanton solution for the gauge field on
D8-brane is the key to describe baryon in this model.
In order to obtain a low-energy solution representing a

baryon for the gauge field on D8-branes, let us follow the
steps in [19]. Specifically, we need an instanton solution for
the D8-brane action (2.5) in the 1=λ expansion since the
’t Hooft coupling λ is expected to be large in the dual
theory. To carry out a systematic 1=λ expansion, we can
rescale the coordinate fx0; xi; zg and the gauge field A as,

xM → λ−1=2xM; x0 → x0

AM → λ1=2AM; A0 → A0

FMN → λFMN; F 0M → λ1=2F 0M; ð2:9Þ

where the indices denoted by capital letters M, N run over
1,2,3,z. Thus the Yang-Mills action in (2.5) can be written
as,

SYM ¼ −aNc

Z
d4xdzTr

�
λ

2
F2
MN

þ
�
−
z2

6
F2
ij þ z2F2

iz − F2
0M

�
þOðλ−1Þ

�

−
aNc

2

Z
d4xdz

�
λ

2
F̂2
MN

þ
�
−
z2

6
F̂2
ij þ z2F̂2

iz − F̂2
0M

�
þOðλ−1Þ

�
; ð2:10Þ

while the Chern-Simons action in (2.5) is invariant under
this rescaling. Note that we have decomposed the UðNfÞ
group as UðNfÞ ≃ Uð1Þ × SUðNfÞ and correspondingly,
the generator A of UðNfÞ is decomposed as,

A ¼ Aþ 1ffiffiffiffiffiffiffiffiffi
2Nf

p Â ¼ Aata þ 1ffiffiffiffiffiffiffiffiffi
2Nf

p Â; ð2:11Þ

where Â; A refers respectively to the generator of Uð1Þ,
SUðNfÞ and ta (a ¼ 1; 2…N2

f − 1) are the normalized
Hermitian bases of the suðNfÞ algebra satisfying

TrðtatbÞ ¼ 1

2
δab: ð2:12Þ

In this convention, the Chern-Simons term in (2.5) can be
derived as,

SCS ¼
Nc

24π2

Z
ω
SUðNfÞ
5 ðAÞ

þ Nc

24π2

ffiffiffiffiffiffi
2

Nf

s
ϵMNPQ

Z
d4xdz

�
3

8
Â0TrðFMNFPQÞ

−
3

2
ÂMTrð∂0ANFPQÞ þ

3

4
F̂MNTrðA0FPQÞ

þ 1

16
Â0F̂MNF̂PQ −

1

4
ÂMF̂0NF̂PQ

þ ðtotal derivativesÞ
�
: ð2:13Þ

Then the equations of motion can be obtained by varying
the action (2.10) plus (2.13). For generic Nf ≥ 2, the
instanton solution can be obtained by employing the
classical SUð2Þ BPST solution as embeddable package
[20] which is given as,

Acl
M ¼ −ifðξÞgðxÞ∂Mg−1; ð2:14Þ

where

fðξÞ ¼ ξ2

ξ2 þ ρ2
; ξ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxM − XMÞ2

q
;

gðxÞ ¼
�
gSUð2ÞðxÞ 0

0 1Nf−2

�
; gSUð2ÞðxÞ

¼ 1

ξ
½ðz − ZÞ12 − iðxi − XiÞτi�: ð2:15Þ

We use 1N to denote the N × N identity matrix, and τi’s are
the Pauli matrices. The constants XM ¼ fXi; Zg and ρ refer
respectively to the position and the size of the instanton
which have already been rescaled as (2.9), hence the Uð1Þ
part of the gauge field can be solved as,

Âcl
0 ¼

ffiffiffiffiffiffi
2

Nf

s
1

8π2a
1

ξ2

�
1 −

ρ4

ðξ2 þ ρ2Þ2
�
; Âcl

M ¼ 0: ð2:16Þ

which leads to a nontrivial A0 as,

Acl
0 ¼ 1

16π2a
1

ξ2

�
1 −

ρ4

ðξ2 þ ρ2Þ2
��

P2 −
2

Nf
1Nf

�
; ð2:17Þ

where P2 is a Nf × Nf matrix defined as P2 ¼
diagð1; 1; 0;…0Þ.
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C. Lagrangian of the collective modes
and baryon spectrum

In order to obtain the baryon spectrum, we need to derive
the Lagrangian L of the collective coordinates Xα in the
moduli space of the one-instanton solution. For generic Nf,
the collective coordinates Xα consist of fXM; ρ; yag, where
W ¼ yata is the SUðNfÞ orientation of the instanton. The
basic idea here is to approximate the classical soliton by
slowly moving so that the collective coordinates Xα are
promoted to become time-dependent as XαðtÞ [41]. Thus
the Lagrangian of the collective coordinates is expected to
be the element of the world line with a potential in the
moduli space as,

LðXαÞ ¼ mX

2
Gαβ

_Xα _Xβ −UðXαÞ þOðλ−1Þ; ð2:18Þ

where Gαβ refers to the metric of the moduli space and the
potential UðXαÞ is the classical soliton mass given by
S½Acl� ¼ −

R
dtUðXαÞ. By the approximation, the SUðNfÞ

gauge field is also expected to be time-dependent by a
gauge transformation,

AMðt; xÞ ¼ WðtÞAcl
Mðx;XαÞWðtÞ−1 − iWðtÞ∂MWðtÞ−1;

A0ðt; xÞ ¼ WðtÞAcl
0 ðx;XαÞWðtÞ−1 þ ΔA0;

ÂMðt; xÞ ¼ 0; Â0ðt; xÞ ¼ Âcl
0 ðt; xÞ; ð2:19Þ

where “cl” refers to the BPST instanton solution presented
in Sec. II 2 with time-dependent XαðtÞ and the associated
field strength becomes,

FMN ¼ WðtÞFcl
MNWðtÞ−1;

F0M ¼ WðtÞ
�
_Xα ∂

∂Xα A
cl
M −Dcl

MΣ −Dcl
MA

cl
0

�
WðtÞ−1;

F̂0M ¼ F̂cl
0M; F̂MN ¼ F̂cl

MN; ð2:20Þ

where

Dcl
MA0 ¼ ∂MA0 þ i½Acl

M; A0�;
Σ ¼ WðtÞ−1ΔA0WðtÞ − i _WðtÞ−1WðtÞ: ð2:21Þ

Note that ΔA0 must be determined by its equation of
motion from (2.10) and (2.13) which is,

Dcl
M

�
_XN ∂

∂XN Acl
M þ _ρ

∂

∂ρ
Acl
M −Dcl

MΣ
�

¼ 0: ð2:22Þ

The exact solution for Σ can be found in [19,20]. Then the
Lagrangian of the collective modes is given by

S½A� − S½Acl� ¼
Z

dt½LYMðXαÞ þ LCSðXαÞ�

¼
Z

dtLðXαÞ

SYM½A� − SYM½Acl� ¼
Z

dtLYMðXαÞ;

SCS½A� − SCS½Acl� ¼
Z

dtLCSðXαÞ: ð2:23Þ

Therefore we can obtain,

LðXαÞ ¼ −Mþ aNcTr
Z

d3xdz

�
_XNFcl

MN

þ _ρ
∂

∂ρ
AM − _XNDcl

MA
cl
N −Dcl

MΣ
�

2

þOðλ−1Þ

¼ −M0 þ
mX

2
δij _X

i _Xj þLZ þLρ þLρW þOðλ−1Þ;
ð2:24Þ

where

LZ ¼ mZ

2
ð _Z2 − ω2

ZZ
2Þ; Lρ ¼

mρ

2
ð_ρ − ω2

ρρ
2Þ − K

mρρ
2
;

LρW ¼ mρρ
2

2

X
a

Ca½Trð−iW−1 _WtaÞ�2; a ¼ 1; 2…N2
f − 1

ð2:25Þ
and

M0 ¼ 8π2κ; mX ¼ mZ ¼ mρ

2
¼ 8π2κλ−1;

K ¼ 2

5
N2

c; ω2
Z ¼ 4ω2

ρ ¼
2

3
: ð2:26Þ

Note that we have written the formulas in the unitMKK ¼ 1
and the metric of the moduli space can be obtained by
comparing (2.24) with (2.18). Ca’s are constants dependent
on the SUðNfÞ instanton solution. For example, for
Nf ¼ 2, C1;2;3 ¼ 1; for Nf ¼ 3, C1;2;3 ¼ 1; C4;5;6;7 ¼ 1=2
and C8 ¼ 0. Accordingly, the collective modes, as baryon
states, can be obtained by quantizing the Lagrangian
(2.24), i.e., replace straightforwardly the derivative term
by _Xα → − i

mX
∂α. Afterwards, the quantized Hamiltonian

associated to (2.24) is collected as,

H¼M0þHZþHρþHρW;

HZ¼−
1

2mZ
∂
2
Zþ

1

2
mZω

2
ZZ

2;

Hρ¼−
1

2mρ

1

ρη
∂ρðρη∂ρÞþ

1

2
mρω

2
ρρ

2þ K
mρρ

2
;

HρW ¼mρρ
2

2

X
a

Ca½Trð−iW−1 _WtaÞ�2¼ 2

mρρ
2

X
a

CaðJaÞ2;

ð2:27Þ
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where η ¼ N2
f − 1 and Ja’s refer to the operators of the

angular momentum of SUðNfÞ. Therefore, the baryon
spectrum can be obtained by evaluating the eigenvalues
of the Hamiltonian (2.27).

III. CORRRECTIONS OF Oðλ− 1=3Þ TO THE
HOLOGRAPHIC BARYON

As we have outlined that baryon in the D4–D8model can
be identified as the BPST instanton configuration on the
D8-brane as its classical description, let us introduce a
possible correction to the BPST solution presented in
Sec. II as the deformed description of holographic baryon,
then analyze the corrected baryon spectrum in this section.

A. Corrections to the classical solution

We start with equations of motion for the SUðNfÞ gauge
fields A0, AM which are obtained by varying action (2.10)
plus (2.13), as,

DMF0M þ 1

64π2a

ffiffiffiffiffiffi
2

Nf

s
ϵMNPQF̂MNFPQ

þ 1

64π2a
ϵMNPQ

�
FMNFPQ −

1

Nf
TrðFMNFPQÞ

�

þOðλ−1Þ ¼ 0; ð3:1Þ

DNFMN þOðλ−1Þ ¼ 0; ð3:2Þ

∂MF̂0M þ 1

64π2a

ffiffiffiffiffiffi
2

Nf

s
ϵMNPQ

�
TrðFMNFPQÞ þ

1

2
F̂MNF̂PQ

�

þOðλ−1Þ ¼ 0; ð3:3Þ

∂NF̂MN þOðλ−1Þ ¼ 0; ð3:4Þ

where the covariant derivative is defined as DMAN ¼
∂MAN þ i½AM; AN � in our convention. Then let us add
the correction to the spatial part of SUðNfÞ BPST solution
(2.14) first as,

ÃM ¼ Acl
M þ δAM; F̃MN ¼ Fcl

MN þ δFMN; ð3:5Þ

where

δFMN ¼ DMδAN −DNδAM þ i½δAM; δAN �: ð3:6Þ

In this sense, the equation of motion for ÃM takes the same
formula as they are given in (3.2) after replacing DM, FMN

by D̃M, F̃MN , so it leads to D̃NF̃MN ¼ 0 or equivalently,

DNDNδAM − 2i½Fcl
NM; δAN � ¼ 0; ð3:7Þ

where we have imposed

DNFcl
MN ¼ 0; ½DN;DM�δAP ¼ i½FNM; δAP�: ð3:8Þ

Besides, the instanton solution Acl
M in (2.10) is gauged by

DMAcl
M ¼ 0 which must remain as D̃MÃM ¼ 0. Thus we

can obtain the gauge condition for δAM as,

DMδAM ¼ 0: ð3:9Þ

Solve the Eq. (3.7) with (3.9), we can obtain a solution for
δAM as,

δAi ¼
1

2

B
ðξ2 þ ρ2Þ2 δijt

j; δAz ¼ 0; ð3:10Þ

which is an embedding solution of the corrections to the
SUð2Þ case presented in [24]. The constant B must be
determined by minimizing the classical Yang-Mills plus
Chern-Simons action given in (2.10) (2.13).
Next, we need to solve the Uð1Þ part of Eq. (3.3) by

picking up a correction δÂ0 and δÂM. Due to Âcl
M ¼ 0, we

can simply choose

δÂM ¼ 0; ð3:11Þ

which leads to an equation for δÂ0 as,

∂
2
MðÂcl

0 þ δÂ0Þ ¼
1

64π2a

ffiffiffiffiffiffi
2

Nf

s
ϵMNPQTrðF̃MNF̃PQÞ: ð3:12Þ

Using (2.14), (2.15), and (3.10), we can solve (3.12) as,

δÂ0 ¼ −

ffiffiffiffiffiffi
2

Nf

s �
B

32π2a
ðz − ZÞð3ρ2 þ ξ2Þ

ρ2ðρ2 þ ξ2Þ3

þ B2

1536π2a
1

ρ4ðρ2 þ ξ2Þ4 ½9ρ
4 þ ξ4 − 4ðz − ZÞ2ξ2

þ 4ρ2ξ2 − 16ðz − ZÞ2ρ2�

−
B3ðz − ZÞ

10240π2aρ8ðρ2 þ ξ2Þ5 ½11ρ
6 − 3ρ2ξ4

þ ðρ2 þ ξ2Þ2ð9ρ2 þ 2ξ2Þ�
�
: ð3:13Þ

Finally, by imposing (3.10)–(3.13) into (3.1), it leads to an
equation for δA0 as,

D̃MF̃0M þ 1

64π2a
ϵMNPQ

�
F̃MNF̃PQ −

1

Nf
TrðF̃MNF̃PQÞ

�

¼ 0; ð3:14Þ

where its second part is calculated as,
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1

64π2a
ϵMNPQ

�
F̃MNF̃PQ −

1

Nf
TrðF̃MNF̃PQÞ

�

¼
�
−

3ρ4

2π2aðξ2 þ ρ2Þ4 þ
3ðz − ZÞρ2B

2π2aðξ2 þ ρ2Þ5

−
10ðz − ZÞ2 þ 2ξ2 − 3ρ2

32πa2ðξ2 þ ρ2Þ6 B2

−
3ðz − ZÞB3

64π2aðξ2 þ ρ2Þ7
��

P2 −
2

Nf
1Nf

�
: ð3:15Þ

Notice that

D̃MF̃0M ¼ −DMDMAcl
0 þDMδF0M þ i½δAM; Fcl

0M�
þ i½δAM; δF0M�

δF0M ¼ −∂MδA0 þ i½δA0; AM� þ i½δA0; δAM�; ð3:16Þ

so the Eq. (3.14) can be rewritten as,

DMδF0M þ i½δAM; Fcl
0M� þ i½δAM; δF0M�

¼ −
�

3ðz − ZÞρ2B
2π2aðξ2 þ ρ2Þ5 −

10ðz − ZÞ2 þ 2ξ2 − 3ρ2

32πa2ðξ2 þ ρ2Þ6 B2

−
3ðz − ZÞB3

64π2aðξ2 þ ρ2Þ7
��

P2 −
2

Nf
1Nf

�
: ð3:17Þ

It seems very difficult to search for a solution for (3.17) due
to the presence of the commutators, however the instanton

solution presented in Sec. II implies the commutation
relationship ½A0; AM� ¼ 0 and it must remain for Ã0, ÃM

as ½Ã0; ÃM� ¼ 0. Therefore, all commutators should vanish
in (3.17) which leads to the following ansatz for δA0 as,

δA0 ¼ QðxMÞ
�
P2 −

2

Nf
1Nf

�
: ð3:18Þ

In this sense, the Eq. (3.17) can be solved as,

δA0 ¼ −
�

B
64π2a

ðz − ZÞð3ρ2 þ ξ2Þ
ρ2ðρ2 þ ξ2Þ3

þ B2

3072π2a
1

ρ4ðρ2 þ ξ2Þ4
× ½9ρ4 þ ξ4 − 4ðz − ZÞ2ξ2 þ 4ρ2ξ2 − 16ðz − ZÞ2ρ2�

−
B3ðz − ZÞ

20480π2aρ8ðρ2 þ ξ2Þ5

× ½11ρ6 − 3ρ2ξ4 þ ðρ2 þ ξ2Þ2ð9ρ2 þ 2ξ2Þ�
�

×

�
P2 −

2

Nf
1Nf

�
: ð3:19Þ

Afterwards, the classical mass of the soliton with the cor-
rections δA can be evaluated by using S½Acl þ δA� ¼
−
R ðM þ ΔMÞdt, which, after some straightforward by

very messy calculations, is,

M þ ΔM ¼ κ

Z
d3xdzTr

�
1

2
F̃2
MN þ λ−1

�
−
z2

6
F̃2
ij þ z2F̃2

iz − F̃2
0M

�
−
λ−1

2
ðF̂cl

0M þ δF̂0MÞ2
�

−
κ

24π2a
λ−1

Z
d3xdzϵMNPQ

" ffiffiffiffiffiffi
2

Nf

s
3

8
ðÂ0 þ δÂ0ÞTrðF̃MNF̃PQÞ þ

3

4
TrðÃ0F̃MNF̃PQÞ

#
þOðλ−1Þ

¼ 8π2κ þ π2κ

448ρ12
B4 þ 8π2κ

λ

�
ρ2

6
þ Z2

3
þ 1

320π4a2ρ2
−

BZ
12ρ2

þ 3B2

640ρ4
þ B2Z2

80ρ6

−
B2

7 × 212a2π4ρ8
−

B3

1920ρ8
−

B4

35 × 3 × 210ρ10
−

B4Z2

21 × 29ρ12
−

11B4

7 × 33 × 218

�
; ð3:20Þ

and the terms of F̃2
0M;

3
4
TrðÃ0F̃MNF̃PQÞ are absent in [24].

By minimizing (3.20), the constant B is obtained as,

B ¼ 4 ×

�
7

6

�
1=3

Z1=3ρ10=3λ−1=3 þOðλ−2=3Þ: ð3:21Þ

Thus M;ΔM is respectively evaluated as,

M ¼ 8π2κ þ 8π2κ

λ

�
ρ2

6
þ Z2

3
þ 1

320π4a2ρ2

�
;

ΔM ¼ −2π2κλ−4=3
�
7

6

�
1=3

ðρZÞ4=3; ð3:22Þ

which however is independent on Nf in our holographic
setup.

B. Corrections to the baryon spectrum

In this section, picking up the corrections δA to the
BPST solution, let us correct the baryon spectrum with
Nf ¼ 3 for the realistic case.2 As it is outlined in Sec. II, the
Lagrangian of the collective modes can be obtained by

2Our calculation also covers the results in [24] where the
corrected baryon spectrum with Nf ¼ 2 can be reviewed.
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using (2.23), (2.24), thus the total quantized hamiltonian
Htot of the collective modes with the corrections can be
obtained by repeating the calculations in Sec. II while we
need to replace Acl → Acl þ δA;F cl → F cl þ δF with
D0;M → D̃0;M. Resultantly, it leads to

3

Htot ¼ H þ ΔH þOðλ−2=3Þ; ð3:23Þ

where, for Nf ¼ 3,

H ¼ M0 þHZ þHρ

HZ ¼ −
1

2mZ
∂
2
Z þ 1

2
mZω

2
ZZ

2;

Hρ ¼ −
1

2mρ

1

ρ8
∂ρðρ8∂ρÞ þ

1

2
mρω

2
ρρ

2 þ K0

mρρ
2
;

ΔH ¼ ΔM ¼ −2π2κλ−4=3
�
7

6

�
1=3

ðρZÞ4=3: ð3:24Þ

We have taken the ðp; qÞ representation for the two SUð3ÞJ
and SUð3ÞI which refers respectively to the rotation and
flavor (isospin) symmetry in the Hamiltonian as,

X8
a¼1

ðJaÞ2 ¼
1

3
½p2 þ q2 þ qpþ 3ðpþ qÞ�;

X3
a¼1

ðJaÞ2 ¼ jðjþ 1Þ;

K0 ¼ N2
c

15
þ 4

3
½p2 þ q2 þ qpþ 3ðpþ qÞ�− 2jðjþ 1Þ:

ð3:25Þ

Besides, for Nf ¼ 3, we note that the baryon states with
right spins should be selected by the constraint of the
hypercharge,

J8 ¼
Nc

2
ffiffiffi
3

p ; ð3:26Þ

from the Chern-Simons term. However the Chern-Simons
term given in (2.5) is unable to reach this goal since LCS in
(2.23) would be vanished [20]. To figure out this problem,
[20,48] proposed a new Chern-Simons term as,

SnewCS ¼ SCS þ
1

10

Z
N5

Trðh−1dhÞ5 þ
Z
∂M5

α4ðdh;AÞ;

ð3:27Þ

whereSCS refers to theChern-Simons termgiven in (2.5),h is
a UðNfÞ valued function and the 4-form α4 is given as [48],

α4ðdh;AÞ ¼ 1

2
Tr

�
dhðA3 −AF − FAÞ

þ 1

2
dhAdhAþ dh3A

�
: ð3:28Þ

Here, N5 denotes a 5-dimensional manifold whose bounda-
ries satisfies ∂N5 ¼ ∂M5 ¼ M4;z¼þ∞ −M4;z¼−∞ with the
asymptotics of the gauge field on the D8-branes as,

Ajz→�∞ ¼ h�ðdþAÞh�−1; hj
∂M5

¼ ðhþ; h−Þ; ð3:29Þ

where A is assumed to be regular on M5 and produces no-
boundary contributions. Accordingly, the constraint of the
hypercharge (3.26) could be produced with the new Chern-
Simons term (3.27).
Afterwards, the spectrum of the total Hamiltonian Htot

can be obtained approximately by solving the eigenequa-
tion of H with a perturbation ΔH given in (3.24) and the
constraint (3.26). The eigenfunctions and values of HZ are
nothing but the eigenfunctions and values of harmonic
oscillator while the eigenfunctions of Hρ given by ψðρÞ
could be solved as,

ψðρÞ ¼ e−v=2vβγðvÞ; v ¼ mρωρρ
2;

β ¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðη − 1Þ2 þ 8K0

q
−
1

4
ðη − 1Þ; ð3:30Þ

where γðvÞ is hypergeometrical function satisfying the
following hypergeometrical differential equation,

�
v
d2

dv2
þ
�
2β þ ηþ 1

2
− v

�
d
dv

þ
�
Eρ

2ωρ
− β −

ηþ 1

4

��
γðvÞ ¼ 0: ð3:31Þ

So the eigenvalue Eρ is solved as

Eρ ¼ ωρ

�
2nρ þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðη − 1Þ2 þ 8K0

q
þ 1

�
: ð3:32Þ

Therefore the total spectrum E of H is given by (in the unit
of MKK)

E ¼ 8π2κ þ ωρ

�
2nρ þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðη − 1Þ2 þ 8K0

q
þ 1

�

þ ωZ

�
nZ þ 1

2

�
; nρ; nZ ¼ 0; 1; 2; 3… ð3:33Þ

And using the standard method in quantum mechanics, the
leading order correction to the spectrum (3.33) is given by

ΔE ¼ hΔHi; ð3:34Þ
3By imposing our correction, ωρ may also contain a correction

of Oðλ−5=3Þ which has been neglected.
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which leads to the approximated spectrum of Htot. To
simply compare our corrected baryon spectrum with the
realistic QCD, we could setNc ¼ 3, so the constraint (3.26)
requires that ðp; qÞ must satisfy

pþ 2q ¼ 3 × ðintegerÞ: ð3:35Þ

Therefore the allowed states with smaller ðp; qÞ, j and K0
are given as,

ðp; qÞ ¼ ð1; 1Þ; j ¼ 1

2
; K0 ¼ 111

10
; ðoctetÞ

ðp; qÞ ¼ ð3; 0Þ; j ¼ 3

2
; K0 ¼ 171

10
; ðdecupletÞ

ðp; qÞ ¼ ð0; 3Þ; j ¼ 1

2
; K0 ¼ 231

10
; ðantidecupletÞ: ð3:36Þ

Keeping above in mind, while the unit MKK is not
undetermined in this model, it is possible to compare the
experimental data with our holographic baryon spectrum
as Eþ ΔE. In order to fit our baryon spectrum to the
experimental data, we additionally notice that, on the other
hand, the D4–D8 model is also able to give the meson
spectrum which requests for the parameters MKK ¼
949 MeV, λ ¼ 16.6 (the only parameters in our theory)
for a realistic matching [9]. Hence let us employ the same
choice of MKK; λ, as the meson data in this model, for the
lowest octet and the decuplet or antidecuplet baryons
ðnρ; nZÞ ¼ ð0; 0Þ, then the mass difference is evaluated
with our corrections as,

M10 −M8 ¼ 299.6 MeV;

M10� −M8 ¼ 564.7 MeV; ð3:37Þ

which is very close to the experimental data

Mexp
10 −Mexp

8 ≃ 292 MeV;

Mexp
10� −Mexp

8 ≃ 590.7 MeV; ð3:38Þ

from the Particle Data Group (PDG) [49] and we have used
the Θþ mass of 1530 MeV as the lowest antidecuplet
baryon. As a comparison, we also list the mass difference of
the lowest octet and the decuplet or antidecuplet baryons
for same MKK; λ without our Oðλ−1=3Þ corrections as,

M10 −M8 ¼ 366.6 MeV;

M10� −M8 ¼ 688.0 MeV; ð3:39Þ

which is coincident with [20] while it is quite far from the
experimental data (3.38). In this sense, we believe our
correction is reasonable to the framework of D4–D8
approach since both meson and baryon spectrum could
be fit well.

IV. THE HEAVY FLAVOR

In this section, we will first outline how to include the
heavy flavor in the D4–D8 model by employing the Higgs
mechanism in string theory. Then let us obtain the heavy-
light baryon spectrum with our corrections to the BPST
instanton solution.

A. Higgs mechanism and the massive flavor
in the D4–D8 model

Due to the vanished minimized size of the 4-8 string,4

the fundamental quark in the D4–D8 model is massless [9].
So it is very necessary to include the heavy flavor in the
D4–D8 model in order to describe quarks of heavy flavor.

FIG. 2. Left: Higgs mechanism in string theory. A stack of N1 þ N2 coincident D-branes move separately to become two stacks of N1

and N2 coincident D-branes. The UðN1 þ N2Þ gauge symmetry on the worldvolume breaks down into UðN1 ×UðN2Þ. The multiplets
produced by the open string becomes massive. Right: Higgs mechanism in the D4–D8 model. The one pair of the heavy-avor D8=D8-
branes are denoted by red which are separated from the other Nf pairs of the coincident D8=D8-branes (as light avors) denoted by blue.
The heavy-light string is denoted by green. The multiplets produced by the heavy-light string becomes massive thus they can be identied
as heavy-light mesons.

4“4-8 string” refers to the open string connecting D4- and D8-
branes.
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To achieve this goal, let us follow the setup in [50,51] in
which the Higgs mechanism in string theory is
employed. Specifically, we can consider the configura-
tion of two stacks of the separated D-branes with an
open string connected them as it is illustrated in Fig. 2.
In this configuration, the UðN1 þ N2Þ symmetry on the
world volume breaks down into UðN1Þ ×UðN2Þ where
N1, N2 refers to the number of the coincident D-branes
in each stack. Thus the transverse modes of the D-brane
acquire a nonzero vacuum expectation value (VEV)
which is recognized as the separation of the D-branes.
Therefore the multiplets produced by the open string
connected the separated D-branes will be massive due
to the VEV of the transverse modes [52,53], as the
Higgs mechanism in the standard model of the particle
physics.
Employing this configuration, another pair of D8=D8-

branes as heavy flavor brane separated from the Nf

coincident D8=D8-branes with an open string (heavy-
light string) stretched between them can be introduced
into the D4–D8 model. And this configuration can be
identified as N1 ¼ Nf; N2 ¼ 1 for a stack of D8=D8-
branes as it is illustrated in Fig. 2, so that the gauge
symmetry UðNf þ 1Þ on the D8=D8-branes breaks down
to UðNfÞ × Uð1Þ. Since the 8-8 string in the D4–D8
model is identified as meson, the massive multiplets
produced by the open string (heavy-light string) stretched
between the flavor branes is identified as the heavy-
light meson. Besides, as our concern is to include the
heavy flavor in baryon, we require that one endpoint of
the heavy-light string is located at U ¼ UKK where the
baryon vertex lives in this model. Afterwards, the
effective Lagrangian of the collective modes with heavy
flavor can be obtained by following the steps in Sec. II.
The notable derivation here is the Yang-Mills gauge field
and its field strength now becomes an ðNf þ 1Þ ×
ðNf þ 1Þ matrix-valued field as,5

Aα → Aα ¼
�
Aα Φα

Φ†
α 0

�
;

F αβ → Fαβ ¼
�F αβ þ iααβ fαβ

f†αβ iβαβ

�
; ð4:1Þ

where Aα, F αβ are Nf × Nf matrix-valued fields as we
have specified in the previous sections. Φα is an Nf × 1

matrix-valued field which is the multiplet created by the
heavy-light string, i.e., the heavy-light meson field and6

ααβ ¼ 2Φ½αΦ
†
β�; βαβ ¼ 2Φ†

½αΦβ�;

fαβ ¼ 2∂½αΦβ� þ 2iA½αΦβ� ≡ 2D½αΦβ�: ð4:2Þ

For non-Abelian excitation on the D-brane, the standard
DBI action in (2.4) should include the dynamics of the
transverse modes of the D-brane, which is given as (up to
quadratic term),

S½φI� ¼ −T8

ð2πα0Þ2
4

Z
d9x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
e−ϕTrf2Dαφ

IDαφ
I

þ ½φI;φJ�2g; ð4:3Þ

where the index I, J runs over the transverse space of the
D-brane. For the setup in the D4–D8 model with heavy
flavor, φI is an ðNf þ 1Þ × ðNf þ 1Þ matrix-valued field
with the covariant derivative Dαφ

I ¼ ∂αφ
I þ i½Aα;φI�

and the transverse coordinate of the D8-brane consists
only of x4 so that ð2πα0ÞφI → x4 is the only T-dualitied
transverse coordinate of the D8-brane. According to
[52,53], the moduli solution by the extrema of the
potential contribution can be given by ½x4; ½x4; x4�� ¼ 0,
thus the moduli solution of x4 for Nf D8=D8-branes
separated from one pair of heavy-flavored D8=D8-branes
can be chosen as,

x4

2πls
¼

�− v
Nf

1Nf
0

0 v

�
; ð4:4Þ

where v refers to the VEV of x4, which is proportional to
the separation of the D8-branes in Fig. 2. Imposing (4.4)
into (4.3), we can obtain a mass term for the heavy-light
field Φα as [54],

S½x4� ¼ −T̃v2
ðNf þ 1Þ2

N2
f

Z
d4xdzU2ðzÞ

× ðgzzΦ†
zΦz þ gμνΦ†

μΦνÞ; ð4:5Þ

where T̃ ¼ 2
3
T8R3=2U1=2

KKΩ4g−1s . Therefore it is clear that
if the heavy-flavored D8=D8-brane is coincident to the
Nf D8=D8-branes, i.e., v ¼ 0, the heavy-light field Φα

becomes massless so that the UðN1 þ N2Þ symmetry
becomes restored, which means the action for x4 (4.3)
would be absent in the DBI action given in (2.4), as it is
in the original model.

B. Corrections to the heavy-light baryon spectrum

Impose the replacement (4.1) into (2.10), and (2.13), one
can obtain the effective action for the heavy-light field Φα

in the large λ limit as (up to quadratic order of Φα),

5The last element in Aα can be gauged to be zero by the gauge
symmetry.

6In our notation, the index in the square brackets is ranked
as T ½αβ� ¼ 1

2!
ðTαβ − TβαÞ. And the gauge field is Hermitian

A†
α ¼ Aα.
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LH½Φα� ¼ aNcλL0½Φα� þ aNcL1½Φα� þLCS½Φα� þOðλ−1Þ;
L0½Φα� ¼ −ðDMΦN −DNΦMÞ†ðDMΦN −DNΦMÞ

þ 2iΦ†
MFMNΦN;

L1½Φα� ¼ 2ðD0ΦM −DMΦ0Þ†ðD0ΦM −DMΦ0Þ
− 2iΦ†

0F
0MΦM − 2iΦ†

MF
M0Φ0

þ z2

3
ðDiΦj −DjΦiÞ†ðDiΦj −DjΦiÞ

− 2z2ðDiΦz −DzΦiÞ†ðDiΦz −DzΦiÞ

−
2i
3
z2Φ†

iF ijΦj − 2m2
HΦ

†
MΦM; ð4:6Þ

and the CS term is

LCS½Φα� ¼ −
Nc

24π2
ðdΦ†AdΦþ dΦ†dAΦþΦ†dAdΦÞ

þ iNc

16π2
ðdΦ†A2ΦþΦ†A2dΦ

þΦ†AdAΦþΦ†dAAΦÞ

þ 5Nc

48π2
Φ†A3ΦþOðΦ4;AÞ; ð4:7Þ

where the parameter mH is the energy scale of the heavy
flavor obtained by normalizing the mass term in (4.6) as

mH ¼ 2

3
ffiffi
3

p Nfþ1

Nf
v and the associated equations of motion are

obtained as,

DMDMΦN −DNDMΦM þ 2iFMNΦM þOðλ−1Þ ¼ 0;

DMðD0ΦM −DMΦ0Þ − iF 0MΦM

−
1

64π2a
ϵMNPQKMNPQ þOðλ−1Þ ¼ 0; ð4:8Þ

where

KMNPQ ¼ i∂MAN∂PΦQ −AMAN∂PΦQ

− ∂MANAPΦQ −
5i
6
AMANAPΦQ: ð4:9Þ

The above equation of motion refers to the static wave
function of heavy baryon which can be solved as
Φα ¼ e�imHtϕαðxÞ7 as,

ϕ0 ¼ −
1

1024aπ2

�
25ρ

2ðx2 þ ρ2Þ5=2 þ
7

ρðx2 þ ρ2Þ3=2
�
χ;

ϕM ¼ ρ

ðx2 þ ρ2Þ3=2 σMχ; ð4:10Þ

where χ refers to the SUðNfÞ spinor independent on x and
σM is the embedded Pauli matrices as σM=2 ¼ ðti;−1Nf

Þ.

Then follow the steps in Sec. II and [19,22,23] with our
corrections of the BPST solution, we could take the limit
mH → ∞ to display mostly the contribution of the heavy
flavor and simplify the calculation. So in the double limit
λ; mH → ∞, the quantized Hamiltonian of the collective
modes with heavy flavor is finally calculated with (4.10) as,

HHL ¼ HðKÞ þ ðNQ − NQ̄ÞmH þ ΔH þOðλ−2=3Þ;

K ¼ 2N2
c

5

�
1 −

5
ffiffiffi
6

p þ 10

6

NQ − NQ̄

Nc
þ 65

36

ðNQ − NQ̄Þ2
N2

c

�

−
N2

c

3

�
1 −

NQ − NQ̄

Nc

�
2

þ 4

3
ðp2 þ q2 þ pqÞ þ 4ðpþ qÞ − 2jðjþ 1Þ;

ð4:11Þ

where NQ;NQ̄, HðKÞ refers respectively to the numbers of
the heavy flavor, antiheavy flavor and the HamiltonianH in
(3.24) by replacing K0 to K. Note that we have expressed
all the formulas in the unit of MKK which means mH has
been rescaled dimensionlessly as mH → mHMKK . Since
the eigenfunctions and spectrum can be obtained by
replacing K0 to K in (3.30) (3.33), the corrections to the
heavy-light spectrum can also be evaluated by using the
standard method of quantum mechanics with ΔH as a
perturbation.
Keeping these in hand, let us attempt to fit the exper-

imental data of the heavy-light baryon. The lowest baryons
with one heavy quark are characterized by nρ ¼ 0; 1,
NQ ¼ 1, NQ̄ ¼ 0 and ðp; q; jÞ ¼ ð0; 1; 0Þ for 3̄ represen-
tation, ðp; q; jÞ ¼ ð2; 0; 1Þ for 6 representation due to their
spin-1=2. The spin and parity of 3̄ representation is 1

2
þ, so

we can identify them as Λ;Ξð3̄Þ. The spin and parity of 6
representation is J ¼ 1

2
; 3
2
, so we can identify them as

Σ;Ξð6Þ;Ω or Σ�;Ξð6Þ;Ω. The parity of the baryon state
can be identified as ð−1ÞnZ corresponding to the parity of
the eigenfunction of HZ in the holographic direction.
Therefore, fitting the lowest 3̄ representation by using
the data of Particle Data Group Mexp

Λþ
c
≃ 2286 MeV, our

TABLE I. Mass spectrum of the lowest baryons with a single
heavy flavor NQ ¼ 1, NQ̄ ¼ 0. The values of M and M̄ are
computed by the D4–D8 model with and without our Oðλ1−=3Þ
corrections respectively while Mexp refers to the corresponding
experimental data. The parameter is set as Nc ¼ Nf ¼ 3 for
realistic QCD andMKK ¼ 949 MeV, λ ¼ 16.6 as the meson data
in the D4–D8 model.

(MeV) Λþ
c ð3̄Þ Ξþ

c ð3̄Þ Σþ
c ð6Þ Ξ0þ

c ð6Þ Ω0
c ð6Þ

M̄ 2286 3836 2603 4153 4928
M 2286 2451 2541 2567 2953
Mexp 2286 2468 2453 2576 2697

7The solution for Φα may contain a contribution of Oðλ−2=3Þ
when we use A ¼ Acl þ δA. So it has been neglected since our
concern is the correction of Oðλ−1=3Þ.
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calculation reveals the mass of the lowest 3̄ and 6 baryon
with our corrections is very closed to the experimental data
as it is illustrated in Table I. As a comparison, we also list
the heavy-light baryon spectrumwhich is evaluated without
our Oðλ1−=3Þ corrections as the values of M̄ in Table I. The
notable point here is, our corrections greatly improve the
heavy-light baryon spectrum when the meson data in this
model as MKK ¼ 949 MeV, λ ¼ 16.6 [9,10] is employed,
so that the framework of the D4–D8 model can fit both the
meson and baryon spectra to the experimental data, thus this
model may become more consistent with our corrections.

V. THE INTERACTION OF GLUEBALL
AND BARYONIC MATTERS

In this section, let us include the interaction of glueball
and baryonic matters in the D4–D8 model with our
corrections. We first outline the identification of glueball
as the gravitational polarization in the bulk, then specify the
interaction of glueball and baryonic matters with our
corrections to the BPST solution.

A. Glueball as the gravitational polarization

According to gauge-gravity, the glueball field can be
identified as the gravitational fluctuation in the D4–D8
model [25–29]. The basic idea is that as the bulk gravi-
tational fluctuation is sourced by the operators in the dual
field theory and the background geometry is produced by
Nc D4-branes as colors, so the mass spectrum of the
operators can be obtained by evaluating the pole of its
correlation functions. Since the bulk geometry is dual to the
pure Yang-Mills theory in holography, the operator, which
sources the bulk gravitational fluctuation, must relate to the
energy-momentum tensor of Yang-Mills theory thus it is
gauge invariant. So this operator can be naturally identified
as glueball and its spectrum is therefore identified as the
mass of glueball in this model.
Recall the relation of the type IIA supergravity with Nc

D4-branes solution and M-theory on AdS7 × S4 [4], the
generic formulas of the gravitational fluctuations in the
D4–D8 model can be chosen as the 11d gravitational
polarization on AdS7 given by [26–28],

δG44 ¼ −
r2

L2
fðrÞHGðrÞGðxÞ;

δGμν ¼
r2

L2
HGðrÞ

�
1

4
ημν −

�
1

4
þ 3r6KK
5r6 − 2r6KK

�
∂μ∂ν

m2
G

�
GðxÞ;

δG11;11 ¼
r2

4L2
HGðrÞGðxÞ;

δGrr ¼ −
L2

r2
1

fðrÞ
3r6KK

5r6 − 2r6KK
HGðrÞGðxÞ;

δGrμ ¼
90r7r6KK

m2
GL

2ð5r6 − 2r6KKÞ2
HGðrÞ∂μGðxÞ; ð5:1Þ

where x refers to the coordinates x0;1;2;3 in 4d spacetime, r
is the radial coordinate in the holographic direction, mG is
the mass of the glueball. The 11d variables are related to the
type IIA supergravity solution (2.1) by,

L ¼ 2R; U ¼ r2

2L
; 1þ z2 ¼ r6

r6KK
¼ U3

UKK3

: ð5:2Þ

Perform the dimension reduction, the 10d metric (2.1)
involving the 11d gravitational polarization (5.1) is given as,

gμν ¼
r3

L3

��
1þ L2

2r2
δG11;11

�
ημνþ

L2

r2
δGμν

�
;

g44 ¼
r3f
L3

�
1þ L2

2r2
δG11;11þ

L2

r2f
δG44

�
;

grr ¼
L
rf

�
1þ L2

2r2
δG11;11þ

r2f
L2

δGrr

�
;

grμ ¼
r
L
δGrμ; gΩΩ ¼ r

L

�
L
2

�
2
�
1þ L2

2r2
δG11;11

�
; ð5:3Þ

with the dilaton,

e4ϕ=3 ¼ g4=3s
r2

L2

�
1þ L2

r2
δG11;11

�
: ð5:4Þ

Here and HGðrÞ is determined by the eigenequation

1

r3
d
dr

�
rðr6 − r6KKÞ

d
dr

HGðrÞ
�

þ
�

432r2r12KK
ð5r6 − 2r6KKÞ2

þ L4m2
G

�
HGðrÞ ¼ 0; ð5:5Þ

wheremG is the eigenvalue. Impose (5.1) and (5.5) to the 11d
gravity action for AdS7 × S4, we can obtain

S11D ¼ 1

2κ211

�
L
2

�
4

Ω4

Z
d7x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detG

p �
R11D þ 30

L2

�

¼ 1

2

Z
d4x½ð∂μGÞ2 þm2

GG
2�; ð5:6Þ

thus GðxÞ can be identified as the massive scalar glueball
field in this model, specifically, it refers to the lowest state
of JPC ¼ 0þþ. The eigenequation is numerically solve in
[26–28] which leads to the eigenvalues of the glueball in
holography as it is given in Table II.

TABLE II. The glueball mass spectrum in the D4–D8 model in
the unit of MKK ¼ 1.

Excitation n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4

Glueball mass mG 0.901 2.285 3.240 4.149 5.041
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B. Time-dependent perturbation
for the collective modes

In order to include the interaction of glueball and
baryonic matters, we need to derive Hamiltonian of the
collective modes with the gravitational fluctuations and the
steps we should follow has been given in Sec. II. Before
this, we need to obtain the exact formula of the function
HGðrÞ which is determined by (5.5). Fortunately, HGðrÞ
can be solved analytically in the large λ expansion
satisfying,

H00
GðzÞ þ

�
1

z
þ 2z

λ

�
H0

GðzÞ þ
�
16

3λ
þm2

G

λ

�
HGðzÞ

þOðλ−2Þ ¼ 0; ð5:7Þ

where we have expressed the formulas on z coordinate
(2.7), imposed the rescaling (2.9) and rescaled mG dimen-
sionlessly as mG → mGMKK . Regularly, the solution to
Eq. (5.7) is obtained as a hypergeometric function. In the
large λ, we have

HGðzÞ ¼
C

MKK

�
1 −

16þ 3mG

12λ
z2 þOðλ−2Þ

�
; ð5:8Þ

where C is an integration constant. As a bulk fluctuation,
the constant C should satisfy C ≪ 1. Picking up the
gravitational fluctuations (5.3) (5.4), in the large λ expan-
sion, the dilaton and the inverse of the induced metric on
the D8-branes with gravitational fluctuations are calculated
with the rescaling (2.9) as [up to Oðλ−1Þ],

gμν ¼ 27

8M3
KKR

3

�
1 −

z2

2λ

�
ημν þ C

M3
KKR

3

�
135

32m2
G

∂
μ
∂
νGðxÞ
M2

KK
−
81

64
GðxÞημν

þ 27ð22þ 3mGÞGðxÞ
256

z2

λ
ημν −

45ð38þ 3mGÞ
128m2

G

∂
μ
∂
νGðxÞ
M2

KK

z2

λ

�
;

gzz ¼ 27

8MKKR3

�
1þ 5z2

6λ

�
þ C
MKKR3

�
189

64
−
9ð202þ 21mGÞ

256

z2

λ

�
GðxÞ;

gμz ¼ −
45

4m2
GM

2
KKR

3

∂
μGðxÞ
MKK

zffiffiffi
λ

p C;

e−ϕ ¼ 3

8

ffiffiffi
3

2

r �
4 −

z2

λ

�
g−1s M3=2

KKR
3=2 þ 3

128

ffiffiffi
3

2

r �
−12þ 19þ 3mG

λ
z2
�
g−1s M3=2

KKR
3=2; ð5:9Þ

where we have additionally rescaled GðxÞ as GðxÞ →
GðxÞMKK so that GðxÞ is dimensionless glueball field in
the formulas. Note that GðxÞ satisfies the equation of
motion from action (5.6) which accordingly refers to the
wave function for a free glueball as,

GðxÞ ¼ 1

2
ðe−ikμxμ þ eikμx

μÞ; ð5:10Þ

thus it should remain under the rescaling (2.9), and so does
∂μGðxÞ, ∂μ∂νGðxÞ since the derivatives relate to the
momentum kμ of the glueball.
Then we insert the metric with the fluctuation (5.3) into

the DBI action (2.4) up to quadratic term as,

SDBI ¼ −T8

Z
D8=D8

d9xe−ϕSTr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ðgαβ þ 2πα0F αβÞ

q

¼ −T8Ω4

Z
d5xe−ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det gab

p
g2ΩΩ

×

�
1þ 1

4
ð2πα0Þ2F abF ab þ…

�
; ð5:11Þ

where the index a; b runs over 0; 1; 2; 3; z. By imposing the
rescaling (2.9), the effectiveYang-Mills action is obtained as,

SYM ¼ −
1

4
ð2πα0Þ2T8Ω4

Z
d5xe−ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det gab

p
g2ΩΩF abF ab

→ −
1

4
ð2πα0Þ2T8Ω4

Z
d5xe−ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det gab

p
g2ΩΩ

× ð2λ−1F 0MF 0Ng00gMN þ 2λ−1F 0NFM0g0MgN0

þ 4λ−1=2F 0KFMNg0MgKN þ FMNFKLgMKgNLÞ;
ð5:12Þ

where the index M;N;K; L runs over 1; 2; 3; z. The metric
presented in (5.12) has been given in (5.3) and (5.9). Sowhile
the kinetic terms for the collective modes remain as they are
given in Sec. II, the potential for the collective modes
depending on the classical mass M of the soliton would
be obtained from the onshell action (5.12) by recalling
Sonshell ¼ −

R
Msolitondt. Note the Chern-Simons term in

(2.13) is independent on the metric, thus it is decoupled to
metric fluctuations (5.1).Hence the classical solitonmass can
be obtained after the metric, dilaton with the fluctuations
(5.3) (5.9) and the instanton solution Acl, δA presented in
Sec. III are all plugged into (5.12). Although this calculation
is very straightforward, the final result would be tediously
messy. In order to get a compact result, let us consider the
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situation that the glueball is static or we are in the rest
frame of the glueball. In this sense, the momentum of the
glueball becomes kμ ¼ ðmG; 0Þ (in the unit MKK ¼ 1),
so that we have ∂0 → −imG, ∂i → 0, GðxÞ ¼ GðtÞ ¼
ðe−imGt þ eimGtÞ=2. Then (5.12) can be simplified in the
leading order of δgab, as

SYM ¼ SonshellYM þ δSonshellYM ;

where SonshellYM refers to the action in (2.10) and δSonshellYM is the
leading-order coupling term of the gauge field and bulk
fluctuations calculated as,

δSonshellYM ¼ Cκ
Z

d4xdz

��
11

32
F̃2
MN −

5

4
F̃2
iz þ

29

16λ
F̃2
0M

−
5

4λ
F̃2
0i þ

�
89

48
þ 9

64
mG

�
z2

λ
F̃2
iz

−
�
55

96
þ 11

128
mG

�
z2

λ
F̃2
ij þ

20z
3m2

Gλ
F0iFzi∂0

�
GðtÞ

þ Cκ
�
9

32λ
ðF̂cl

0M þ δF0MÞ2 þ
5

8λ
ðF̂cl

0z þ δF0zÞ2
�

×GðtÞ
�
: ð5:13Þ

After the integrating over xi; z and using δSonshellYM ¼
−
R
ΔMLdt, we can obtain a fluctuation of the soliton

mass as,

ΔML ¼ −Cκπ2GðtÞ
��

1

2
þ 11

24

�
7

6

�
1=3

ðρZÞ4=3λ−4=3

−
31=372=3

25=3
ðZρÞ2=3λ−2=3

�

þ λ−1
�
17

12
−

1

16
mG

�
ð2Z2 þ ρ2Þ þ 7

320a2π4ρ2λ

�
;

ð5:14Þ

which implies a time-dependent termΔHLðtÞ ¼ ΔMLðtÞ in
Hamiltonian (2.27) would be presented when the bulk
gravitational fluctuations are taken into account. Here we
use subscript “L” in ΔMLðtÞ to refer to that there is no
contribution of heavy flavor to ΔMLðtÞ. As the bulk
gravitational fluctuations are identified as the glueball field,
the interaction of glueball and baryonic matters can be
naturally included once the time-dependent term ΔHLðtÞ
is added to (2.27). And the decay of the baryonic matters
involving glueball can be therefore evaluated with this time-
dependent Hamiltonian.
Besides, we can further include the contributions of heavy

flavor by using the replacement (4.1). In this sense, taking the
double limit λ; mH → ∞, the variation δSonshellYM correspond-
ing to the fluctuation of the soliton is calculated as,

δSonshellYM ¼ −
Z

dt½ΔML þ ΔMH þOðm0
HÞ�;

ΔMHðtÞ ¼
5

2λ
π2κm2

HGðtÞ
�
1 −

1

8mHaπ2ρ2

�
C; ð5:15Þ

where we have used subscript “H” inΔMHðtÞ to refer to the
contribution of heavy flavor. Since the metric fluctuation
(5.1) is taken into account, there is another contribution to the
fluctuation of the soliton mass which comes from the action
(4.3) for the transverse modes of the D8-brane as,

δS½x4� ¼ −T8

ð2πα0Þ2
4

Ω4

×
Z

d5x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det gD8

p
e−ϕðδgαβ − δϕgαβÞΦ†

αΦβ

¼ −
16

27
m2

Hκλ
−1C

Z
d4xdz

×

�
−
81

64
þ 27ð22þ 3mGÞ

256

z2

λ

�
GðtÞδijϕ†

iϕjþ

−
16

27
m2

Hκλ
−1C

Z
d4xdz

×

�
189

64
−
9ð202þ 21mGÞ

256

z2

λ

�
GðtÞϕ†

zϕz; ð5:16Þ

by picking up (4.10). So the mass fluctuation from δS½x4� ¼
−
R
ΔMx4dt is exactly computed with (5.9) as,

ΔMx4ðtÞ ¼ −
5

2λ
π2κm2

HGðtÞC þOðλ−1Þ: ð5:17Þ

Thus the total contributionΔMHLðtÞ involving heavy flavor
to the mass fluctuation is

ΔMHLðtÞ ¼ ΔMx4ðtÞ þ ΔMHðtÞ ¼ −
5

16aρ2
mHκλ

−1GðtÞ:

ð5:18Þ

Keeping the Hamiltonian for baryonic matters (2.27) with
our corrections (3.22) (4.11) in hand, we can compute the
transition amplitude with the time-dependent perturbed
Hamiltonian

ΔHðtÞ ¼ ΔMLðtÞ þ ΔMHLðtÞ: ð5:19Þ

in our system in order to evaluate the decay of the baryon
involving glueball.

C. Decay of baryonic meson involving the glueball

In this section, let us evaluate the decay of the baryonic
matters involving the glueball quantitatively with this
model. To begin with, in experiment, there are some
evidences that glueball may form in the decays of some
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heavy-light mesons [55,56] which behaves like a baryon.
Accordingly, let us consider Nf ¼ 2 for the case of
baryonic heavy-light meson (with no antiheavy flavor).
So the Hamiltonian in (4.11) involving one heavy flavor
becomes,

HHL ¼ HNf¼2ðKÞ þ ðNQ − NQ̄ÞmH þ ΔH

þOðλ−2=3Þ;
HNf¼2ðKÞ ¼ M0 þH

Nf¼2
ρ ðQÞ þHZ þ ΔH;

H
Nf¼2
ρ ðQÞ ¼ −

1

2mρ

�
1

ρ3
∂ðρ3∂ρÞ þ

1

ρ2
ð∇2

S3 − 2QÞ
�

þ 1

2
mρω

2
ρρ

2;

HZ ¼ −
1

2mZ
∂
2
Z þ 1

2
mZω

2
ZZ

2;

ΔH ¼ −2π2κλ−4=3
�
7

6

�
1=3

ðρZÞ4=3; ð5:20Þ

where

Q ¼ Nc

40π2a
þ NQ

8π2a

�
NQ

3Nc
−
3

4

�
: ð5:21Þ

The eigenfunctions and energy spectrum of H
Nf¼2
ρ ðQÞ can

be solve as

ψðρÞ ¼ e−
mρωρ

2
ρ2ρl̃Fð−nρ; l̃þ 2;mρωρρ

2ÞTðlÞðS3Þ;

Eðl; nρ; nZÞ ¼ 8π2κ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1Þ2

6
þ 640

3
a2π2Q2

r

þ 2ðnρ þ nZÞ þ 2ffiffiffi
6

p ; ð5:22Þ

where Fð−nρ; l̃þ 2;mρωρρ
2Þ is the hypergeometrical

function, TðlÞðS3Þ is the spherical harmonic function on

S3 and l̃ ¼ −1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1Þ2 þ 2mρQ

q
. Note that l is the

quantum number of the angular momentum. The eigen-
functions and energy spectrum of HNf¼2ðKÞ can be
obtained approximately by using ΔH as perturbation.
Afterwards, the decay rate of baryonic matters can be
obtained by using the standard technique in quantum
mechanics as,

Γi→f ¼ jhfjΔHðtÞjiij2δðEf − Ei �mGÞ: ð5:23Þ

with the time-dependent term (5.19) in which the glueball
field is involved.
To close this section, let us attempt to fit the parameters

to the realistic QCD with Nc ¼ 3. For the baryonic meson,
we set NQ ¼ 1; Nf ¼ 2; l ¼ 0; 1; nZ ¼ 1; 3; 5…. due to
JP ¼ 0−; 1− of the heavy-light meson. Then the mass

difference of the lowest heavy-light meson states with
distinct angular momentum is evaluated with our correc-
tions as (nρ ¼ 0; nZ ¼ 1),

Ml¼1 −Ml¼0 ¼ 0.171MKK ¼ 162 MeV; ð5:24Þ

where the meson data MKK ¼ 949 MeV, λ ¼ 16.6 is also
picked up. In experiment, the lowest heavy-light meson
states with distinct angular momentum are D�0, D0 whose
mass difference is

MD�0 −MD0 ¼ 141 MeV; ð5:25Þ

which is close to our (5.24). Besides, we find the various
decay processes among the lowest baryonic meson states
(l ¼ 0; nZ ¼ 1), e.g.,

1; jnρ ¼ 3i → jnρ ¼ 1i þ jmðn¼0Þ
G i;

2; jnρ ¼ 5i → jnρ ¼ 0i þ jmðn¼1Þ
G i; ð5:26Þ

satisfy the constraint (5.23) and the associated decay rates
are computed in the limit mH → ∞ as,

Γ1=MKK ¼ 0.008Cm2
H;

Γ2=MKK ¼ 0.003Cm2
H: ð5:27Þ

The parameter mH can be chosen as mH ¼ 0.129 in order
to fit the mass of D�0 in the heavy-light meson spec-
trum and the value of constant C can be chosen as it is

suggested in [26], i.e., C ¼ 144.545 for jmðn¼0Þ
G i; C ¼

114.871 for jmðn¼1Þ
G i. In this sense, the lowest decay rates

can be evaluated as Γ1 ¼ 0.002MKK , Γ1 ¼ 0.004MKK .
Altogether, we are able to describe the decay of heavy-
light meson involving glueball in this holographic model
while the exact property of glueball is less clear in
experiment.

VI. SUMMARY AND DISCUSSION

In this work, we first derive the Oðλ−1=3Þ corrections to
the BPST instanton solution on the flavor brane in the D4–
D8 model, which is a generalization of the SUð2Þ case in
[24] in the strong coupling limit. The corrections are
obtained by solving the equations of motion for the gauge
field on the D8-branes with the same gauge condition for
Acl, and minimizing the classical soliton mass. Then
keeping our corrections in hand, we follow [19,20] in
order to obtain the Hamiltonian of collective modes, which
describes the excitation of baryon. Afterwards, the baryon
states and spectrum are computed by solving the eigeneq-
uation of the Hamiltonian of the collective modes accord-
ing to the gauge-gravity duality in this model. As the
D4–D8 model is able to fit the meson spectrum on the other
hand, we therefore employ the meson data in this model
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(i.e., the value for the unit MKK and t’ Hooft coupling
constant λ is set as MKK ¼ 949 MeV, λ ¼ 16.6 which is
used to match the lowest meson spectrum) to fit the realistic
baryon spectrum in QCD with Nc ¼ 3, Nf ¼ 3. Using the
standard technique in quantum mechanics, we compute
approximately the baryon spectrum with our corrections
which is very close to the experimental data. Furthermore,
the corrections to the heavy-light flavored baryon, in which
the heavy flavor is introduced by employing the Higgs
mechanism in string theory, is also taken into account in
this work. So follow the same steps to obtain the
Hamiltonian of the collective modes, we get the heavy-
light baryon spectrum with our corrections and it matches
very well to the experimental data with the same value
of MKK; λ. Besides, we finally display how to include
the interaction of baryonic matter and glueball with our
corrections. As the glueball is identified as the bulk
gravitational polarization in this model, we obtain a
fluctuation of the soliton mass due to the bulk gravitational
polarization and correspondingly a time-dependent term
arises in the Hamiltonian of the collective modes. Thus
using the standard method for time-dependent Hamiltonian
in quantum mechanics, it is possible to evaluate the
decay rate of the baryonic matter involving the glueball.
Accordingly, we consider the Nf ¼ 2 heavy-light meson as
the baryonic matter and evaluate the decay rate caused by
the glueball field. Although the quantum mechanical
description of the baryonic matter decay involving glueball
is natural and simply in this model, the property of glueball

is less clear in the current experiment so that we do not
attempt to further fit the experimental data in this sector.
The remarkable point of this work is that, by picking up

our corrections, it is possible to fit the lowest spectrum
of two-flavor light meson, three-flavor baryon, and two-
flavor heavy-light meson with same meson data, i.e.,
MKK ¼ 949 MeV, λ ¼ 16.6 which are the only parameters
in our theory. In this sense, this work is a good improve-
ment of the D4–D8 framework and [19,20,22,23] (In
[19,20,22,23], the infinitely large t’ Hooft coupling con-
stant λ is strictly necessary in theory thus it is unable to
employ the meson data of MKK; λ in the D4–D8 model).
In addition, this work also introduces the next leading
order correction to the baryon vertex through the instanton
configuration in the large λ expansion, which is to equi-
valently consider the leading order interaction among the
instantons. Therefore the instanton configuration with our
corrections may be more close to the reality when they are
employed to investigate the other features of baryonic
matter such as its phase diagrams as [11,57]. And we will
leave this part for the future work.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China (NSFC) under Grant No. 12005033,
the research startup foundation of Dalian Maritime
University in 2019 under Grant No. 02502608 and the
Fundamental Research Funds for the Central Universities
under Grant No. 3132022198.

[1] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and
Y. Oz, Large N field theories, string theory and gravity,
Phys. Rep. 323, 183 (2000).

[2] J. M. Maldacena, The large N limit of superconformal field
theories and supergravity, Adv. Theor. Math. Phys. 2, 231
(1998).

[3] E. Witten, Anti-de Sitter space and holography, Adv. Theor.
Math. Phys. 2, 253 (1998).

[4] E. Witten, Anti-de Sitter space, thermal phase transition, and
confinement in gauge theories, Adv. Theor. Math. Phys. 2,
505 (1998).

[5] A. Karch and E. Katz, Adding flavor to AdS=CFT, J. High
Energy Phys. 06 (2002) 043.

[6] J. Babington, J. Erdmenger, N. Evans, Z. Guralnik, and I.
Kirsch, Chiral symmetry breaking and pions in non-super-
symmetric gauge/gravity duals, Phys. Rev. D 69, 066007
(2004).

[7] M. Kruczenski, D. Mateos, R. Myers, and D. Winters,
Towards a holographic dual of large-Nc QCD, J. High
Energy Phys. 05 (2004) 041.

[8] J. Erlich, E. Katz, D. Son, and M. Stephanov, QCD and a
Holographic Model of Hadrons, Phys. Rev. Lett. 95, 261602
(2005).

[9] T. Sakai and S. Sugimoto, Low energy hadron physics in
holographic QCD, Prog. Theor. Phys. 113, 843 (2005).

[10] T. Sakai and S. Sugimoto, More on a holographic dual of
QCD, Prog. Theor. Phys. 114, 1083 (2005).

[11] S. Li, A. Schmitt, and Q. Wang, From holography towards
real-world nuclear matter, Phys. Rev. D 92, 026006 (2015).

[12] F. Bigazzi and A. Cotrone, Holographic QCD with dynami-
cal flavors, J. High Energy Phys. 01 (2015) 104.

[13] S. Li and T. Jia, Dynamically flavored description of
holographic QCD in the presence of a magnetic field,
Phys. Rev. D 96, 066032 (2017).

[14] O. Bergman, G. Lifschytz, and M. Lippert, Holographic
nuclear physics, J. High Energy Phys. 11 (2007) 056.

[15] N. Kovensky and A. Schmitt, Holographic quarkyonic
matter, J. High Energy Phys. 09 (2020) 112.

[16] N. Kovensky and A. Schmitt, Heavy holographic QCD,
J. High Energy Phys. 02 (2020) 096.

SI-WEN LI, HAO-QIAN LI, and SEN-KAI LUO PHYS. REV. D 106, 126027 (2022)

126027-16

https://doi.org/10.1016/S0370-1573(99)00083-6
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.4310/ATMP.1998.v2.n3.a3
https://doi.org/10.4310/ATMP.1998.v2.n3.a3
https://doi.org/10.1088/1126-6708/2002/06/043
https://doi.org/10.1088/1126-6708/2002/06/043
https://doi.org/10.1103/PhysRevD.69.066007
https://doi.org/10.1103/PhysRevD.69.066007
https://doi.org/10.1088/1126-6708/2004/05/041
https://doi.org/10.1088/1126-6708/2004/05/041
https://doi.org/10.1103/PhysRevLett.95.261602
https://doi.org/10.1103/PhysRevLett.95.261602
https://doi.org/10.1143/PTP.113.843
https://doi.org/10.1143/PTP.114.1083
https://doi.org/10.1103/PhysRevD.92.026006
https://doi.org/10.1007/JHEP01(2015)104
https://doi.org/10.1103/PhysRevD.96.066032
https://doi.org/10.1088/1126-6708/2007/11/056
https://doi.org/10.1007/JHEP09(2020)112
https://doi.org/10.1007/JHEP02(2020)096


[17] N. Horigome and Y. Tanii, Holographic chiral phase
transition with chemical potential, J. High Energy Phys.
01 (2007) 072.

[18] O. Aharony, J. Sonnenschein, and S. Yankielowicz, A
Holographic model of deconfinement and chiral symmetry
restoration, Ann. Phys. (Amsterdam) 322, 1420 (2007).

[19] H. Hata, T. Sakai, S. Sugimoto, and S. Yamato, Baryons
from instantons in holographic QCD, Prog. Theor. Phys.
117 (2007) 1157,

[20] H. Hata and M. Murata, Baryons and the Chern-Simons
term in holographic QCD with three flavors, Prog. Theor.
Phys. 119, 461 (2008).

[21] K. Hashimoto, N. Iizuka, and P. Yi, A matrix model for
baryons and nuclear forces, J. High Energy Phys. 10 (2010)
003.

[22] Y. Liu and I. Zahed, Heavy baryons and their exotics from
instantons in holographic QCD, Phys. Rev. D 95, 116012
(2017).

[23] Y. Liu and I. Zahed, Heavy and strange holographic
baryons, Phys. Rev. D 96, 056027 (2017).

[24] A. Imaanpur, Correction to baryon spectrum in holographic
QCD, Phys. Lett. B 832, 137233 (2022).

[25] F. Brünner, Anton Rebhan, Nonchiral Enhancement of
Scalar Glueball Decay in the Witten-Sakai-Sugimoto
Model, Phys. Rev. Lett. 115, 131601 (2015).

[26] F. Brünner, D. Parganlija, and A. Rebhan, Glueball decay
rates in the Witten-Sakai-Sugimoto model, Phys. Rev. D 93,
109903 (2016); 91, 106002 (2015).

[27] K. Hashimoto, C. Tan, and S. Terashima, Glueball decay in
holographic QCD, Phys. Rev. D 77, 086001 (2008).

[28] R. Brower, S. Mathur, and C. Tan, Glueball spectrum for
QCD from AdS supergravity duality, Nucl. Phys. B587, 249
(2000).

[29] N. Constable and R. Myers, Spin two glueballs, positive
energy theorems and the AdS=CFT correspondence, J. High
Energy Phys. 10 (1999) 037.

[30] S. Li, Glueball–baryon interactions in holographic QCD,
Phys. Lett. B 773, 142 (2017).

[31] S. Li, Holographic description of heavy-flavored baryonic
matter decay involving glueball, Phys. Rev. D 99, 046013
(2019).

[32] C. Wu, Z. Xiao, and D. Zhou, Sakai-Sugimoto model in
D0-D4 background, Phys. Rev. D 88, 026016 (2013).

[33] W. Cai, C. Wu, and Z. Xiao, Baryons in the Sakai-Sugimoto
model in the D0-D4 background, Phys. Rev. D 90, 106001
(2014).

[34] S. Li and T. Jia, Matrix model and holographic baryons in
the D0-D4 background, Phys. Rev. D 92, 046007 (2015).

[35] S. Li, Holographic heavy-baryons in the Witten-Sakai-
Sugimoto model with the D0-D4 background, Phys. Rev.
D 96, 106018 (2017).

[36] L. Bartolini, F. Bigazzi, S. Bolognesi, A. Cotrone, and A.
Manenti, Theta dependence in holographic QCD, J. High
Energy Phys. 02 (2017) 029.

[37] F. Bigazzi, A. Cotrone, and R. Sisca, Notes on theta
dependence in holographic Yang-Mills, J. High Energy
Phys. 08 (2015) 090.

[38] S. Li, A holographic description of theta-dependent Yang-
Mills theory at finite temperature, Chin. Phys. C 44, 013103
(2020).

[39] E. Witten, Baryons and branes in anti-de Sitter space,
J. High Energy Phys. 07 (1998) 006.

[40] D. Tong, TASI lectures on solitons, arXiv:hep-th/0509216.
[41] G. Adkins, C. Nappi, and E. Witten, Static properties of

nucleons in the Skyrme model, Nucl. Phys. B228, 552
(1983).

[42] CLEO Collaboration, First Observation of the Decay
Dþ

ðsÞ → pn̄ anti-n, Phys. Rev. Lett. 100, 181802 (2008).

[43] C. Chen, H. Cheng, and Y. Hsiao, Baryonic D decay
Dþ

ðsÞ → pn̄ anti-n and its implication, Phys. Lett. B 663,

326 (2008).
[44] M. Jarfi, O. Lazrak, A. Yaouanc, L. Oliver, O. Pene, and

J.-C. Raynal, Decays of b mesons into baryon—anti-baryon,
Phys. Rev. D 43, 1599 (1991).

[45] G. Mennessier, S. Narison, and X. Wang, σ and f0ð980Þ
substructures from γγ → ππ; J=ψ ;ϕ radiative and Ds semi-
leptonic decays, Phys. Lett. B 696, 40 (2011).

[46] T. Csörgő, T. Novak, R. Pasechnik, A. Ster, and I. Szanyi,
Evidence of Odderon-exchange from scaling properties of
elastic scattering at TeV energies, Eur. Phys. J. C 81, 180
(2021).

[47] TOTEM and D0 Collaborations, Odderon Exchange from
Elastic Scattering Differences between pp and p̄ p̄ Data at
1.96 TeV and from pp Forward Scattering Measurements,
Phys. Rev. Lett. 127, 062003 (2021).

[48] P. Lau and S. Sugimoto, Chern-Simons 5-form and holo-
graphic baryons, Phys. Rev. D 95, 126007 (2017).

[49] Particle Data Group, Review of particle physics, Prog.
Theor. Exp. Phys. 2022, 083C01 (2022).

[50] Y. Liu and I. Zahed, Holographic heavy-light chiral effective
action, Phys. Rev. D 95, 056022 (2017).

[51] Y. Liu and I. Zahed, Heavy-light mesons in chiral AdS/
QCD, Phys. Lett. B 769, 314 (2017).

[52] K. Becker, M. Becker, and J. Schwarz, String Theory and
M-Theory, A Modern Introduction (Cambridge University
Press, Cambridge, England, 2007).

[53] R. Myers, Dielectric-branes, J. High Energy Phys. 12 (1999)
022.

[54] S. Li, The interaction of glueball and heavy-light flavoured
meson in holographic QCD, Eur. Phys. J. C 80, 881 (2020).

[55] X. He and T. Yuan, Glueball production via gluonic penguin
B decays, Eur. Phys. J. C 75, 136 (2015).

[56] Y. Hsiao and C. Geng, Identifying glueball at 3.02 GeV in
baryonic B decays, Phys. Lett. B 727, 168 (2013).

[57] K. Ghoroku, K. Kubo, M. Tachibana, T. Taminato, and F.
Toyoda, Holographic cold nuclear matter as dilute instanton
gas, Phys. Rev. D 87, 066006 (2013).

CORRECTIONS TO THE INSTANTON CONFIGURATION AS … PHYS. REV. D 106, 126027 (2022)

126027-17

https://doi.org/10.1088/1126-6708/2007/01/072
https://doi.org/10.1088/1126-6708/2007/01/072
https://doi.org/10.1016/j.aop.2006.11.002
https://doi.org/10.1143/PTP.117.1157
https://doi.org/10.1143/PTP.117.1157
https://doi.org/10.1143/PTP.119.461
https://doi.org/10.1143/PTP.119.461
https://doi.org/10.1007/JHEP10(2010)003
https://doi.org/10.1007/JHEP10(2010)003
https://doi.org/10.1103/PhysRevD.95.116012
https://doi.org/10.1103/PhysRevD.95.116012
https://doi.org/10.1103/PhysRevD.96.056027
https://doi.org/10.1016/j.physletb.2022.137233
https://doi.org/10.1103/PhysRevLett.115.131601
https://doi.org/10.1103/PhysRevD.93.109903
https://doi.org/10.1103/PhysRevD.93.109903
https://doi.org/10.1103/PhysRevD.91.106002
https://doi.org/10.1103/PhysRevD.77.086001
https://doi.org/10.1016/S0550-3213(00)00435-1
https://doi.org/10.1016/S0550-3213(00)00435-1
https://doi.org/10.1088/1126-6708/1999/10/037
https://doi.org/10.1088/1126-6708/1999/10/037
https://doi.org/10.1016/j.physletb.2017.08.011
https://doi.org/10.1103/PhysRevD.99.046013
https://doi.org/10.1103/PhysRevD.99.046013
https://doi.org/10.1103/PhysRevD.88.026016
https://doi.org/10.1103/PhysRevD.90.106001
https://doi.org/10.1103/PhysRevD.90.106001
https://doi.org/10.1103/PhysRevD.92.046007
https://doi.org/10.1103/PhysRevD.96.106018
https://doi.org/10.1103/PhysRevD.96.106018
https://doi.org/10.1007/JHEP02(2017)029
https://doi.org/10.1007/JHEP02(2017)029
https://doi.org/10.1007/JHEP08(2015)090
https://doi.org/10.1007/JHEP08(2015)090
https://doi.org/10.1088/1674-1137/44/1/013103
https://doi.org/10.1088/1674-1137/44/1/013103
https://doi.org/10.1088/1126-6708/1998/07/006
https://arXiv.org/abs/hep-th/0509216
https://doi.org/10.1016/0550-3213(83)90559-X
https://doi.org/10.1016/0550-3213(83)90559-X
https://doi.org/10.1103/PhysRevLett.100.181802
https://doi.org/10.1016/j.physletb.2008.04.033
https://doi.org/10.1016/j.physletb.2008.04.033
https://doi.org/10.1103/PhysRevD.43.1599
https://doi.org/10.1016/j.physletb.2010.12.001
https://doi.org/10.1140/epjc/s10052-021-08867-6
https://doi.org/10.1140/epjc/s10052-021-08867-6
https://doi.org/10.1103/PhysRevLett.127.062003
https://doi.org/10.1103/PhysRevD.95.126007
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1103/PhysRevD.95.056022
https://doi.org/10.1016/j.physletb.2017.04.007
https://doi.org/10.1088/1126-6708/1999/12/022
https://doi.org/10.1088/1126-6708/1999/12/022
https://doi.org/10.1140/epjc/s10052-020-08458-x
https://doi.org/10.1140/epjc/s10052-015-3354-4
https://doi.org/10.1016/j.physletb.2013.10.008
https://doi.org/10.1103/PhysRevD.87.066006

