
Critical points of warped AdS=CFT and higher-curvature gravity

Gerónimo Caselli,1 Gaston Giribet,2 and Andrés Goya 3

1Departamento de Física, Universidad Nacional de Rosario,
Av. Pellegrini 250, Rosario, Santa Fe, Argentina

2Department of Physics, New York University. 726 Broadway, New York, New York 10003, USA
3Instituto de Astronomía y Física del Espacio, Ciudad Universitaria,
Casilla de Correo 67, Sucursal 28, 1428, Buenos Aires, Argentina

(Received 21 September 2022; accepted 12 December 2022; published 29 December 2022)

Warped anti-de Sitter (WAdS)/warped conformal field theory (WCFT) correspondence is an interesting
realization of non-AdS holography. It relates three-dimensional warped anti-de Sitter (WAdS3) spaces to a
special class of two-dimensional quantum field theory with chiral scaling symmetry that acts only on right-
moving modes. The latter are often called warped conformal field theories (WCFT2), and their existence
makes WAdS/WCFT particularly interesting as a tool to investigate a new type of two-dimensional
conformal structure. Besides, WAdS/WCFT is interesting because it enables one to apply holographic
techniques to the microstate counting problem of non-AdS, nonsupersymmetric black holes. Asymptoti-
cally WAdS3 black holes (WBH3) appear as solutions of topologically massive theories, Chern-Simons
theories, and many other models. Here, we explore WBH3 × ΣD−3 solutions of D-dimensional higher-
curvature gravity, with ΣD−3 being different internal manifolds, typically given by products of deformations
of hyperbolic spaces, although we also consider warped products with time-dependent deformations. These
geometries are solutions of the second order higher-curvature theory at special (critical) points of the
parameter space, where the theory exhibits a sort of degeneracy. We argue that the dual (W)CFT at those
points is actually trivial. In many respects, these critical points of WAdS3 × ΣD−3 vacua are the squashed/
stretched analogs of the AdSD Chern-Simons point of Lovelock gravity.
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I. INTRODUCTION

AdS=CFT holographic correspondence [1] gave rise to a
revolution in high-energy physics, as it gave access to the
nonperturbative regime of gauge theories and gravity.
Holography opened up the possibility of addressing other-
wise inaccessible problems in strongly coupled quantum
field theories, in relativistic hydrodynamics, in black hole
thermodynamics, in high-energy scattering amplitudes, in
quantum cosmology, and in many other topics in high-
energy physics as well as in other areas of physics. The
indubitable capability of the holographic techniques to
work out the details of strongly coupled systems led to the
exploration of similar realizations in the context of con-
densed matter and statistical physics [2,3]. This motivated
the search for nonrelativistic strongly correlated systems
that could in principle allow for a holographic realization.
This is how gravity duals for models with anisotropic scale

invariance, both with [4,5] and without [6] Galilean
symmetry, were rapidly proposed, these being given by
the so-called Schrödinger and the Lifshitz spacetimes.
From a broader perspective, the search for holographic
realizations beyond anti-de Sitter (AdS) spaces has been
one of the main lines of research in theoretical high-energy
physics for at least 20 years; the de Sitter/conformal field
theory (CFT) correspondence [7], the Kerr/CFT correspon-
dence [8], the celestial holography [9], and other realiza-
tions of flat space holography [10] are some examples of
this. Then, the question arises as to what extent the
holographic paradigm can work for non-AdS scenarios
and what can we learn from such adaptations.
One of the most interesting realizations of non-AdS

holography is the so-called WAdS/WCFT correspondence,
which relates 3-dimensional warped anti-de Sitter (WAdS3)
spaces to a special class of two-dimensional (2D) quantum
field theory with chiral scaling symmetry that acts only on
right-moving modes. These theories are the often-called
warped conformal field theories (WCFT2), and they make
WAdS/WCFT particularly interesting as a tool to inves-
tigate a totally new type of 2D QFT. Besides, WAdS=CFT
is interesting because it enables one to apply holographic
techniques to the microstate counting problem of non-AdS,
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nonsupersymmetric black holes. The original proposal for
the warped version of the correspondence [11] was to relate
the asymptotically WAdS3 spaces to a CFT2. This was
further studied and revisited in the literature [12–15], and a
refined version of it was proposed in Ref. [12], where 2D
theories with chiral scaling symmetry were identified as the
actual dual to gravity about WAdS3; cf. Ref. [16]. The local
symmetries of such 2D theories include one copy of the
Virasoro (vir) algebra in a semidirect sum with a ûð1Þ
current algebra, which is exactly the asymptotic isometry
algebra of WAdS3 spacetimes1 [17,18]. This symmetry
algebra differs from the algebra vir⊕ vir that generates the
standard 2D local conformal transformations; however, as
argued in Ref. [13], in some respects, the former is equally
powerful in constraining the theory. In particular, it permits
working out a microscopic counting of black hole micro-
states in WAdS3 spacetime by means of a Cardy type
formula [11]. In Ref. [14], it was argued that, by means of a
nonlocal transformation, the microstate counting of black
holes in WAdS3 space can also be organized in terms of
standard CFT2, yielding equivalent results.
WAdS3 spacetimes are stretched or squashed deforma-

tions of AdS3 spacetime which have four Killing vectors
generating the isometry group SLð2;RÞ ⊗ Uð1Þ. This can
be regarded as a minimal symmetry breaking of the AdS3
isometry group SOð2; 2Þ ≃ SLð2;RÞ ⊗ SLð2;RÞ down to
SLð2;RÞ ⊗ Uð1Þ. Provided suitable boundary conditions
are imposed, the asymptotic isometry group of WAdS3 is
generated by vir ⨭ûð1Þ, exactly the same symmetry that
appears in Kerr/CFT. This is far from being an accident
since, as we will review later, a particular case of WAdS3
naturally emerges in the near horizon limit of four-
dimensional (4D) extremal black holes [28]. Besides,
WAdS3 spaces also appear in other contexts: they are
solutions of topologically massive gravity (TMG) [29–32],
its supersymmetric extensions [33–35], and the so-called
new massive gravity (NMG) [36]; they also appear in string
theory [37,38], in theories with additional massive spin-2
fields, [39], in higher-spin theories [40], in Chern-Simons
(CS) theories of lower spin [41,42], and in even more exotic
gravity models [43]. Here, we will see that the WAdS3
spaces also appear as geometric factors of solutions of
higher-dimensional, higher-curvature gravity theories at
critical points.
Critical points are curves of the parameter space of a

gravity theory for which the dual CFT exhibits special
properties. Typically, this leads to simplifications that
permit solving some specific problem in the CFT.
Critical points are points of the parameter space where
the dual CFT becomes either chiral, or factorizable, or

topological, or even trivial, or at least remarkably simple
and tractable in some way. Some of the properties that the
holographic theories exhibit at the critical points are the
vanishing of the central charge of the boundary theory or
the emergence of bulk logarithmic modes that demands
strong boundary conditions to render the dual CFT unitary
or the degeneracy of the gravity vacua. A concrete example
of this is the chiral point of TMG [44–46], at which the
right central charge, cR, vanishes and new solutions appear
[47–49]. A similar example is three-dimensional NMG
[50,51] with a graviton mass that equals one-half of the
AdS3 curvature, leading to a dual CFT with no diffeo-
morphism anomaly and no Weyl anomaly, i.e., c ¼ 0;
cf. Refs. [23,52–54]. Other examples are the Critical
Gravity in four [55] and higher [56] dimensions, for which
the black hole states have vanishing conserved charges.
However, the best studied example of a critical point
in higher dimensions is probably the CS point of five-
dimensional (5D) Einstein-Gauss-Bonnet (EGB) gravity
[57], which is special in many respects. This corresponds to
the curve of the parameter space on which the EGB gravity
theory exhibits a unique maximally symmetric vacuum and
the action of the theory can be expressed as a 5D CS gauge
theory for the group SOð2; 4Þ. In the notation of Ref. [58],
this corresponds to λGB ¼ 1=4 (in our notation, this
corresponds to αΛ ¼ −3=4). This is the point where the
shear viscosity to entropy density ratio, η=s, in the four-
dimensional theory vanishes, as does the central charge c—
while the other 4D central charge, a, takes a negative value.
While the critical point λGB ¼ 1=4 lies outside the segment
of the parameter space in which the gravity theory is free of
causality problems, the value λGB ¼ 1=4 itself cannot be
excluded by the very same perturbative arguments, as the
5D CS gravity lacks of linearized local degrees of freedom
around AdS5. Also at this point, αΛ ¼ −3=4, the theory
exhibits degeneracy around other vacua; for example, there,
both Schrödinger and Lifshitz spaces solve the field
equations for arbitrary values of the dynamical exponent
z [59], which is a remarkable fact that seems to imply
something special about the nonrenormalizability of that
exponent [60]. Here, wewill observe a similar phenomenon
occurring for WAdS3 vacua. More precisely, we will see
that the WAdS3 × ΣD−3 vacua of the quadratic EGB gravity
theory, which for D ¼ 5 appear when αΛ ¼ −1=4, exhibit
degeneracy in the parameters that control the squashing/
stretched deformation of the space and its curvature radius.
In this sector, the theory behaves effectively as a topologi-
cal theory whose dual WCFT2 turns out to be trivial.
The paper is organized as follows. In Sec. II, we

review the geometry of WAdS3 spaces and of WAdS3
black holes (WBH3). In Sec. III, we construct WBH3 × Σ2

solutions inD ¼ 5 dimensions; we discuss the computation
of the black hole entropy and conserved charges,
which happen to be zero. In Sec. IV, we generalize these
solutions to higher dimensions, considering different types

1WAdS/WCFT correspondence, together with the properties of
WAdS3 spaces and of the black holes that asymptote to them,
have been largely studied in the recent literature; see for instance
Refs. [17–27] and references therein.
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of compactifications. We conclude that all these WAdS3 ×
ΣD−3 vacua are dual to theories that are trivial, with
vanishing Virasoro central charge and Kac-Moody level.

II. WARPED AdS SPACES

A. Hyperbolic WAdS3

As mentioned in the Introduction, the WAdS3 spaces are
stretched or squashed deformations of AdS3. This aspect of
these geometries is well understood if AdS3 space is written
as a Hopf fibration over AdS2 [Eq. (2.3) below with ν ¼ 1];
cf. Ref. [61].WAdS3 appears simply as a deformation of that
fibration. Actually, AdS3 appears as a particular case of
WAdS3, the case forwhich thewarpingdeformationvanishes
(ν ¼ 1 in the notation used below and in Ref. [11]).
TheWAdS3 spaces are classified in three different classes,

each of them exhibiting different causal properties. One of
these classes is the hyperbolic WAdS3, also known as
spacelikeWAdS3. This can easily be thought of as a warped
deformation of AdS3 and is the one usually considered in
WAdS/WCFT holography. A different class is the elliptic
WAdS3 spaces, or timelike WAdS3 spaces, which corre-
spond to the three-dimensional sections of theGödel solution
of four-dimensional cosmological Einstein equations. These
spaces present closed timelike curves, which are inherited
from its four-dimensional general relativity embedding. The
third class is an intermediate case, called the parabolic (or
null) WAdS3. This is closely related to the Schrödinger
geometries studied in the context of nonrelativistic holog-
raphy. All these spaces have four Killing vectors, generating
a SLð2;RÞ ⊗ Uð1Þ isometry group.
As we commented in the Introduction, one of the

contexts in which hyperbolic WAdS3 spaces naturally
appear is in the study of the near horizon geometry of
rapidly rotating black holes [28]; cf. Ref. [11]. In fact, if
one considers the near horizon limit of an extremal Kerr
black hole as one does in Kerr/CFT [8], then one finds the
four-dimensional geometry called Near-Horizon-Extremal-
Kerr (NHEK) [62]; namely,

ds2NHEK ¼ Ω2ðθÞ
�
−ðρ2 þ 1Þdτ2 þ dρ2

ðρ2 þ 1Þ

þϒ2ðθÞðdφþ ρdτÞ2 þ dθ2
�

ð2:1Þ

with

Ω2ðθÞ ¼ Jð1þ cos2θÞ; ϒðθÞ ¼ 2 sin θ
1þ cos2θ

; ð2:2Þ

where τ ∈ R, ρ ∈ R≥0, φ ∈ ½0; 2π�, and θ ∈ ½0; π�. Here, θ
corresponds to the azimuthal angle, and J > 0 is the
absolute value of the angular momentum of the black hole,
which rotates around the axis θ ¼ 0 ∼ π. This implies
J ≤ Ω2ðθÞ ≤ 2J and 0 ≤ ϒ2ðθÞ ≤ 4 for all θ. In an

appropriate system of coordinates, the three-dimensional
metric of the spacelike WAdS3 is given by evaluating the
four-dimensional NHEK metric (2.1) at constant θ ¼ θ0;
namely,

ds2WAdS ¼ l2

�
−ðρ2 þ 1Þdτ2 þ dρ2

ðρ2 þ 1Þ

þ 4ν2

ν2 þ 3
ðdφþ ρdτÞ2

�
; ð2:3Þ

where l2 ¼ Ω2ðθ0Þ and where ν is a convenient variable to
parametrize the warping factor ϒ2ðθ0Þ; as said, ν ¼ 1
corresponds to the undeformed AdS3 (ϒ2 ¼ 1), while
ν > 1 corresponds to the hyperbolic WAdS3 (ϒ2 > 1);
the case ν ¼ 0 is also special, since in that case, after
rescaling as φ → φ=ν, the geometry becomes locally
equivalent to AdS2 ⊗ R. All these spaces have constant
curvature invariants, some of which read

RA
A ¼ −

6

l2
; RB

A R
A
B ¼ 6

l4
ðν4 − 2ν2 þ 3Þ;

RB
A R

C
B R

A
C ¼ −

6

l6
ðν6 þ 3ν4 − 9ν2 þ 9Þ;…

Nevertheless, for ν2 ≠ 1, the spaces are not of constant
Riemannian curvature. For generic ν, the WAdS3 spaces
are neither conformally flat nor asymptotically locally
AdS3. This can easily be seen in an appropriate coordinate
system. In global coordinates, spacelike WAdS3 can also
be written as follows,

ds2WAdS ¼ dt2 − 2νrdtdϕþ 3

4
ðν2 − 1Þr2dϕ2

þ l2

ðν2 þ 3Þr2 dr
2; ð2:4Þ

with t ∈ R, r ∈ R≥0, ϕ ∈ ½0; 2π�. For a different coordinate
system, see Ref. [11]; for coordinate systems for the elliptic
WAdS3, see Ref. [27].

B. Black holes in WAdS3

WAdS3 spaces admit black hole solutions that asymptote
to them; cf. Refs. [29–32]. In a convenient coordinate
system, the metric of these black holes can be written as
follows,

ds2WBH ¼ dt2 −
�
2νr −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþr−ðν2 þ 3Þ

q �
dtdϕ

þ l2

ðν2 þ 3Þðr − rþÞðr − r−Þ
dr2

þ r
4

�
3ðν2 − 1Þrðν2 þ 3Þðrþ þ r−Þ

− 4ν
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðν2 þ 3Þrþr−

q �
dϕ2; ð2:5Þ
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where r− and rþ, provided they are both positive, describe
the location of the inner Killing horizon and of the outer
event horizon, respectively. These correspond to integration
constant of the solution. Here, t ∈ R, r ∈ R≥0, ϕ ∈ ½0; 2π�.
The Hawking temperature of the WBH3 can be com-

puted by standard techniques, yielding

TH ¼ ðν2 þ 3Þ
4πl

ðrþ − r−Þ
ð2νrþ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðν2 þ 3Þrþr−

p
Þ : ð2:6Þ

As it happens with the Banados-Teitelboim-Zanelli black
holes and AdS3 space, the WBH3 (2.5) are discrete
quotients of hyperbolic WAdS3 space [11]. This orbifold
construction leads to define a right-mover and left-mover
temperatures as the inverse of the identification periods;
these are

TL ¼ ðν2 þ 3Þ
8πl

�
rþ þ r− − ν−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðν2 þ 3Þrþr−

q �
;

TR ¼ ðν2 þ 3Þ
8πl

ðrþ − r−Þ; ð2:7Þ

respectively. Then, we have the relation

TH ¼ ðν2 þ 3Þ
4πlν

TR

TR þ TL
: ð2:8Þ

When rþ ¼ r− ¼ 0, both TR and TL vanish, and we get the
empty space (2.4); namely, the hyperbolic WAdS3. Besides,
the black holes (2.5) are not only locally equivalent to
WAdS3, but, provided suitable boundary conditions are
prescribed, they are also asymptotically WAdS3. Such
asymptotic boundary conditions are prescribed at large r
and are those preserved by the following asymptotic Killing
vectors,

Ln ¼ e−
inϕ
l

�
2νl2

ν2 þ 3
∂t − inr∂r − l∂ϕ

�
þ � � � ð2:9Þ

Tn ¼ e−
inϕ
l l∂t þ � � � ; ð2:10Þ

where the ellipsis stand for subleading orders in 1=r, namely,
Oð1=r2Þ × ∂ϕ,Oð1=rÞ × ∂t,Oð1Þ × ∂r. The Killing vectors
L0 and T0 generate the exact Uð1Þ × Uð1Þ isometry of the
black hole background, while L�1 complete the SLð2;RÞ
factor of the isometry group of globalWAdS3. The full set of
Ln, Tn generate the infinite-dimensional algebra

fLm; Lng ¼ iðn −mÞLnþm;

fLm; Tng ¼ inTnþm; fTm; Tng ¼ 0; ð2:11Þ

which is the Witt algebra in semidirect sum with the loop
algebra uð1Þ ⊗ C∞ðS1Þ. Through the Sugawara construc-
tion, this algebra produces two mutually commuting copies

of Witt algebra. This was exploited in Ref. [14] to work out
the microstate counting of WBH3 from the standard CFT2

perspective. The Noether charges associated to the asymp-
totic symmetries generated by (2.9)–(2.10) also form an
algebrawhich, generically, turns out to be a central extension
of (2.11), resulting in vir ⨭ûð1Þ, i.e., a Virasoro algebra in
semidirect sumwith an affineKac-Moody algebra. However,
wewill argue that this is not the case for the critical points we
study here; at the critical points of theD-dimensional higher-
curvature theories we will consider, where solutions of the
form WBH3 × ΣD−3 exhibit degeneracy in the squashing/
stretching parameters ν, both the Virasoro central charge and
the Kac-Moody level of the dual theory vanish.

III. WAdS VACUA IN HIGHER-CURVATURE
GRAVITY

A. Gravity action and boundary terms

In a D-dimensional higher-curvature gravity theory, we
will consider solutions of the form

M ¼ WBH3 × ΣD−3; ð3:1Þ

with WBH3 being asymptotically WAdS3 black holes and
ΣD−3 being a negative curvature manifold consisting of a
product of locally hyperbolic spaces and tori. The simplest
higher-curvature model admitting such solutions is (quad-
ratic) Lovelock theory of gravity, namely, the most general
torsion-free metric theory of gravity yielding covariantly
conserved field equations of second order. This theory
propagates a single massless spin-2 mode, and, in virtue of
that, it is well behaved in many aspects. In D ≤ 4, the
theory coincides with Einstein gravity [Eq. (3.4) below],
while it includes higher-curvature terms for D ≥ 5. For
D ¼ 5 andD ¼ 6, the action of Lovelock theory reduces to
the quadratic EGB gravity action, usually considered in the
context of holography. For D ≥ 7, the theory also admits
terms that are cubic in the curvature, and quartic orders
appear for D > 8. Here, we will restrict the analysis to the
quadratic action since this case suffices to support the
backgrounds we are interested in.
As said, we will be concerned with backgrounds of the

form WBH3 × ΣD−3. The simplest cases will be given by
direct products of locally WAdS3 and (D − 3)-dimensional
maximally symmetric spaces of constant curvature k.
Consider the ansatz

ds2 ¼ gðWAdSÞ
ab dxadxb þ gðΣÞij dxidxj; ð3:2Þ

where gðWAdSÞ
ab are the components of the metric (2.3) and

gðΣÞij are the components of a space of constant curvature k;
namely,

CASELLI, GIRIBET, and GOYA PHYS. REV. D 106, 126026 (2022)

126026-4



gðΣÞij dxidxj ¼ L2δijdxidxj

ð1þ k
4
δklxkxlÞ2

: ð3:3Þ

Here, a; b;… ¼ 0, 1, 2, while i; j; k; l;… ¼ 1; 2;…; D − 3.
The action of quadratic Lovelock theory is given by the

EGB action2

IM ¼ 1

16πG

Z
M

dDx
ffiffiffiffiffiffi
−g

p ðR − 2Λ

þ αðR2 − 4RMNRMN þ RMNPQRMNPQÞÞ; ð3:4Þ

supplemented with boundary terms; see Eq. (3.6) below.
Here, M;N; P;Q;… ¼ 0; 1; 2;…; D − 1.
The corresponding field equations read

0 ¼ GMN þ ΛgMN þ α
�
2RMPQSRN

PQS − 4RMPNQRPQ

− 4RMSRS
N þ 2RRMN

−
1

2
ðR2 − 4RPQRPQ þ RPQSTRPQSTÞgMN

�
; ð3:5Þ

with GMN ¼ RMN − 1
2
RgMN .

Being a field theory of second order, the variational
principle is defined from (3.4) in the usual way. This
requires the inclusion of a generalized Gibbons-Hawking
term. In other words, we must supplement (3.4) with
boundary terms to guarantee a well-posed variational
principle subject to Dirichlet boundary conditions on
∂M; cf. Ref. [64]. The appropriate boundary terms are

I∂M¼−
1

8πG

Z
∂M

dD−1x
ffiffiffiffiffiffi
−h

p
ðKþ2αðJ−2ĜμνKμνÞ; ð3:6Þ

where Kμν is the extrinsic curvature on ∂M, hμν is the
induced metric on ∂M, hatted tensors such as Ĝμν are
constructed with the induced metric hμν, and J is the trace
of tensor

Jμν ¼
1

3
ð2KKμρK

ρ
ν þ KρσKρσKμν

− 2KμρKρσKσν − K2KμνÞ: ð3:7Þ

Coordinates on ∂M are denoted xμ where μ¼0;1;…D−2.

B. Field equations and WAdS3 vacua

Let us consider first the five-dimensional case (D ¼ 5).
This will serve as a working example throughout this
section of the paper. In the next section, we will see how the
results also apply for D ≥ 5.

Replacing the ansatz (3.2) into the field equations (3.5),
the latter turn into a simple system of algebraic equations;
namely,

Et
t ¼

3 − 2ν2

l2

�
1þ 4αk

L2

�
þ Λ −

k
L2

¼ 0 ð3:8Þ

Et
ϕ ¼ 3νr

l2
ðν2 − 1Þ

�
1þ 4αk

L2

�
¼ 0 ð3:9Þ

Eϕ
ϕ ¼ Er

r ¼ ν2

l2

�
1þ 4αk

L2

�
þ Λ −

k
L2

¼ 0 ð3:10Þ

Ex
x ¼ Ey

y ¼ Λþ 3

l2
¼ 0: ð3:11Þ

Thus, we need to find the appropriate choice of the
parameters Λ, α, L, and k that solves this system. To do
that, we need to distinguish between two cases: Let us
consider first the case ν2 ¼ 1, which corresponds to
AdS3 × Σ2 vacua. In this case, we find

Λ ¼ −
3

l2
; α ¼ l2

4
þ L2

2k
; k ¼ �1: ð3:12Þ

However, the case of our interest is actually ν2 ≠ 1, which
yields

Λ¼−
3

l2
; α¼l2

12
; k¼−1; L2¼l2

3
; ð3:13Þ

where we see that the cosmological constant,Λ, is negative;
the coupling constant of the curvature square terms, α, is
positive; and the internal manifold has negative curvature,
k ¼ −1, and therefore we choose the quotient Σ2 ¼ H2=Γ,
with Γ being a Fuchsian subgroup. The remarkable fact is
that there is no restriction for the squashing/stretching
parameter ν, which here appears as a sort of zero mode that
controls the shape of the fibration in (2.3). It is also worth
mentioning that this degeneracy appears on the curve

αΛ ¼ −
1

4
ð3:14Þ

of the parameter space, which differs by a factor 3 from the
5D CS point.

C. On-shell action for the WAdS vacua

Now, we can evaluate the five-dimensional action on-
shell for the WAdS3 × H2=Γ ansatz. Surprisingly, every-
thing combines in a way that the different pieces of the
action I ¼ IM þ I∂M evaluated on (3.2)–(3.13) vanish.
Explicitly, the Lagrangian density on shell reads

2Our conventions follows Ref. [63], e.g., ½∇M;∇N �VP ¼
RP

QMNV
Q, RMN ¼ RQ

MQN , R ¼ RM
M.
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16πGLM ≡ R − 2Λþ αðR2 − 4RMNRMN

þ RMNPQRMNPQÞ

¼ 2

�
Λþ 3

l2

�
þ 2k

L2

�
1 −

12α

l2

�
;

while the integrand of the boundary term is

8πGL∂M ≡ K þ αðJ − 2ĜμνKμνÞ

¼
�
1þ 4αk

L2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 þ 3

p

2l
ð2r − rþ − r−Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr − rþÞðr − r−Þ

p :

Both quantities vanish in virtue of (3.13), so that I ¼ 0.
Something similar occurs in higher dimensions. This
suggests that the thermodynamic properties of the
WAdS3 black holes in this theory are trivial, something
we will confirm below by direct computation using differ-
ent methods. This phenomenon is reminiscent of what
happens with some Lifshitz black holes in higher-curvature
gravity: In Ref. [65], the authors found an asymptotically
Lifshitz black hole with dynamical exponent z ¼ 3=2 in a
four-dimensional theory of gravity with both terms R2 and
RμνRμν in the action. Such a solution exhibits a vanishing
on-shell action as well as vanishing entropy. The same
happens for the WBH3 × ΣD−3 solution we construct here.

D. Wald entropy formula

To compute the entropy of the WBH3, we resort to the
Wald formula [66], which amounts to computing the
entropy by integrating a charge on the event horizon,
Hþ. The formula for the entropy in D dimensions reads

SW ¼ −2π
Z
Hþ

dD−2x
ffiffiffi
σ

p
ϵMNϵPQ

∂L
∂RMNPQ ; ð3:15Þ

where L ¼ LM þ L∂M is the quadratic gravity
Lagrangian, including boundary terms; ϵMN is the binormal
tensor on Hþ; and σ is the determinant of the induced
metric on the constant-t and constant-r hypersurfaces
evaluated on Hþ. Since the geometry is of the form
WBH3 ⊗ ΣD−3, the integral in (3.15) is over D − 2
dimensions as it includes the angular direction φ as well
as the D − 3 directions of the internal manifold ΣD−3.
Explicit computation of this charge integral yields

vanishing entropy, SW ¼ 0. More explicitly, we get

ϵMNϵPQ
∂L

∂RMNPQ ∝ 1 − 4αΛk; ð3:16Þ

which vanishes in virtue of (3.13). That is to say, the
entropy of the WBH3 in this theory is identically zero.

E. Noether-Wald conserved charges

One can also compute the Noether charges of the
solutions associated to translation invariance in t and φ.
To do that, one can consider the Iyer-Wald formalism
[67,68], which leads to an expression for the charges that
takes the form

QW½ξ� ¼
Z
S∞

dD−2x
ffiffiffi
σ

p
ϵMNQ½ξ�MN; ð3:17Þ

with Q½ξ� being given by the Noether 2-form charge
associated to the on-shell conserved current J½ξ� ¼
dQ½ξ�; see Ref. [67] for details of its definition. ξ is the
Killing vector that generates the associated symmetry.3 The
integral is performed at a constant-t and constant-r hyper-
surface at infinity.
As for asymptotically AdS spaces, the charges (3.17)

need to be regularized. One can do so by considering the
background subtraction [69]. Following Ref. [70], a more
explicit expression for the Noether-Wald charge can be
written down; namely,

QW½ξ� ¼
Z
S∞

dD−2x
ffiffiffi
σ

p
ϵMN ∂L

∂RMNPQ∇PξQ; ð3:18Þ

which, as for the Wald entropy formula, the integral goes
over φ and the coordinates on ΣD−3. Applying this method
to our solution WBH3 ⊗ H2=Γ, we get

M ≡QW½∂t� ¼ 0; J ≡QW½∂φ� ¼ 0: ð3:19Þ

More explicitly, for these Killing vectors, we get

ϵMN ∂L
∂RMNPQ∇PξQ ∝ 1 − 4αΛk; ð3:20Þ

which vanishes in virtue of (3.13). This means that, as for
the entropy, both the mass and angular momentum of the
WBH3 of this theory are zero.

F. Quasilocal stress-energy tensor

Another method to compute the conserved charges is by
means of the Brown-York quasilocal stress-energy tensor
TðBYÞ
μν ; cf. Ref. [71]. This method, frequently used in

holographic renormalization in AdS, amounts to defining
the Brown-York stress-energy tensor near the boundary,
adding counterterms to renormalize it, and then integrating
its projection contracted with the Killing vector that defines

3The full expression for the Noether-Wald charge includes an
extra term −ξ · B coming from the action boundary terms relevant
for asymptotically flat spacetimes; cf. Ref. [68]. For asymptoti-
cally AdS spaces, the B term cancels out when performing a
background subtraction; see Ref. [69] for more details. Here, we
will make the same assumption but for asymptotically WAdS
spaces.
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an asymptotic isometry [see Eq. (3.25) below]. For the
EGB theory, the renormalized boundary stress-energy
tensor takes the form [64,72]

Tμν ¼ TðBYÞ
μν þ TðctÞ

μν ¼ −
2ffiffiffiffiffiffi
−h

p δI
δhμν

−
2ffiffiffiffiffiffi
−h

p δIct

δhμν
; ð3:21Þ

where I ¼ IM þ I∂M and so

TðBYÞ
μν ¼ 1

8πG
ðKμν − Khμν

þ 2αð3Jμν − Jhμν þ 2P̂μρσνKρσÞÞ; ð3:22Þ

with

P̂μνρσ ¼ R̂μνρσ − 2R̂μ½ρhσ�ν þ 2R̂ν½ρhσ�μ

þ 2R̂hμ½ρhσ�ν: ð3:23Þ

Ict are the counterterms in the action, which take the form

Ict ¼
Z
∂M

dD−1x
ffiffiffiffiffiffi
−h

p
ðα0 þ α1R̂þ α2R̂

2

þ β2R̂
ρσR̂ρσ þ � � �Þ; ð3:24Þ

with the hatted quantities referring to curvature tensors
constructed with the boundary metric hμν. The counter-
terms are necessary to regularize the infrared divergences
due to the noncompactness of the spacetime. The conserved
charges are defined as

QBY½ξ� ¼
Z
S∞

dD−2x
ffiffiffi
σ

p
uMTMNξ

N; ð3:25Þ

where ξ is a Killing vector and u is the normal vector to the
constant-t codimension-2 surfaces S∞ at infinity, r ¼ ∞.
The integral in (3.25) goes over D − 2 dimensions, exclud-
ing time and the radial direction. The solution is a product
WBH3 ⊗ Σ2, and so the computation of the gravitational
energy by integrating on the angular coordinate φ of the
three-dimensional space would actually give an energy-
momentum density which is constantly extended along the
directions of Σ2. In fact, for the transverse directions x1, x2,
we get

Txj
xi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 þ 3

p

8πGl
δji ; ð3:26Þ

with i ¼ 1, 2. The integral of the regularized quasilocal
stress tensor over a codimension-2 spacelike surface of the
full space gives the total energy momentum, which in this
case vanishes; in fact, despite the nonzero components
(3.26), the relevant components in the integrand of the
conserved charge (3.25) associated to the symmetries
generated by Killing vectors ∂t, ∂φ are identically zero.

IV. HIGHER DIMENSIONS AND OTHER
COMPACTIFICATIONS

Now, let us study the higher-dimensional case, which in
particular allows for more general compactifications. We
will consider different examples below.

A. WAdS3 × HD − 3 vacua in D dimensions

Let us start by extending the five-dimensional solution
we studied above to D dimensions by simply considering a
(D − 3)-dimensional internal space of constant curvature k.
One rapidly notices that the field equations demand
k ¼ −1, so that ΣD−3 ends up being locally equivalent
to a (D − 3)-dimensional hyperbolic space with metric
(3.3) and curvature radius L. That is to say, the full space is
of the form WBH3 ⊗ HD−3=Γ, i.e., locally WAdS3 ⊗
HD−3. Table I summarizes the values for the parameters
α;Λ; L;l, and the relations among them for the first
five cases.
It is not difficult to obtain expressions for α, Λ, and

L2=l2 for arbitrary dimension D (with k ¼ −1). These are
given by

α

L2
¼ 1

2

1

ðD − 3ÞðD − 4Þ ð4:1Þ

ΛL2 ¼ 1

4
ððD − 5ÞðD − 6Þ − 2ðD − 3ÞðD − 4ÞÞ ð4:2Þ

L2

l2
¼ 2D − 9

3
: ð4:3Þ

The first two relations make the Lagrangian vanish, while
the third one makes the trace of the field equations vanish.
Let us notice we can obtain from (4.1) an expression for the
warped critical points in EGB gravity in any dimension,

Λα ¼ −
1

4

�
1 −

1

2

ðD − 5ÞðD − 6Þ
ðD − 3ÞðD − 4Þ

�
: ð4:4Þ

From the table and the equations above, we notice that
for D ¼ 5 and D ¼ 6 WAdS3 ⊗ HD−3 is a solution at the
same point of the parameter space. This is due to the fact

TABLE I. Relations between the parameters of the theory and
the solution (locally) of the form WAdS3 × HD−3 in D dimen-
sions. The curvature radii of WAdS3 and HD−3 are l and L,
respectively.

D α=L2 ΛL2 L2=l2 Λα

5 1=4 −1 1=3 −1=4
6 1=12 −3 1 −1=4
7 1=24 −11=2 5=3 −11=48
8 1=40 −17=2 7=3 −17=80
9 1=60 −12 3 −1=5
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that the density RABCDRABCD − 4RABRAB þ R2 identically
vanishes for spaces of three dimensions or fewer, and
therefore the terms in the field equations that are propor-
tional to that combination do not contribute for geometries
that are direct products of 3-spaces. In contrast, for spaces
of four dimensions or more, the integrand of the four-
dimensional Euler density does contribute with a non-
vanishing constant.

B. WAdS3 × Σ3 vacua in D= 6 dimensions

Next, let us consider solutions WBH3 ⊗ ΣD−3 whose
internal manifold, ΣD−3, is not necessarily locally equivalent
to a maximally symmetric space. Let us focus in the case
D ¼ 6 as an example. In that case, we may consider different
cases, including products Σ3 ¼ Σ2 × S1. We can also con-
sider more abstruse deformations of the hyperbolic space
Σ3 ¼ H3, for instance by considering the six-dimensional
Kleinian space WAdS3 ⊗ WAdS3. Remarkably, in the latter
case, the deformation parameters of both warped spaces,
ν1;2, are independent and arbitrary, while their curvature radii
have to be equal. Table II summarizes the relations among
the parameters of some six-dimensional solutions.
In all these cases, the on-shell Lagrangian vanishes.

C. WAdS3 × Σ2 × Σ̃2 vacua in D= 7 dimensions

Now, consider a seven-dimensional case, which enables
one to consider solutions of the form Σ4 ¼ Σ2 ⊗ Σ̃2. Some
cases are summarizes in Table III.
No Σ4 ¼ H2 × S2 compactification of this sort exists.

The case Σ4 ¼ H4 was considered in Table I. In all the
cases, the on-shell Lagrangian vanishes.

D. Deformations of WAdS3 ⋉ Σ3 warping products

So far, we have only considered direct products of the
form WBH3 ⊗ ΣD−3, and so we could ask whether the
degeneracy in the parameter space we have observed in

such cases is prerogative of the solutions that are a direct
product of simple spaces. In order to explore other types of
geometries, we will consider here a warped product
WAdS3 ⋉ Σ3 in six dimensions, and with a more general
deformation of the internal hyperbolic space. Consider first
the product space (3.2) in D ¼ 6 with Σ3 ¼ H3 being
written in coordinates

ds2 ¼ gðΣÞij dxidxj ¼ L2

y2
ðdy2 þ 2dxdzÞ; ð4:5Þ

with x1 ¼ x, x2 ¼ y, x3 ¼ z. Now, consider the following
deformation,

ds2 ¼ L2

y2
ðdy2 þ 2dxdzÞ þ Fðt; y; zÞ

y2
dz2; ð4:6Þ

where t is the time coordinate of the WAdS3 piece of the
six-dimensional space and Fðt; y; zÞ is a profile function to
be determined by the field equations. Replacing the ansatz
(4.6) in (3.5), the only restriction for the deformation
profile Fðt; y; zÞ comes from the x, z component of the
field equations. It yields

ðl2 − 12αÞ
2l2L2

�
y
∂F
∂y

− y2
∂
2F
∂y2

�

þ 3

2

ðν2 − 1Þðl2 − 8ν2α − 12α2Þ
ðν2 þ 3Þl2

∂
2F
∂t2

¼ 0: ð4:7Þ

The rest of the components of the field equations impose
the following restrictions among the parameters:

Λ ¼ −
3

l2
; α ¼ l2

12
; L ¼ l: ð4:8Þ

Therefore, for ν2 ≠ 1, and provided ν ≠ 0, we obtain

ν2

ðν2 þ 3Þ
∂
2F
∂t2

¼ 0; ð4:9Þ

and so the deformation profile must be a linear function of
the warped time; namely,

Fðt; y; zÞ ¼ F0ðy; zÞ þ F1ðy; zÞt; ð4:10Þ

with F0 and F1 being arbitrary functions of y and z. These
solutions are closely related to pp-waves in AdS (also
knowns as AdS waves), which are a special class of Siklos
spacetimes. In the case ν2 ¼ 1, the function F must satisfy

y
∂F
∂y

− y2
∂
2F
∂y2

¼ 0; ð4:11Þ

which is solved by the profile function

TABLE II. Relations between the parameters of the theory for
solutions of the form WAdS3 × Σ3 vacua in D ¼ 6 dimensions.
The curvature radii of WAdS3 and Σ3 are l and L, respectively.

Σ3 α=L2 ΛL2 L2=l2 Λα

H3 1=12 −3 1 −1=4
WAdS3 1=12 −3 1 −1=4
H2 × S1 1=4 −3 1=3 −1=4

TABLE III. Relations between the parameters of the theory for
solutions of the form WAdS3 × Σ2 × Σ̃2 in D ¼ 7 dimensions.
The curvature radii of WAdS3, Σ2, and Σ̃2 are l, L1, and L2,
respectively.

Σ4 α=l2 Λl2 L2
1=l

2 L2
2=l

2 Λα

H2 × H2 1=24 −9=2 1=3 1=3 −3=16
H2 × T 2 1=12 −3 1=3 R −1=4
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Fðt; y; zÞ ¼ G0ðt; zÞ þ G2ðt; zÞy2; ð4:12Þ

with F0 and F1 being arbitrary functions of t and z. These
correspond to the massless modes of AdS3 waves;
cf. Ref. [73].
This shows that the degeneracy of this special point of

the parameter space of the higher-dimensional theory
persists even when one considers a more general type of
geometries, even with some warped products. There are,
however, other warped solutions that are more restrictive in
the t-dependence; for example, if one tries to look for
solutions of the form (3.2) with a time-dependent warping
factor fðtÞ in front of the metric gðΣÞij , and then the field
equations impose f ¼ const, and this is why we needed to
consider more involved time-dependent warping products
such as (4.6) in order to find nontrivial solutions.

V. CONCLUSIONS

Summarizing, we have studied critical points of
WAdS3=WCFT2 correspondence, which are given by
higher-curvature gravity models on a specific curve of
the parameter space. We have found solutions of the form
WAdS3 × ΣD−3 for D ≥ 5, which allows for arbitrary
warping factor ν, i.e., with arbitrary squashing/stretching
deformation of the WAdS3 piece, generalizing what hap-
pens with the dynamical coefficient of the anisotropic scale
invariant Schrödinger and Lifshitz spaces at the CS point of
Einstein-Gauss-Bonnet gravity. In other words, in the
sector we have studied, the theory behaves effectively
almost as a topological theory, in the sense that the
coefficient that controls the squashing/stretching deforma-
tion of independent pieces of the manifold are arbitrary.
Besides, while the ratios of the radii of the different
submanifolds do get fixed by the field equations, the total

volume of the D-dimensional space is also arbitrary. This
type of degeneracy, which is actually common in critical
points of higher-curvature theories, describes a sort of zero
mode associated to scale invariance, while the arbitrariness
of the value of ν makes the solution be, so to speak,
insensitive to the shape. This is also observed in warped
compactifications.
The fact of having found a critical point in a gravity

theory with second order field equations is interesting on its
own right. Higher-derivative theories typically give rise to
extra massive excitations that, at the critical point, coalesce
with a massless mode, leading ipso facto to the emergence
of new low decaying mode in the bulk. The latter, from the
dual perspective, comes to source states that render the CFT
nonunitary; e.g., this is, for example, what happens with the
so-called log gravity at the chiral point of TMG, and
examples in Critical Gravity in higher dimensions can be
constructed. This usually requires the prescription of strong
boundary conditions which suffice to render the theory
dynamically trivial. In our setup, being a higher-curvature
theory of second order, this is different: The vanishing of
the entropy and the conserved charges associated to the
WAdS3 black holes implies that the Virasoro central charge
and the Kac-Moody level of the dual WCFT2 are zero, and
we take this as evidence that the latter theory is trivial. In
many respects, these critical points of WAdS3 × ΣD−3
vacua are the squashed/stretched analogs of the AdSD
Chern-Simons point of Lovelock gravity.
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