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We revisit the status of asymptotic symmetries in higher even dimensions and propose a definition of
superrotation charge beyond linearized gravity. We prove that there is a well-defined spacetime action of
the superrotation charge on the space of asymptotically flat geometries. Additionally, we demonstrate that
the Ward identity associated with superrotation charges follows from the subleading soft graviton theorem,
which is a universal constraint (in d > 4) along with the leading soft graviton theorem.
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I. INTRODUCTION

Starting with the seminal work by Strominger in 2013
[1], there has been a renewed interest in understanding the
role of asymptotic symmetries in classical and quantum
gravity. This is primarily due to the fact that in d ¼ 4
spacetime dimensions, the quantum gravity S-matrix is
constrained by a hierarchy of soft graviton theorems. The
first two theorems in this hierarchy (namely, the leading
and subleading soft graviton theorems) are universal,
modulo the infrared loop effects. It was shown in a series
of papers [1–7] that these soft theorems are equivalent to
the Ward identities associated with an algebra of infinite
dimensional symmetries of the gravitational scattering.
These symmetries form an infinite dimensional Lie

algebra known as the extended or generalized Bondi-
Metzner-Sachs (eBMS/gBMS) algebra.1 For this paper, it
is sufficient to review the gBMS algebra at null infinity as
we shall only deal with massless excitations. This algebra is
generated by supertranslations and smooth diffeomor-
phisms of the celestial plane, known as superrotations.

The generators at future and past null infinities are
identified via an antipodal identification map which ensures
that one has a well-defined symmetry group of gravitational
scattering where the incoming states are defined on the past
boundary and outgoing states are defined on the future
boundary of an asymptotically flat spacetime.
In d ¼ 4, one finds increasing evidence that the gBMS

algebra is a symmetry algebra of gravitational scattering
and there are an infinity of charges that are conserved
during the scattering process. In the classical theory, these
charges define radiative observables (so-called event
shapes) at null infinity, more commonly known as the
memory. The supertranslation charge conservation is a
statement about the displacement memory effect [5], and
the conservation of the superrotation charge produces the
so-called spin memory [10]. Hence, one has a beautiful
synthesis of symmetry, classical radiative observables and
soft theorems, that constrains the gravitational S-matrix in
the infrared.
In d > 4, the soft graviton theorems are more robust than

in d ¼ 4, as the S-matrix is free of infrared divergences
[2,3,6]. However, it has been known since the works of
Hollands and Wald [11] that classical gravity in higher
dimensions has no displacement memory in the way it is
defined in four dimensions. The same reasoning can also be
used to argue that there can be no spin memory effect in
higher dimensions. This gives rise to an interesting puzzle
in higher dimensions. The universality of soft theorems
suggests that the S-matrix is constrained by an infinite
dimensional symmetry, but trivial event shapes at null
infinity are seemingly at odds with infinitely many con-
served charges. Recently, there has been much progress in
resolving this tension. It was first shown in [12] that in
higher even dimensions in the linearized regime, there
exists a set of boundary conditions [11–15] such that the
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1In the literature, there are two possible candidate symmetry
algebras, and Ward identities of both of these symmetries are
consistent with leading and subleading soft graviton theorems.
These two algebras are referred to as the eBMS and gBMS
algebras, respectively. For more details, we refer the reader to
[2,6,8,9].
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corresponding solution space of (linearized) Einstein equa-
tions admit supertranslation symmetry. Consequently, the
Ward identities corresponding to the supertranslation
charges were shown to be equivalent to the leading soft
graviton theorem [12]. Also, in [16], it was argued that the
supertranslation charges in d ¼ 4þ 2k (where k is any
positive integer) define an observable, which is the higher
dimensional analog of the displacement memory. In [17]
the supertranslation charges were put on a firmer footing by
an ab initio derivation of the same using the covariant phase
space formalism. In d ¼ 6, it has been shown that even in
nonlinear general relativity, supertranslation charges can
be derived from the covariant phase space formalism and
these are consistent with the known results in linearized
gravity [18].
In this paper, we are interested in exploring the sym-

metry origin of the subleading soft graviton theorem in
higher even dimensions. We show that the gBMS admits a
natural extension to six dimensions in which the Poincaré
group is enhanced to an infinite dimensional group com-
posed of supertranslations and diffeomorphisms on the
celestial planeR4 (superrotations). Superrotations in higher
dimensions have been explored in several earlier works,
and our analysis builds upon these results. In [19–21], the
authors study superrotations in linearized gravity, and the
analysis in [22] focuses on understanding the set of
boundary conditions that admit action of superrotations.
In this paper, we derive the superrotation charge in six

spacetime dimensions beyond the linearized regime. In
particular, we adopt a set of boundary conditions that
allows the leading order angular metric qab to fluctuate to
any u-independent smooth metric [22]. As is well known,
the choice of each such qab is called the frame. The unit R4

metric is an example of the so-called Bondi frame, which
will be defined rigorously in later sections.
For frames that are infinitesimally away from the Bondi

frame, we identify the correct radiative mode that trans-
forms covariantly under superrotations. We propose a
definition of the superrotation charge in the Bondi frame
such that we get the aforementioned action on the radiative
mode. We finally prove that the Ward identities corre-
sponding to such superrotation charges follow from the
subleading soft graviton theorem.
The paper is organized as follows. In Sec. II, we review

the boundary conditions that are adopted for asymptotically
flat spacetimes in higher even dimensions. In Sec. III, we
show that the corresponding asymptotic symmetry algebra
is the gBMS (which is a semidirect product of super-
translations and superrotations) and evaluate the spacetime
action on the radiative phase space. We also identify the
correct graviton mode in terms of the free data around the
Bondi frame. In Sec. IV, we propose the superrotation
charges in the Bondi frame that generates the correspond-
ing superrotation symmetry. In Sec. V, we show that the
Ward identities corresponding to the superrotation charges

follow from the subleading soft graviton theorem. We
conclude and address the future directions in Sec. VI.

II. ASYMPTOTICALLY FLAT SPACETIME
IN SIX DIMENSIONS

In this section, we review asymptotically flat spacetimes
in six dimensions. We shall analyze the corresponding
asymptotic symmetries at null infinity in six dimensions in
a modified version of the Bondi gauge [23,24], which shall
be described below.
Near future null infinity Iþ, the line element for the

above class of spacetimes takes the following form;

ds2 ¼ gμνdxμdxν

¼ Me2βdu2 − 2e2βdudr

þ gabðdza − UaduÞðdzb −UbduÞ; ð1Þ

where u ¼ t − r is the retarded time, r is the radial distance,
and za denotes the coordinate on the celestial plane2 R4.
Note that the index of Ua is lowered and raised using the
metric gab.
The componentsM, β,Ua, and gab in (1) are functions of

the ðu; r; zaÞ coordinates, and they have the following
radial expansions near Iþ [12]:

M ¼
X∞
n¼0

MðnÞðu; zÞ
rn

; β ¼
X∞
n¼2

βðnÞðu; zÞ
rn

;

Ua ¼
X∞
n¼0

UðnÞ
a ðu; zÞ
rn

;

gab ¼ r2qabðzÞ þ
X∞
n¼−1

gðnÞab ðu; zÞ
rn

≡ r2qabðzÞ þ rCabðu; zÞ þDabðu; zÞ þ
Eabðu; zÞ

r

þ Fabðu; zÞ
r2

þ � � � : ð2Þ

We consider the space of asymptotically flat geometries
where the metric on the celestial plane, qab, is chosen to be
independent of u. The interested readers can refer to [22]
for generalizations to u-dependent qab. The indices of the

components UðnÞ
a and gðnÞab are lowered and raised using qab.

Along with the expansion (1), there is an additional gauge
fixing condition, often referred to as the Bondi determinant
condition that is given as

2This is equivalent to the decompactified celestial sphere. The
coordinate transformation from the Bondi coordinates to these
can be found in [25]. All formulas written in this paper till Sec. III
trivially generalize to the celestial sphere.
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det

�
gab
r2

�
¼ detðqabÞ ¼ detðδabÞ; ð3Þ

where δab is the metric on R4. We would like to point out a
key difference between the leading order angular metric
chosen in our paper (denoted by qab) with those chosen in
earlier literature [12,17,18]. In previous works [12,17,18],
this metric was either fixed to be the unit sphere metric S4

(γab) or the metric on the planeR4 (δab) and further analysis
of asymptotic symmetries were pursued with this choice.
This led to the proposal for the asymptotic symmetry group
as the BMS group in six dimension, which is the semidirect
product of supertranslations and the Lorentz group SOð5; 1Þ.
As will be shown, just as in four dimensions, relaxing the

metric on the celestial plane to an arbitrary smooth metric
[with the determinant condition (3)] leads to an extension of
the BMS algebra in six dimensions that we refer to as the
generalized BMS algebra. In four dimensions, the choice
qab ¼ δab is referred to as the Bondi frame. However, in six
and higher dimensions, theBondi framecan beunderstood as
the choice for qab which satisfies the four-dimensional
Einstein equation (with orwithout a cosmological constant).3

Ametricqab in thenon-Bondi framedoes not satisfy the four-
dimensional Einstein equation. However, in four spacetime
dimensions, a similar definition does not apply to the
corresponding two-dimensional angular metric qab on the
celestial plane/sphere. For our purposes, the Bondi frame in
six dimensions shall always be referred to as qab ¼ δab.
Using the determinant condition (3), it can be shown that

the traces of gðnÞab are fixed in terms of gðn−1Þab . For example,

Ca
a¼0;

Da
a¼

1

2
CabCab;

Ea
a¼CabDab−

1

3
CamCmnCn

a;

Fa
a¼CabEabþ

1

2
DabDab−CamCmnDn

aþ
1

4
CamCmnCnbCba:

ð4Þ

Having expressed the general form of an asymptotically flat
spacetime, we can now solve the Einstein equations for the
above family of metrics. This also requires us to impose the
following falloff conditions on the Ricci tensor, which are
motivated by demanding the finiteness of energy flux and
other physical observables [12],

Ruu ¼Oðr−4Þ; Rur ¼Oðr−5Þ; Rua ¼Oðr−4Þ;
Rrr ¼Oðr−6Þ; Rra ¼Oðr−5Þ; Rab ¼Oðr−4Þ: ð5Þ

Using the equations above, we find that all metric compo-
nents in (2) can be expressed in terms of qab, Cab, and Dab.
For example, it can be shown that

Mð0Þ ¼ −
R̄
12

; Uð0Þ
a ¼ −

1

6
DbCb

a; ð6Þ

βð2Þ ¼ −
1

64
CabCab;

βð3Þ ¼ 1

48
ðCabCbmCm

a − 2CabDabÞ; ð7Þ

where R̄ is the Ricci scalar for the leading order angular
metric qab and Da denotes the covariant derivative with
respect to qab. The Einstein equations also impose the
following condition on Cabðu; zÞ:

∂uCabðu; zÞ ¼ −R̄tf
ab ≡ −R̄ab þ

1

4
qabR̄; ð8Þ

where R̄ab is the Ricci tensor with respect to qab. This
implies that the general solution for Cab can be written as

Cabðu; zÞ ¼ C̄abðzÞ þ uTabðzÞ; ð9Þ

where

Tab ¼ −R̄tf
ab: ð10Þ

We conclude this section with a few remarks:
(i) Dabðu; zÞ is the unconstrained dynamical data in six

dimensions; i.e, it is not determined by the equations
of motion.

(ii) In the Bondi frame, Tab ¼ 0.
(iii) In d ¼ 4, the physical News tensor (which encodes

gravitational radiation) is determined by subtracting
the Schouten tensor at Iþ from the Geroch tensor,
Φab. Φab is determined by the requirement that in
any frame at Iþ, the News is gauge invariant under
the unphysical Weyl rescaling at Iþ. There is a well-
defined relationship between Φab and the tensor Tab
in d ¼ 4 [26]. However, in six dimensions, the
analogous relationship between Tab and Φab is
not clear and is beyond the scope of this paper.
For an earlier discussion of this issue, we refer the
reader to [22].

III. GENERALIZED BMS IN SIX DIMENSIONS

In this section, we review the asymptotic symmetries
at null infinity in six dimensions. The asymptotic sym-
metry group associated with the class of metrics described
in the previous section is the group of diffeomorphisms
that preserve the form of the metric at Iþ (1) and also
satisfies the determinant condition (3). Generators of such

3For example, the cosmological constant is needed when
qab ¼ γab (the metric of the unit sphere) but is not needed when
qab ¼ δab (the metric of the unit plane).
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diffeomorphisms are vector fields which are divergence-
free at Iþ (14b).

A. Generators of supertranslations and superrotation

Consider a smooth vector field ξ of the following form:

ξ ¼ ξuðu; r; zÞ∂u þ ξrðu; r; zÞ∂r þ ξaðu; r; zÞ∂a: ð11Þ

Gauge fixing conditions (1) together with (3) imply that the
vector fields have to satisfy

Lξgrr ¼ 0; Lξgra ¼ 0; gabLξ det gab ¼ 0: ð12Þ

The above conditions fix the form of the vector fields to be

ξuðu; r; zÞ ¼ Wðu; zÞ; ð13aÞ

ξaðu;r;zÞ¼VaðzÞ−DbWðu;zÞ
Z

∞

r
e2βðr0Þgabðr0Þdr0; ð13bÞ

ξrðu; r; zÞ ¼ −
r
4
½Daξ

aðu; r; zÞ −UaDaWðu; zÞ�; ð13cÞ

whereWðu; zÞ is an arbitrary function on the celestial plane
and VaðzÞ is a smooth vector field on the same. The vector
field ξ can be determined by the falloff conditions given in
(2) along with the divergence-free condition, which are
stated as

Lξguu¼Oð1Þ; Lξgur¼Oðr−1Þ; Lξgab¼Oðr2Þ; ð14aÞ

lim
r→∞

∇μξ
μ ¼ 0: ð14bÞ

Here ∇ denotes the covariant derivative with respect to the
metric gμν given in (1). Using the conditions above,Wðu; zÞ
is fixed as

Wðu; zÞ ¼ fðzÞ þ uαðzÞ; ð15Þ

where fðzÞ is an arbitrary smooth function on the celestial
plane and α ¼ 1

4
DaVa. Thus, one can see that the vector

field ξ is parametrized by fðzÞ and VaðzÞ. The vector fields
characterized by fðzÞ [by setting VaðzÞ ¼ 0] are called the
supertranslation vector fields while the vector fields char-
acterized by VaðzÞ [by setting fðzÞ ¼ 0] are called the
superrotation vector fields. Therefore, the supertranslation
vector field ξf can be written as [18]

ξufðu; r; zÞ ¼ fðzÞ; ð16aÞ

ξafðu; r; zÞ ¼ −DbfðzÞ
Z

∞

r
e2βðu;r0;zÞgabðu; r0; zÞdr0; ð16bÞ

ξrfðu;r;zÞ¼−
r
4
½Daξ

a
fðu;r;zÞ−Uaðu;r;zÞDafðzÞ�: ð16cÞ

The superrotation vector field ξV can also be written as

ξuVðu; r; zÞ ¼ uαðzÞ; ð17aÞ

ξaVðu; r; zÞ ¼ VaðzÞ− uDbαðzÞ
Z

∞

r
e2βðu;r0;zÞgabðu; r0; zÞdr0;

ð17bÞ

ξrVðu; r; zÞ ¼ −
r
4
½Daξ

a
Vðu; r; zÞ − uUaðu; r; zÞDaαðzÞ�:

ð17cÞ

Hence, the gBMS algebra is defined as the asymptotic
symmetry algebra generated by the supertranslation vector
field (ξf) and the superrotation vector field (ξV). For the
purpose of this paper, we mainly focus our attention to
superrotations. The details of the symmetry algebra and
corresponding charge algebra is left for a future work.

B. Spacetime action on radiative phase space

Using (11), we can derive the action of supertranslations
and superrotations on the variables parametrizing the phase
space. We note that the background metric qab remains
invariant under supertranslations but transforms under the
action of superrotations,4

δ̂fqab¼ 0;

δ̂Vqab¼−2αqabþLVqab ¼−2αqabþ2qcðaDbÞVc; ð18Þ

where we use the symmetrization convention XðaYbÞ ¼
1
2
ðXaYb þ XbYaÞ. Using (18), it is easy to see that under the

action of superrotation, a Bondi frame (Tab ¼ 0) generi-
cally transforms to a non-Bondi frame (Tab ≠ 0). Upon
using a stronger falloff condition, δ̂Vgab ¼ OðrÞ, we get a
constraint on Va, which takes the form of a conformal
Killing vector (CKV) equation,

DaVb þDbVa −
qab
2

DcVc ¼ 0: ð19Þ

The solutions to the CKVequation above are the generators
of Lorentz transformations which are finite dimensional.
Hence by imposing less restrictive falloffs, we allow an
infinite dimensional extension of the Lorentz group in six
dimensions.5

4We use the notation δ̂f and δ̂V to denote the variations
computed by setting Va ¼ 0 and f ¼ 0 in δ̂ξ, respectively, in any
general frame.

5This is similar to the four-dimensional case. In four spacetime
dimensions there are two extensions possible, which is the
extended BMS [8] and generalized BMS [3,6]. The extended
BMS group is generated by Va’s, which are local CKV’s in two
dimensions. In six dimensions, this extension is not possible as
the solution to the CKV is finite dimensional.
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We now discuss the action of gBMS transformations on
the radiative phase space, i.e., Cabðu; zÞ ¼ C̄abðzÞ þ
uTabðzÞ and Dabðu; zÞ. These can be derived by studying
the variation δ̂ξgab and expanding it in powers of r. The
action of supertranslations gives

δ̂fC̄ab ¼
1

2
D2fqab − 2DaDbf þ fTab;

δ̂fTab ¼ 0;

δ̂fDab ¼ f∂uDab þ
1

4
D2fCab − Uð0Þ

ða DbÞf

þ 1

2
qabUð0ÞcDcf −

1

4
qabDcðCcdDdfÞ

−
1

2
CcðaÞDbÞDcf −DcfDcCab þ

1

2
DcfDðaCbÞc:

ð20Þ

These equations generalize the action of supertranslations
on the phase space variables in a non-Bondi frame. Upon
setting Tab ¼ 0 (Bondi frame) we recover the results
in [18].
Note that Tab is invariant under supertranslations as

δ̂fqab ¼ 0 [see (10) and (18)]. The action of superrotations
on the radiative phase space can be derived in a similar
manner,

δ̂VC̄ab ¼ LVC̄ab − αC̄ab;

δ̂VTab ¼ LVTab − 2ðDaDbαÞtf ;
δ̂VDab ¼ uα∂uDab þLVDab

þ u

�
1

4
D2αCab −Uð0Þ

ða DbÞαþ
1

2
qcðaDbÞðCcdDdαÞ

−CcðaDbÞDcα−DcαDcCab þ
1

2
qabUð0ÞcDcα

−
1

4
qabDcðCcdDdαÞ

�
: ð21Þ

The second equation above can be independently derived
by evaluating the variation δ̂VR̄ab. Note that the variation
of Dab in the equations above are expressed in terms of
Cab ¼ C̄ab þ uTab for ease of notation. In the rest of this
section and the following (Sec. IV), we analyze the action
of gBMS symmetries on the sector of the radiative phase
space where Tab ¼ 0. We note that even though this
sector is preserved under the action of infinitesimal super-
translations, under infinitesimal superrotations any con-
figuration in the Tab ¼ 0 sector is generically mapped
to a configuration where Tab ≠ 0. A general analysis of
gBMS symmetries on the full radiative phase space
at Iþ is beyond the scope of this paper and is left for
future work.

The variations (21) take a simpler form in the Bondi
frame, where we have to set Tab ¼ 0,6

δVC̄ab ¼ LVC̄ab − αC̄ab;

δVTab ¼ −2ð∂a∂bαÞtf ;
δVDab ¼ uα∂uDab þ LVDab

þ u

�
1

4
∂
2αC̄ab −Uð0Þ

ða ∂bÞαþ 1

2
qcða∂bÞðC̄cd

∂dαÞ

− C̄cða∂bÞ∂cα − ∂
cα∂cC̄ab þ

1

2
qabUð0Þc

∂cα

−
1

4
qab∂cðC̄cd∂

dαÞ
�
: ð22Þ

From (22), it is clear that the dynamical data Dab in the
Bondi frame grows as Oðjuj1Þ as we take juj → ∞.
Therefore, Dab by itself does not represent the graviton
mode (in a frame where C̄ab ≠ 0) since this is in contra-
diction with the expected falloff from the saddle point
analysis and computation of the symplectic form [18]
where one gets

lim
juj→∞

Graviton ∼O

�
1

juj2þ0þ

�
: ð23Þ

This was already noticed in [18] for the case of super-
translations in the Bondi frame, where the authors identi-
fied the graviton mode for C̄ab ≠ 0 as a redefinition ofDab,
given as

Dab → D̃ST
ab ¼ Dab −

1

4
C̄m
a C̄bm −

1

16
δabC̄mnC̄mn: ð24Þ

Using the following form for C̄ab in the Bondi frame:

C̄ab ¼ −2ð∂a∂bψÞtf ; ð25Þ

which follows from the vanishing of the Weyl tensor
Curabðu ¼ �∞; zÞ at Oðr−1Þ [12,17], the action of super-
translation on D̃ST

ab is given as

δfD̃ST
ab ¼ f∂uD̃ST

ab : ð26Þ

Surprisingly, the same redefinition but with δab → qab
and C̄ab → C̄ab þ uTab ensures that for linear deviations
from the Bondi frame, we get proper falloffs for super-
rotated fields, i.e.,

6We would like to draw attention to the notational differences
between δ and δ̂. The latter refers to a variation in any general
frame, whereas the former is a variation specifically evaluated in
the Bondi frame (Tab ¼ 0).
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δfD̃ab ¼ f∂uD̃ab;

δVD̃ab ¼ LVD̃ab þ uα∂uD̃ab; ð27Þ

where

D̃ab ¼ Dab −
1

4
qmnC̄amC̄bn −

1

16
qabC̄mnC̄mn

− u

�
1

4
qmnðC̄amTbn þ TamC̄bnÞ þ

1

8
qabTmnC̄mn

�

þOðT2Þ; ð28Þ

with the falloff condition

lim
u→�∞

D̃ab ¼ O

�
1

u2þ0þ

�
: ð29Þ

By using the redefined field (28) the News tensor ∂uD̃ab ¼
∂uDab is unchanged in the Bondi frame as Tab ¼ 0. One
might be worried that even though we are finally working
in the Bondi frame, it is necessary to include Tab in the
definition above (28). This can be explained as follows.
From (21) it is clear that Tab transforms nonhomogene-
ously; i.e., even if one starts in the Bondi frame (Tab ¼ 0),
under superrotations Tab transforms to −2ðDaDbαÞtf . The
terms which are linear in the redefinition above will ensure
that the nonhomogeneous terms generated from the varia-
tion of Dab get appropriately canceled with the nonhomo-
geneous terms generated by the variation of Tab, which is
essential in order to respect the falloff condition. To derive
the generic form for D̃ab with appropriate falloff conditions
in a general non-Bondi frame, we need to take care of
the OðT2Þ terms in (28) which is beyond the scope of
this paper.
Equations (27) and (28) are among the central results of

the paper as they display the correct phase space variables
to use in the Bondi frame in the presence of both super-
translations and superrotations.

C. Generalized BMS at I − ∪ I +

The gBMS symmetry algebra at Iþ (denoted by Gþ) is
defined as the symmetry algebra generated by supertrans-
lations and superrotations on the radiative phase space at
Iþ. Similarly, one can independently define the asymptotic
symmetry algebra at I− (denoted by G−). To define a
gravitational scattering problem that takes the incoming
scattering data at I− to outgoing scattering data at Iþ, one
must define a common asymptotic symmetry algebra at
I− ∪ Iþ. Motivated from [2,6], where the analysis was
performed in four dimensions, it is natural to propose that
in six dimensions, the diagonal subalgebra of gBMS is the
symmetry algebra of the quantum gravity S-matrix. The
diagonal subalgebra is identified using the antipodal

matching conditions on the null generators of Gþ and
G− which are given as

fþðzÞ ¼ f−ð−zÞ;
VaþðzÞ ¼ Va

−ð−zÞ: ð30Þ

Here, ðfþ; VaþÞ and ðf−; Va
−Þ denote the parametrizations

used for supertranslations and superrotations at Iþ and I−,
respectively.

IV. SUPERROTATION CHARGE
IN THE BONDI FRAME

In this section, we derive the superrotation charge in the
Bondi frame that generates the spacetime action on the
radiative phase space. As in four dimensions, the super-
rotation charge consists of two independent terms, which
we refer to as the soft charge and the hard charge,
respectively.7 We remind the readers that the metric at
the leading order in large-r in the Bondi frame is

ds2 ¼ −2dudrþ r2δabdzadzb: ð31Þ

With this choice, we shall proceed onto computing
the charges corresponding to the asymptotic symmetries8

discussed in Sec. III. Computing the charges using the
Noether procedure requires a thorough understanding of the
symplectic structure in a non-Bondi frame, which is outside
the purview of this paper. However, the same can be used to
compute the hard charge even in this case, but obtaining the
total superrotation charge is difficult. Therefore, we shall
adopt an alternative route to obtain the charge where we
exploit the connection between the soft theorem and the
Ward identities (corresponding to the charges).
The charges we obtain by this method can easily

be generalized to gravity coupled to any spin field.
Specifically, we shall consider the special case of the
gravity coupled to scalars and explicitly demonstrate the
equivalence of the Ward identity and the subleading soft
theorem in this example. Our work is based on a similar
approach by the authors in [19]. We notice certain subtleties
associated with their analysis that are delineated and
improved upon in the upcoming sections.

A. Soft charge

Motivated by the structure of the soft charge in four
dimensions, we write down the general tensor structure that
is covariant and also generates the correct transformation

7The nomenclature is motivated by analysis of these charges in
four dimensions where the soft superrotation charge is the so-
called spin memory [10].

8Even though we are working with the metric on the decom-
pactified sphere, none of the physical outcomes will change by
considering the metric on the unit sphere.
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for the radiative data C̄ab (the necessary Poisson brackets
can be read from the symplectic structure given in [18]).
We propose that with these conditions, the soft charge is
given as

QS
V ¼ 64π2

128πGN

Z
Iþ

uVbðxÞDaD̃ab

þ 1

96πGN

Z
Iþ
ðLVC̄ab − αC̄abÞ∂a∂mD̃b

m; ð32Þ

where we use the notation
R
Iþ ≡ R∞

−∞ du
R
d4z to denote

integrals over Iþ and the derivative operator DaD̃ab is
given as [25]

DaD̃ab ¼
1

64π2

�
∂
4
∂
aD̃ab −

4

3
∂b∂

2
∂
efD̃ef

�
: ð33Þ

The first term in the soft charge (32) is derived in [25] by
relating it to the CFT4 stress tensor on the boundary and also
in [27] with arguments based on the conformal properties of
such operators. In the upcoming section, we demonstrate
how this is consistent with the subleading soft theorem for
gravitons coupled to scalars. Although this has been derived
in a specific frame, C̄ab ¼ 0 (where D̃ab ¼ Dab), as seen
from the sections before, the correct variable to use in a
C̄ab ≠ 0 frame is D̃ab, and hence the first term is a
generalization of the result in [25] to a general supertrans-
lated Bondi frame. The second term in (32) is new and
follows by demanding that the charge generates the correct
spacetime transformations for C̄ab in the Bondi frame. This
requires us to use the Poisson bracket derived in [12,18],

�Z
∞

−∞
du∂2∂abD̃abðu; zÞ;ψðz0Þ

�
¼ 96πGNδðz; z0Þ: ð34Þ

Note that a derivation of QS
V from a purely asymptotic

symmetry perspective requires us to study the symplectic
structure carefully. This has been carried out in four
dimensions [6], and extending to higher dimensions is
currently a work in progress.
Wewould like to point out that the expression for the soft

charge (32) differs from the one given in [19]. To compare
the two expressions we first set C̄ab ¼ 0 in (32) as this is the
case studied in [19]. This will leave us with only the first
term in (32), which upon expanding gives

1

128πGN

Z
Iþ

uVbðzÞ
�
∂
4
∂
aDab −

4

3
∂b∂

2
∂
efDef

�
:

After performing an integration by parts, we see that the
second term in the expression above is proportional to α
and matches with the soft charge proposed in [19] up to a
proportionality factor. However, as will be shown in the
next section, if the first term is not included in the soft

charge, there is an inconsistency from the perspective of the
subleading soft graviton theorem.9

B. Hard charge

Having discussed the soft charge in the previous section,
we now derive the gravitational superrotation hard charge
by two methods. The first method employs the gravitational
stress energy tensor derived in [28] and will be explained in
this section. The same expression for the hard charge can
also be derived using the symplectic form for a hard sector
of the radiative phase space as shown in Appendix A.
Using the gravitational stress energy tensor, the super-

translation [18] and superrotation hard charges are pro-
posed as

QH
f jC̄¼0 ¼

1

8πGN

Z
Iþ

fT uu; ð35aÞ

QH
V jC̄¼0 ¼

1

8πGN

Z
Iþ

uαT uu þ VaT ua; ð35bÞ

where the stress tensors are given as [28]

T uu ¼
1

4
NabNab; ð36aÞ

T ua ¼
1

4
½Nbc∂aDbc − 2Nbc

∂cDab þ 2Nca∂bDbc�: ð36bÞ

The notation QjC̄¼0 emphasizes the fact that the back-
ground used for the computations above is the usual flat
metric without turning on supertranslations.
Upon simplifying the expressions above, the hard

charges can be written as

QH
f jC̄¼0 ¼

1

32πGN

Z
Iþ

fðzÞNabNab; ð37aÞ

QH
V jC̄¼0 ¼

1

32πGN

Z
Iþ

NabðLVDab þ uαNabÞ: ð37bÞ

As demonstrated previously, the correct phase space
variable governing the radiative data in the Bondi frame
(with C̄ab ≠ 0) is D̃ab and using the falloff condition (29),
the form of the hard charge is unchanged,

QH
f ¼ 1

32πGN

Z
Iþ

fðzÞNabNab; ð38aÞ

QH
V ¼ 1

32πGN

Z
Iþ

NabðLVD̃ab þ uαNabÞ: ð38bÞ

This charge can also be derived by analyzing the hard
sector of the symplectic structure [29]. The symplectic

9In [19], the commutator of the charge with the radiative data
was studied up to a proportionality factor, and hence the extra
term might have been missed.
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structure has been derived in [18] by working with
δqab ¼ 0, which is sufficient for the purpose of deriving
the hard charge for both supertranslation and superrotation.
The supertranslation hard charge (38a) has been derived in
[18], and in Appendix Awe describe how the superrotation
hard charge can be derived from the symplectic structure
that matches with (38b).

C. Total superrotation charge

The total superrotation charge in the Bondi frame is
given as the sum of (32) and (38b),

QV ¼ 1

32πGN

Z
Iþ

NabðLVD̃ab þ uαNabÞ

þ π

2GN

Z
Iþ

uVbðxÞDaD̃ab

þ 1

96πGN

Z
Iþ
ðLVC̄ab − αC̄abÞ∂a∂mD̃b

m: ð39Þ

Using the symplectic form (A1), it can easily be shown that
the Poisson bracket between the hard charge and the
radiative data D̃abðu; zÞ reproduces the superrotation space-
time action, i.e., δVD̃abðu; zÞ.

V. WARD IDENTITY AND SUBLEADING SOFT
GRAVITON THEOREM

In six dimensions, both the leading [30] and subleading
[31] soft graviton theorems are exact constraints on the
S-matrix of quantum gravity [32]. In four dimensions, any
statement on the S-matrix has to be understood with care as
the Dyson S-matrix is infrared divergent. However, in
higher dimensions, soft theorems are precise factorization
statements about the S-matrix which is infrared finite. Thus
a relationship of the asymptotic symmetries with the soft
theorems is likely to be a rather robust statement about
asymptotic symmetries of the S-matrix even when loop
effects are taken into account. In this section, we will argue
that the subleading quantum soft graviton theorem with
external states being massless scalars in six dimensions
imply the Ward identity for DiffðR4Þ asymptotic sym-
metries. The similar analysis with finite energy external
gravitons (or any other nonzero spin) requires a careful
understanding of quantization of the gravitons in a non-
Bondi frame, which we leave for future work.
We begin with the quantization of the soft charge in the

Bondi frame. Using the saddle point approximation, the
mode expansion of the graviton in the Bondi frame is given
as10(these formulas are derived in great detail in [25,33],

where in order to match with their conventions we need to
replace u → u

2
in our formulas)

D̃abðu; ẑÞ

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
ð2πÞ3

Z
∞

0

dωω½ãabðω; ẑÞe−iωu þ ã†abðω; ẑÞeiωu�;

ð41Þ

where ãabðω; ẑÞ and ã†abðω; ẑÞ are the annihilation and
creation operators for the graviton in the vacuum labeled by
C̄ab, respectively (see Sec. VA). They satisfy the following
commutation relation:

½ãabðω1; z1Þ; ã†cdðω2; z2Þ� ¼
2ð2πÞ5
ω3
1

δab;cdδðω1;ω2Þδðz1; z2Þ;

ð42Þ

with δab;cd ¼ 1
2
ðδacδbd þ δadδbcÞ − 1

4
δabδcd.

One can now substitute the expansion (41) in (32)
to write the quantized soft charge as11

QS
V ¼ i

2
ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
Z

d4zlim
ω→0

VbDa

× ½ð1þ ω∂ωÞãab − ð1þ ω∂ωÞã†ab�

−
1

96π2
ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
Z

d4zlim
ω→0

∂
a
∂
mðãbm þ ã†bm Þ

× ðLVC̄ab − αC̄abÞ: ð44Þ

Note that to promote the classical expression for the soft
charge (32) to the quantized version above, we have chosen
a particular operator ordering for the terms in the second
line. This choice will become clear after defining the
vacuum state, as done in the following subsection.
Subsequently, we will see that the Ward identity of the
superrotation charges on the states built from this vacuum
follows from the subleading soft graviton theorem.

A. Vacuum state

Motivated from [18,29], a convenient choice for labeling
the vacua is to choose them to be the eigenstates of the

10There is an analogous mode expansion for a field with spin-s
in six dimensions,

X̃m1���ms
ðu; x̂Þ∝

Z
∞

0

dωω½ãm1���ms
ðx̂Þe−iωuþ ã†m1���msðx̂Þeiωu�: ð40Þ

11The leading and the subleading soft modes take the following
forms in terms of the creation and annihilation operators
Z

∞

−∞
duD̃abðu;zÞ¼−

ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
2ð2πÞ2 lim

ω→0
½ãabðω;zÞþ ã†abðω;zÞ�;

Z
∞

−∞
duuD̃abðu;zÞ¼

i
ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
2ð2πÞ2 lim

ω→0
ð1þω∂ωÞ½ãabðω;zÞ− ã†abðω;zÞ�;

ð43Þ
where the factor of 2 in the denominator comes from the fact that
we only deal with ω > 0.
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operators C̄ab and Tcd.
12 Soft theorems are usually studied

in the Fock vacuum, which corresponds to choosing the
vacuum state with zero eigenvalue for C̄ab and Tcd, i.e.,
jvac; C̄ab ¼ 0; Tcd ¼ 0i. States with finite energy excita-
tions can be obtained from the vacuum state by acting with
the creation operator on these states. For example, a generic
incoming state jini can be expressed as

jini ¼ ã†h1���hs1 ðω1; z1Þ � � � ã†h1���hsn ðωn; znÞ
× jvac; C̄ab ¼ 0; Tcd ¼ 0i; ð45Þ

where the operator ã†h1���hsðω; zÞ denotes the creation oper-
ator for a particle of spin-s with energy ω and momenta
along z. One can similarly define the outgoing states.
For this definition, the reason for the choice of operator

ordering in (44) is now evident. The action of the soft
charge on states defined in (45) will not receive any
contribution from the second term in (44),

QS
V jini ¼

i
2

ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
Z

∞

0

dωVbDa

× ½ð1þ ω∂ωÞãab − ð1þ ω∂ωÞã†ab�jini: ð46Þ

There exists a similar decomposition for the hard charge but
the exact structure will not be necessary for our purpose.

B. Quantized superrotation charge
for scalars coupled to gravity

In this subsection, we consider the special case of the
scalar field coupled to gravity and derive the action of the
hard charge on the matter phase space. Wewill later use this
to demonstrate how the Ward identities associated with the
superrotation charges are consistent with the subleading
soft graviton theorem when the external states are massless
scalars.
By using the saddle point approximation, the quantized

scalar field operator in the Bondi frame is given as

ϕð2Þðu;zÞ¼−
1

ð2πÞ3
Z

∞

0

dωω½ãðω;zÞe−iuωþ ã†ðω;zÞeiuω�;

ð47Þ

where ϕð2Þ denotes the 1
r2 term in the large-r expansion of

the field ϕðu; r; zÞ, which is the dynamical mode in six
dimensions. The superrotation action on ϕð2Þ is given as

δVϕ
ð2Þ ¼ lim

r→∞
r2Lξϕ¼LVϕ

ð2Þ þuα∂uϕð2Þ þ2αϕð2Þ: ð48Þ

Taking an inverse Fourier transform of this equation, we
obtain the spacetime action on the creation operator

δV ã†ðω; zsÞ ¼ LV ã†ðω; zsÞ − αω∂ωã†ðω; zsÞ
¼ Vc

∂cã†ðω; zsÞ − αω∂ωã†ðω; zsÞ
≡ iJVðω; zsÞ: ð49Þ

This is equivalent to evaluating the commutator of the hard
charge with the creation operator ½QH

V ; ã
†ðω; zsÞ�.

C. Subleading soft graviton theorem and Ward
identity of superrotation charges

We start by evaluating the Ward identity for the super-
rotation charges for massless external scalars built from the
vacuum state described in Sec. VA that we expect to be
implied from the subleading soft graviton theorem. This
can be written as

houtj½QV;S�jini¼0⇒houtj½QS
V;S�jini¼−houtj½QH

V ;S�jini;
ð50Þ

with the incoming and outgoing states being massless
scalars. As explained in the previous section, the charge can
be written as a sum of soft and hard charges. Using the
expression of the soft charge (46) and the action of the hard
charge on the external states (49), the Ward identity can be
written as13

1ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
Z

d4zsDaVbðzsÞlim
ω→0

ð1þω∂ωÞhoutjãabðω;zsÞSjini

¼−i
�X

out

JiV −
X
in

JiV

�
houtjSjini; ð51Þ

where JiV is the operator defined in (49) acting on the ith
external scalar.
In six dimensions, the subleading soft graviton theorem

for the external particles being scalars can be written as

1ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p lim
ω→0

ð1þ ω∂ωÞhoutjãabðω; zsÞSjini

¼ −i
�X

i

ϵμνabk
i
νpρ

p · ki
J i

μρ

�
houtjSjini; ð52Þ

where ϵμνab denotes the polarization tensor (with the polari-
zation indices denoted by a, b) of the soft graviton with
momenta pμ ¼ ωp̂μ, where p̂μ denotes the unit null
momenta parametrized by the flat coordinates zs, ki denotes
the momenta of the external scalar particle (which is
parametrized by energy ωki and zki ), J

i
μν denotes the total

angular momenta acting on the ith external particle, and the
sum runs over all the external particles. The subleading soft

12Note that we use the same notation for the operators and also
the classical fields.

13Note that in the equation below we have used crossing
symmetry to relate the incoming to outgoing subleading soft
graviton modes.
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graviton theorem (52) in the flat null coordinates takes the
following form [25]:

1ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p lim
ω→0

ð1þ ω∂ωÞhoutjãabðω; zsÞSjini

¼
X
i

�
Pc
abðzs − zkiÞ∂zcki þ

1

4
∂cPc

abðzs − zkiÞωki∂ωki

�

× houtjSjini; ð53Þ

where

Pc
abðxÞ ¼

1

2

�
xaδcb þ xbδca þ

1

2
xcδab −

4xaxbxc

x2

�
: ð54Þ

We will now derive the Ward identity (51) from the
subleading soft theorem (52). As shall be seen below,
the linear terms in Pc

abðxÞwill not affect the calculation, and
therefore these are an artifact of the gauge choice. To derive
the Ward identity, we smear the left-hand side (LHS) of the
soft theorem with the function

R
d4zsDaVbðzsÞ.

This will reproduce the LHS of the Ward identity (51).
Subsequently, by performing the same operation on the
right-hand side (RHS) of the soft theorem (53), we get the
following two terms:

X
i

Z
d4zsDaVbðzsÞPc

abðzs − zkiÞ∂zcki ¼
X
i

VcðzkiÞ∂zcki ;

ð55Þ
X
i

Z
d4zsDaVbðzsÞ

1

4
∂cPc

abðzs − zkiÞωki∂ωki

¼
X
i

αðzkiÞωki∂ωki
: ð56Þ

The equations above follow from the following identity
(a derivation of this result is given in Appendix B):

1

64π2

�
∂
4
∂
aPc

abðxÞ −
4

3
∂
2
∂
ef
b Pc

efðxÞ
�
¼ −δcbδð4ÞðxÞ: ð57Þ

By taking the sum of (55) and (56), one recovers the JV
operator in (49), and hence, the RHS of the Ward identity
(51) follows.
The extension of this proof to particles of arbitrary spin

coupled to gravity in d > 4 poses some subtleties that will
be addressed in a future study.

VI. CONCLUSION AND DISCUSSION

A. Main result

In this paper, we study the symmetries of nonlinear
general relativity in six-dimensional flat spacetime far away
from sources. We work with the special case where we only

have massless fields, and therefore it is convenient to
perform such analysis near null infinity. We start by
analyzing the equations of motion and the gauge conditions
that enable us to identify the free data in the theory (Sec. II).
In Sec. III, we find the generic set of transformations that

keep the asymptotic form of the metric invariant (thereby
defining falloff conditions) and also respect the gauge
conditions. Such transformations are generated by two
classes of vector fields, namely supertranslations and
superrotations, which are the infinite dimensional extension
of the Poincaré generators. While supertranslations leave
the leading order angular metric at Iþ invariant, the action
of superrotation vector fields are nontrivial. We also
evaluate the action of these generators on the free data
and identify the appropriate radiative mode that is con-
sistent with the falloff conditions.
Having found the generators of the transformations, in

Sec. IV, we compute the charges corresponding to the
symmetries by demanding that they generate the correct
spacetime action of the phase space variables. For sim-
plicity, we make an assumption by restricting ourselves to
variations near Bondi frames. We find that the charges split
up into two pieces, one the hard piece and the other the soft
piece. Further, we find that the soft charge has a term
depending on the choice of the vacuum state labeled by
C̄ab, which is the OðrÞ term of the metric component gab.
Following the computations in d ¼ 4 [29], we demonstrate
how the hard charge can be obtained using the covariant
phase space formalism on the hard phase space. It is
expected that the full symplectic structure can be derived
using the Crnkovic-Witten symplectic form [34], and we
leave that for future work.
Finally in Sec. V, we demonstrate how the subleading

soft theorems in nonlinear general relativity in the Bondi
frame can be used to derive the Ward identity correspond-
ing to the superrotation charges obtained via the asymptotic
symmetries.

B. Angular momentum aspect

It was shown in earlier works [18] that the super-
translation charge can be expressed in terms of the
Bondi mass aspect Mð3Þ in the nonlinear theory.
Motivated by the results in the linearized theory [20],
we similarly expect that the superrotation charge can be

expressed in terms of the angular momentum aspect, Uð3Þ
a ,

in the nonlinear theory, and we leave this for a future work.

C. Non-Bondi frames

To evaluate the charges corresponding to asymptotic
symmetries, we have restricted ourselves to small variations
around the Bondi frame. The deviation from the Bondi
frame is controlled by the value of the tensor Tab,and in
this paper we neglect terms of OðT2Þ. This assumption is
physically motivated by the fact that in any scattering
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process we always set the metric on the celestial plane to be
that of the metric of flat space, which is the Bondi frame
(Tab ¼ 0). However, this also places a restriction on the
classes of superrotations that are allowed, and therefore a
complete understanding of this would require an analysis
involving an arbitrary value of Tab. A generic analysis of
this nature will also allow us to gain insight into the
asymptotic symmetries corresponding to double soft
theorems [29].

D. General metric expansions

While defining the falloff conditions for the metric
components in (1), we have assumed that βð0Þ ¼ 0 and
also that there are no logarithmic terms in the metric
expansion. However, in [22], the author demonstrates that
there exists more general falloff conditions that are com-
patible with asymptotically flat spacetimes. It will be
interesting to see if the superrotation charges receive any
corrections when one includes such terms in the expansion.

E. Odd dimensions

Even though we have worked out most of the results in
six-dimensional spacetime, our results should be easily
generalizable to any even dimension >4. However, the
extension of these results to odd dimensions is not
straightforward (see [35] for some recent progress).
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APPENDIX A: SUPERROTATION HARD
CHARGE FROM COVARIANT PHASE SPACE

From the symplectic structure at Iþ for hard phase space
in nonlinear general relativity [18,29], we can give a
proposal for the derivation of the superrotation hard charge
(38b) in the Bondi frame. A similar derivation for the
supertranslation hard charge is already given in Sec. 3 of
[18]. A rigorous derivation of the charge in any generic
frame requires a more careful analysis of the symplectic

structure at Iþ which involves a study of generic variations
of the background metric qab. This is currently under
progress, and we hope to address it in a future work.
The part of the symplectic form in Eq. (3.8) of [18]

contributing to the hard charge is given as

ΩHðδ; δ0Þ ¼ −
1

32πGN

Z
Iþ

δD̃ab ∧ δ0∂uD̃ab: ðA1Þ

The superrotation hard charge is defined as

δ0QH
V ¼ ΩHðδ0; δVÞ; ðA2Þ

where the variation δ0 is defined such that δ0δab ¼ 0. Upon
substituting the variations given in (27) we obtain14

δ0QH
V ¼ 1

32πGN

Z
Iþ

δ0Nab½2uαNab þ 4αD̃ab�

þ 1

32πGN

Z
Iþ
½δ0NabLVD̃ab þ δ0NabLVD̃ab�

≡ 1

32πGN
½δ0QHð1Þ

V þ δ0Q
Hð2Þ
V �: ðA4Þ

Our goal is to express the expression on the RHS as a total
variation in δ0. The first term in this can be simplified to
give

δ0Q
Hð1Þ
V ¼

Z
Iþ

uαδ0ðNabNabÞ þ 4

Z
Iþ

αδ0NabD̃ab: ðA5Þ

As we see below, the second term in the expression above

gets canceled by a contribution arising from δ0Q
Hð2Þ
V ,

δ0Q
Hð2Þ
V ¼

Z
Iþ

δ0ðNabVc
∂cD̃abÞ

þ
Z
Iþ

δ0½NabD̃c
b∂aVc þ ða ↔ bÞ�

− 4

Z
Iþ

αδ0NabD̃ab: ðA6Þ

Hence, upon summing up the two expressions above we
get a total variation in δ0 on the RHS, which then indicates
that we can perform an integration in δ0 to give QH

V ,

QH
V ¼ 1

32πGN

Z
Iþ

Nab½uαNab þ LVD̃ab�; ðA7Þ

which is the same charge derived using different methods in
the previous section (35b).

14We also need the variation of the inverse δVD̃ab, which can
be evaluated as

δVD̃ab ¼ δVðqacqadD̃cdÞ ¼ LVD̃ab þ uα∂uD̃ab þ 4αD̃ab: ðA3Þ
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APPENDIX B: DERIVATION OF THE
IDENTITY (57)

In15 this appendix we prove Eq. (57), i.e.,

1

64π2

�
∂
4
∂
aPc

abðxÞ −
4

3
∂b∂

2
∂
efPc

ef

�
¼ −δcbδð4ÞðxÞ; ðB1Þ

where Pc
abðxÞ ¼ 1

2
½xaδcb þ xbδca þ 1

2
xcδab − 4

x2 x
cxaxb�. We

first note that the only term in Pc
abðxÞ that contributes to the

equation above is the last term, i.e., 1
x2 x

cxaxb, as the terms
that are linear in xa are annihilated by the derivative
operators. To carefully handle such terms and notice the
presence of delta functions, it is instructive to deform the
pole at x ¼ 0 to a slight imaginary value by x2 → x2 þ ϵ2

where the limit ϵ → 0 has to be carefully taken in the last
step of the computation, thus giving rise to terms involving
delta functions in the calculation. With this in place we can
evaluate the derivatives without worrying about the appear-
ance of the delta function in the intermediate steps.
Therefore we get the following terms:

1

64π2

�
∂
4
∂
aPc

abðxÞ −
4

3
∂b∂

2
∂
efPc

ef

�

¼ lim
ϵ→0

�
1

2π2
∂
c
b

�
ϵ6

ðx2 þ ϵ2Þ4
�
−
12

π2
δcbϵ

6

ðx2 þ ϵ2Þ5
�
: ðB2Þ

To take the limit we need to keep in mind that these are
distributions which are integrated against test functions,

and hence we integrate the LHS against a spherically
symmetric test function F ðjxjÞ (which has a sufficiently
fast falloff) and obtain

Z
d4xF ðjxjÞ 1

64π2

�
∂
4
∂
aPc

abðxÞ−
4

3
∂b∂

2
∂
efPc

ef

�

¼ lim
ϵ→0

Z
d4xF ðjxjÞ

�
1

2π2
∂
c
b

�
ϵ6

ðx2þ ϵ2Þ4
�
−
12

π2
δcbϵ

6

ðx2þ ϵ2Þ5
�

¼ lim
ϵ→0

Z
∞

0

djxjjxj3jS3jF ðjxjÞ

×

�
1

2π2
∂
c
b

�
ϵ6

ðjxj2þ ϵ2Þ4
�
−
12

π2
δcbϵ

6

ðjxj2þ ϵ2Þ5
�
; ðB3Þ

where S3 ¼ 2π2. As shown in [37], such expressions are
simplified by expanding F ðxÞ in a Taylor series, and upon
performing the integrals and taking the limit ϵ → 0 we
obtain

Z
d4xF ðjxjÞ 1

64π2

�
∂
4
∂
aPc

abðxÞ −
4

3
∂b∂

2
∂
efPc

ef

�

¼ −δcbF ð0Þ: ðB4Þ

As this is true for any generic test function F ðxÞ we
conclude that

1

64π2

�
∂
4
∂
aPc

abðxÞ −
4

3
∂b∂

2
∂
efPc

ef

�
¼ −δcbδð4ÞðxÞ;

thereby proving the identity (57).
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