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We use N ¼ 2� and cascading gauge theory holographic models to extract the general features of the
gravitational susceptibility κ of strongly coupled nonconformal quark-gluon plasma. We show that in
theories with a relevant coupling constant the gravitational susceptibility is renormalization scheme
dependent. We propose to use its temperature derivative, i.e., dκ

d lnT, as a scheme-independent characteristic
of a quark gluon plasma. Although κ is a thermodynamic quantity, its critical behavior can be drastically
distinct in the vicinity of seemingly identical thermal phase transitions.
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I. INTRODUCTION AND SUMMARY

Modern relativistic hydrodynamics [1] is a widely
accepted framework to analyze strongly coupled quark-
gluon plasma (QGP) produced in high energy heavy-ion
collisions [2–6]. It is an effective theory of the conservation
law of the fluid stress-energy tensor1 Tμν,

∇μTμν ¼ 0; Tμν ¼
X∞
n¼0

Tμν
ðnÞ; ð1:1Þ

organized as an expansion in the gradients of its four-
velocity uμ, Tμν

ðnÞ ∼∇nu. It is deemed to be applicable close

to equilibrium and in weakly curved background space-
times.2 Specifically,3 at zero order in the gradients, the
stress-energy tensor is that of the thermal equilibrium of the
theory in Minkowski space-time,

Tμν
ð0Þ ¼ ðϵþ PÞuμuν þ Pgμν ¼ ϵuμuν þ PΔμν;

Δμν ≡ gμν þ uμuν; gμνuμuν ¼ −1; ð1:2Þ

where the pressure P is related to the energy density ϵ
via the equilibrium equation of state P ¼ PeqðϵÞ, and gμν is

the background space-time metric tensor. Additionally, the
local temperature T and the entropy density s are intro-
duced as

ϵþ P ¼ sT; dϵ ¼ Tds: ð1:3Þ

At the first-order in the velocity gradients constitutive
relations between the stress-energy tensor Tμν

ð1Þ and the

four-velocity require two-independent transport coeffi-
cients—the shear η, and the bulk ζ viscosities:

Tμν
ð1Þ ¼ −ησμν − ζΔμν∇αuα;

σμν ≡ ΔμαΔνβ

�
∇αuβ þ∇βuα −

2

3
Δαβ∇γuγ

�
: ð1:4Þ

The sensitivity of the fluid to the space-time background
curvature arises at the second-order in the velocity gradients.
At the second-order in the gradient expansion, there are
5 second-order transport coefficients, if the fluid is con-
formal [9], and 15 coefficients for a general nonconformal
theory [10]. In this paper we will be interested in the
gravitational coupling of the general hydrodynamics, so we
present only the relevant terms of the Romatschke classi-
fication [10]:

Tμν
ð2Þ;grav ¼ κðRhμνi − 2uαuβRαhμνiβÞ þ 2κ�uαuβRαhμνiβ

þ Δμνðζ5Rþ ζ6uαuβRαβÞ; ð1:5Þ

where

Rμhναiβ ≡ 1

2
Rμκσβ

�
Δν

κΔα
σ þ Δν

σΔα
κ −

2

3
ΔναΔκσ

�
ð1:6Þ
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1We consider uncharged fluids here. The general hydrody-
namic treatment must include the conservation of all conserved
four-currents Jμi of the theory.

2As in most effective theories, the series expansion in (1.1) is
asymptotic and has zero radius of convergence [7,8].

3We are using the Landau-Lifshitz frame.
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is constructed from the curvature tensor Rμναβ of the
background metric gμν. Of the four gravitational transport
coefficients fκ; κ�; ζ5; ζ6g only the gravitational susceptibil-
ity κ is independent: non-negativity of the entropy current
divergence requires [11–13]

κ� ¼ κ −
T
2

dκ
dT

;

ζ5 ¼
1

2

�
c2sT

dκ
dT

− c2sκ −
κ

3

�
;

ζ6 ¼ c2s

�
3T

dκ
dT

− 2T
dκ�

dT
þ 2κ� − 3κ

�
− κ þ 4

3
κ� þ λ4

c2s
;

ð1:7Þ

where cs is the speed of the sound wave

c2s ¼
dP
dϵ

; ð1:8Þ

and λ4 is the second-order nonlinear transport coefficient
appearing in Tμν

ð2Þ as [10]

Tμν
ð2Þ ¼ � � � þ λ4∇hμ ln s∇νi ln sþ � � � : ð1:9Þ

Both κ and λ4 are thermodynamic quantities and can be
extracted from the Euclidean (correspondingly) 2- and 3-
point correlation functions of the stress-energy tensor4 [16]

κ ¼ lim
kz→0

∂
2

∂k2z
Gxy;xy

E ðkÞjk0¼0;

λ4 ¼ −2κ� þ κ −
c4s
2

lim
px;qy→0

∂
2

∂px∂qy
Gtt;tt;xy

E ðp; qÞjp0;q0¼0:

ð1:10Þ

In this paper we will be interested in the gravitational
susceptibility κ of a QGP. Being a thermodynamic coef-
ficient, it can, in principle, be computed from the corre-
sponding gauge theory lattice implementation [16]. Instead,
we use the holographic correspondence [17,18] and extract κ
from the retarded correlation function of the gauge theory
stress-energy tensor [9]. We focus on two examples of
holographic models:

(i) the mass-deformed N ¼ 4 supersymmetric SUðNÞ
Yang-Mills theory also know as N ¼ 2� gauge
theory [19,20];

(ii) the N ¼ 1 supersymmetric SUðN þMÞ × SUðNÞ
cascading gauge theory [21].

Both theories are nonconformal—in the former, the scale
invariance is broken explicitly by the mass terms for the
bosonic and the fermionic components of the N ¼ 2

hypermultiplet; in the latter, the scale invariance is broken
spontaneously through the dimensional transmutation of the
gauge couplings. Our holographic models are examples of
top-down,5 rather than phenomenological, holography.
Before we report our result, we review what is known in

the literature.
(i) The gravitational susceptibility of N ¼ 4 SUðNÞ

SYM in the planar limit and at infinitely large ’t
Hooft coupling constant was computed in [9]

κ
���
N¼4

¼ T2N2

8
⇒

4π2κT
s

����
N¼4

¼ 1;

2π2T2

s
dκ
dT

����
N¼4

¼ 1; ð1:11Þ

where we also presented two benchmark quantities
that would allow for comparison with other models.

(ii) The finite ’t Hooft coupling corrections for the
N ¼ 4 QGP κ were evaluated in [25]

4π2κT
s

����
N¼4

¼ 1 −
265

8
ζð3Þðg2YMNÞ−3=2 þ � � � :

ð1:12Þ

(iii) For weakly coupled SUðNÞ gauge theory [26]

4π2κT
s

����
SUðNÞ;free

¼ 5

2
: ð1:13Þ

(iv) κ was determined directly to the leading order in
lattice perturbation theory for QCD QGP in [27].

(v) Using large-N QFT techniques, the computation of
κ were performed for the OðNÞ model for any
coupling value in [28].

(vi) κ was computed in certain phenomenological non-
conformal models in [29]. However, the validity of
the results presented there should be verified with the
implementation of the holographic renormalization
—at least for the class of models we consider here the
proper treatment of the holographic renormalization,
including the finite counterterms and the correspond-
ing issue of the scheme dependence, is crucial to
obtain correct results.

We now summarize our results:
(i) It is well known that in a quantum field theory (QFT)

the expectation value of the stress-energy tensor is
renormalization scheme dependent. From the holo-
graphic perspective, renormalization of the boundary

4See also [14,15].

5While some observables, e.g., the ratio of the shear viscosity
to the entropy density, are universal in all holographic models in
the supergravity approximation [22], certain exotic phase tran-
sitions are ubiquitous in phenomenological holography, but not in
string theory [23,24].
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correlation functions is sensitive to finite counter-
terms—one can crudely think that the energy density
and the pressure of Tμν

ð0Þ ¼ diagfϵ; P; P; Pg in (1.2)
are defined up to additive constants. If the theory, as
well as its regularization and the renormalization,
preserves supersymmetry, some of the finite counter-
terms can be fixed requiring the vanishing of the
stress-energy tensor expectation value in a super-
symmetric vacuum state, i.e., as T → 0, see [30] for
example. For a QFT in curved space-time and/or with
time-dependent relevant couplings, there are even
more possibilities for finite counterterms and thus the
renormalization scheme dependence.6 These new
counterterms cannot be fixed requiring Minkowski
space-time supersymmetry. As we explicitly show in
Sec. II, holographic models with relevant couplings
for dimension Δ ¼ f2; 3g operators—e.g., the mass
terms fm2

b; mfg for the bosons and fermions—
introduce the scheme dependence for κ. Specifically,
the gravitational susceptibility in such models is
defined up to arbitrary constants fδf; δbg:

κ → κ þ δfm2
f þþδbm2

b: ð1:14Þ

The corresponding finite counterterms involve the
boundary curvature tensor, and thus are insensitive to
Minkowski supersymmetry. From (1.14) it is clear
that the renormalization scheme independent quan-
tity is dκ

d lnðTÞ; to this end we propose to characterize

the gravitational susceptibility of QGPs with Rκ,

Rκ ≡ 2π2
T
s

dκ
d lnT

¼ 4π2
T
s
ðκ − κ�Þ; ð1:15Þ

where the normalization is chosen with (1.11)
in mind.

(ii) Supersymmetry tames somewhat the value of Rκ

(1.15): in supersymmetric N ¼ 2� theory with
m2

b ¼ m2
f,

RκjN¼2�;mb¼mf
∈
�
1;
5

4

�
; as

m2
b

T2
∈ ½0;þ∞Þ; ð1:16Þ

and in N ¼ 1 supersymmetric cascading gauge
theory Rκ grows as

Rκjcascading ∈ ½1; 2.23ð1Þ�; as T ∈ ½TχSB;þ∞Þ;
TχSB ¼ 0.541ð9ÞΛ; ð1:17Þ

whereΛ is the strong coupling scale of the cascading
gauge theory. The results reported are for the

cascading QGP with the unbroken chiral sym-
metry—this phase becomes perturbatively unstable
to chiral symmetry breaking fluctuations below TχSB

[32]. We cannot use holography to compute κ in the
confining phase of the theory, which occurs, as a
large-N suppressed first-order phase transition, for
T < Tc ¼ 0.614ð1ÞΛ [33]. The deconfined phase of
the cascading gauge theory with spontaneously
broken chiral symmetry is unstable to energy density
fluctuations (the sound waves) [34], thus we do not
report the susceptibility in this phase as well.

(iii) N ¼ 2� gauge theory with mb ≠ 0 and mf ¼ 0
completely breaks the supersymmetry. Here we find

RκjN¼2�;mf¼0∈ ½1;−∞Þ; as
m2

b

T2
∈ ½0;5.4ð1Þ�: ð1:18Þ

The thermal deconfined states of the theory exist
only for T > Tcrit ¼ 2.3ð3Þmb. In the vicinity of
the critical point, i.e., as T → Tcrit þ 0, the speed of
the sound waves vanishes and the specific heat
diverges [35]

c2s ∝ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T − Tcrit

p
; cV ∝ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T − Tcrit
p ; ð1:19Þ

and we further find, see Sec. IV,

RκjN¼2�;mf¼0 ∝∓ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T − Tcrit

p : ð1:20Þ

The signs in (1.19) and (1.20) correlate: there is an
additional deconfined phase of the theory (the
lower signs), which is however unstable to sound
waves, c2s < 0.

(iv) Cascading gauge theory plasma in the chirally
symmetric phase has an identical critical point to
that of N ¼ 2� (1.19). The analogous (terminal)
temperature here is Tu ¼ 0.537ð3ÞΛ [36], and as
T → Tu þ 0 we have

c2s ∝ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T − Tu

p
; cV ∝ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T − Tu
p : ð1:21Þ

Once again, there are two deconfined phases, both
existing only for T > Tu, that join at the terminal
temperature Tu. Interestingly, we find that despite
identical critical thermodynamics ofN ¼ 2� and the
cascading QGP, the gravitational susceptibility of
the cascading gauge theory plasma at criticality is
very different (see Sec. III)

Rκjcascading ¼ const|ffl{zffl}
>0

∓∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T − Tu

p
: ð1:22Þ

As we explore in more details in Sec. III, as
T → Tu þ 0,

6See a discussion of this issue in the holographic context
in [31].
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κ

T2

����
cascading

¼C0þC1ðT−TuÞ�C2ðT−TuÞ3=2þ��� ;

ð1:23Þ

where C2 > 0. Note that κ of the cascading gauge
theory plasma is scheme independent as the theory
lacks relevant couplings.

Within our computational framework, see Sec. II, we will
also have access to the shear relaxation time τπ . This
second-order transport coefficient enters Tμν

ð2Þ as [9]

Tμν
ð2Þ ¼ � � � þ ητπ

�
u ·∇σμν þ∇ · u

3
σμν

�
þ � � � : ð1:24Þ

(i) The shear relaxation time was computed for the
N ¼ 4 SUðNÞ SYM plasma in the planar limit and
at infinitely large ’t Hooft coupling constant in [9]

TτπjN¼4 ¼
2 − ln 2

2π
: ð1:25Þ

(ii) The finite ’t Hooft coupling corrections for the
N ¼ 4 QGP τπ were evaluated in [25]

TτπjN¼4 ¼
2 − ln 2

2π
þ 375

32π
ζð3Þðg2YMNÞ−3=2 þ � � � :

ð1:26Þ

To report results obtained in this work we introduce

Rτπ ≡
2π

2 − ln 2
Tτπ; ð1:27Þ

where the normalization is chosen with (1.25) in mind.
(i) Unlike the gravitation susceptibility, the shear re-

laxation time of a QGP is free from renormalization
scheme ambiguities, see Sec. II for details.

(ii) In the supersymmetric N ¼ 2� theory with
m2

b ¼ m2
f,

Rτπ jN¼2�;mb¼mf
∈ ½1; 1.1ð5Þ�; as

m2
b

T2
∈ ½0;þ∞Þ;

ð1:28Þ

while in the cascading gauge theory

Rτπ jcascading ∈ ½1; 1.8ð8Þ�; as T ∈ ½TχSB;þ∞Þ;
ð1:29Þ

where TχSB is given in (1.17).
(iii) In the vicinity of the critical point (1.19), the

relaxation time of the N ¼ 2� plasma diverges as
(see Sec. IV)

Rτπ jN¼2�;mf¼0 ∝∓ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T − Tcrit

p : ð1:30Þ

Note that the minus sign occurs on the thermody-
namic branch with c2s > 0; we find that

TτπjN¼2�;mf¼0 < 0 for
T
Tcrit

∈ ð1;1.003ð0ÞÞ: ð1:31Þ

Given that the model discussed is a top-down
holography, it would be extremely interesting to
study whether a negative shear relaxation time
implies some instabilities and/or causality violations.
Typically, a combination of transport coefficients
appears in physical observables. For example, the
dispersion relation of the sound waves takes the form

ω ¼ �csq − iΓq2 � Γ
cs

�
c2sτeff −

Γ
2

�
q3 þOðq4Þ;

ð1:32Þ

where

Γ ¼ 2η

3sT
þ ζ

2sT
; τeff ¼

τπ þ 3
4
ζ
η τΠ

1þ 3
4
ζ
η

; ð1:33Þ

with τΠ being the bulk relaxation time [10]. It was
determined in [37] that τeff > 0 in N ¼ 2� QGP in
the phase with c2s > 0, and diverges as τeffT ∝ �
ð1 − Tcrit=TÞ−1=2 in the critical region (1.19).

(iv) The shear relaxation time of the cascading QGP is
positive and finite, but is not analytic in the critical
region (1.21) (see Sec. III)

Rτπ jcascading ¼ const|ffl{zffl}
>0

∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T − Tu

p
: ð1:34Þ

The rest of the paper is organized as follows. In Sec. II
we review the holographic framework used to compute κ.
We explain why κ, but not τπ, is renormalization scheme
dependent in theories with Δ ¼ f2; 3g relevant couplings.
We discuss κ and τπ of the cascading gauge theory and
N ¼ 2� QGPs in Secs. III and IV correspondingly.

II. HOLOGRAPHIC COMPUTATION OF κ

Given the second-order formulation of the relativistic
hydrodynamics reviewed in section I, the ðxy; xyÞ-
component of the retarded stress-energy tensor Green’s
function in the limit of the small frequency ω and the small
momentum q ¼ jq⃗j takes the form [10]
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Gxy;xy
R ðω; qÞ ¼ P − iηωþ ðητπ −

κ

2
þ κ�Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

≡T2Γ̂ω

ω2 þ ð− κ

2
Þ|ffl{zffl}

≡T2Γ̂q

q2 þOðωq2;ω3Þ; ð2:1Þ

where we introduced dimensionless quantities Γ̂ω and Γ̂q.
Notice that

T2ðΓ̂ω þ Γ̂qÞ ¼ ητπ þ κ� − κ ¼ ητπ −
T
2

dκ
dT

; ð2:2Þ

where we used (1.7).
The computation of the Green’s function (2.1) in

holography was explained in [38]:
(i) Consider the five-dimensional bulk gravitational

action Sbulk, dual to some boundary QFT. The
thermal equilibrium state of the boundary gauge
theory is dual to a black brane geometry,

ds25 ¼ −c21dt2 þ c22x
2 þ c23dρ

2; ð2:3Þ

where ci ¼ ciðρÞ are functions of the radial coor-
dinate ρ. We assume that ρ → 0 is the asymptotic
boundary, while ρ → ρH is a regular Schwarzschild
horizon,

lim
ρ→0

c1
c2

¼ 1; lim
ρ→ρH

c1 ¼ 0: ð2:4Þ

(ii) The retarded correlation function Gxy;xy
R can be

extracted from the quadratic boundary effective

action for the metric fluctuations φðt; z; ρÞ≡
1
2
c−22 δgxyðt; z; ρÞ,

φbðω; qÞ ¼
Z

dωdq eiωt−iqzφðt; z; ρÞjρ→0; ð2:5Þ

given by

Sboundary½φb�¼
Z

dωdq
ð2πÞ2φ

bð−ω;−qÞF ðω;qÞφbðω;qÞ;

ð2:6Þ
as

Gxy;xy
R ðω; qÞ ¼ −2F ðω; qÞ: ð2:7Þ

(iii) The boundary metric functional in (2.6) is defined as

Sboundary½φb� ¼ lim
ρ→0

ðSρbulk½φ� þ SGH½φ� þ Scounter½φ�Þ;

ð2:8Þ

where Sρbulk is the regularized bulk gravitational
action, evaluated on-shell for the bulk metric
fluctuation φ, subject to the following boundary
conditions:

ðaÞ∶ lim
ρ→0

φðt; z; ρÞ ¼ φbðt; zÞ;

ðbÞ∶ φðt; z; ρÞ is an incoming wave at the horizon; i:e:; as ρ → ρH: ð2:9Þ

Also, SGH is the standard Gibbons-Hawking term over the regularized boundary. The purpose of the boundary counterterm
Scounter is to remove divergences of the regularized boundary action Sρbulk þ SGH as ρ → 0, rendering the renormalized
boundary action (2.8) finite.
To evaluate Γ̂ω and Γ̂q we need the boundary functional (2.8) to quadratic order inOðω2; q2Þ—thus we need the on-shell

solution for φ to this order as well. It was shown in [39] that the equation for φ is simply that of the minimally coupled
massless scalar in the background metric (2.3). Furthermore, the solution can be expanded as [39]

ϕðt; z; ρÞ ¼ e−iωtþiqzϕbðω; qÞ|fflfflfflfflffl{zfflfflfflfflffl}
ðaÞ

�
c1
c2

�
−iωQ

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ðbÞ

ð1þ ω2z2ðρÞ þ q2z3ðρÞ þOðωq2;ω3ÞÞ; ð2:10Þ

where

Q≡ 1

2πT
: ð2:11Þ

with T begin the Hawking temperature of the black brane
(2.3). In (2.10) we highlighted components of the solution
that take care of the boundary conditions (2.9). The radial
functions fz2; z3g satisfy
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0 ¼ z002 þ
�
ln
c1c32
c3

�0
z02 þ

c23
c21

−Q2

��
ln
c1
c2

�0�2
;

0 ¼ z003 þ
�
ln
c1c32
c3

�0
z03 −

c23
c22

; ð2:12Þ

should vanish at the boundary, i.e., as ρ → 0, and remain
regular at the horizon, i.e., as ρ → ρH.
The on-shell regularized bulk action Sρbulk½φ� is a total

derivative,7 however, we need to discard the contribution
from the horizon [38].
The subtle piece in the boundary functional (2.8) comes

from Scounter½φ�. This boundary counterterm action includes
finite counterterms, that can lead to renormalization ambi-
guities in Γ̂ω and Γ̂q. Suppose that our holographic model
has operators of conformal dimension Δ ¼ f2; 3g, the dual
bulk gravitational scalars are correspondingly fα; χg, with
coupling constants λ2 and λ3. Thus, close to the AdS5
boundary we have8

α ¼ λ2ρ
2 ln ρþOðρ2Þ; χ ¼ λ3ρþOðρ3 ln ρÞ: ð2:13Þ

Holographic models with such operator content have finite
counterterms such as [31]

Scounterfinite ¼ 1

16πG5

Z
∂M5

dx4
ffiffiffiffiffiffi
−γ

p
Rγ
4

�
δb

α

lnρ
þδfχ

2

�
; ð2:14Þ

where γijðρÞ is a four dimensional metric on the regularized
boundary ∂M5, and R

γ
4 is the Ricci scalar constructed from

this metric, with ρ being treated as an external parameter. δb
and δf are arbitrary constants specifying the renormaliza-
tion scheme. Evaluation of Scounterfinite on the bulk fluctuation
φ produces9 nonvanishing as ρ → 0 terms coming from
Rγ
4½φ�,

Rγ
4½φ� ¼

1

2c22
φ∂2zzφ −

1

2c21
φ∂2ttφþOðφ4Þjρ→0

¼ ρ2

2

Z
dωdq
ð2πÞ2 φ

bð−ω;−qÞ½ω2 − q2�φbðω; qÞ

þOððφbÞ4Þ; ð2:15Þ

resulting in the renormalization scheme dependence of the
retarded Green’s function (2.1)

Gxy;xy
R;finiteðω; qÞ ¼

δbλ2 þ δfλ
2
3

16πG5

ðq2 − ω2Þ: ð2:16Þ

The ðδbλ2 þ δfλ
2
3Þ factor immediately implies that the

gravitational susceptibility κ is renormalization scheme
dependent, as in (1.14). It is clear that evaluating the
logarithmic derivative dκ

d lnT completely removes this scheme
dependence. Furthermore, the ðq2 − ω2Þ structure of the
renormalization ambiguity in (2.16) implies that the sum
T2ðΓ̂ω þ Γ̂qÞ from (2.1) is always renormalization scheme
independent. As a result, see (2.2), the shear relaxation time
τπ is renormalization scheme unambiguous as well.10

III. CASCADING QGP

For a recent review of the cascading gauge theory see
[41]. In this section we will follow notations of the above
reference. We omit the technical details and highlight the
results only.
The effective five-dimensional gravitational action used

to describe the chirally symmetric11 cascading gauge theory
plasma contains the Einstein-Hilbert term, and four scalars
dual to operators of conformal dimensionsΔ ¼ f4; 4; 6; 8g.
There are no relevant operators, and thus, while the
holographic renormalization of the theory is not unique
[42], the gravitational susceptibility κ of the theory is
renormalization scheme independent.
The black brane dual to the chirally symmetric phase

of the cascading QGP is characterized by 13 parameters
(see Eqs. (A.55) and (A.58) of [41]):

UV∶ fK0; fa;1;0; f4;0; fc;4;0; g4;0; fa;6;0; fc;8;0g;
IR∶ ffha;0; fhc;0; hh0; Kh

1;0; g
h
0; f

h
1g; ð3:1Þ

where K0 sets the strong coupling scale of the cascading
gauge theory12 (see Eq. (2.48) of [41]):

Λ2 ¼
ffiffiffi
2

p
e−K0 : ð3:2Þ

Parameters (3.1) determine the thermodynamics of the
theory (see Eqs. (A.59), (A.86), (A.92) of [41]):

8πG5ϵ¼ −
3

2
f4;0 þ

3

2
fc;4;0; 8πG5P¼ −

1

2
f4;0 −

3

2
fc;4;0;

4G5s¼ ðfha;0Þ2
ffiffiffiffiffiffiffiffiffiffiffiffi
fhc;0h

h
0

q
; T ¼ fh1

4π
ffiffiffiffiffi
hh0

q : ð3:3Þ

For a given black brane geometry, a solution of (2.12) is
further characterized by four parameters:

7See [30] for the N ¼ 2� gauge theory and [40] for the
cascading gauge theory.

8In the N ¼ 2� model λ2 ∼m2
b and λ3 ∼mf .

9We set the asymptotic AdS5 radius L ¼ 1.

10The shear viscosity η is universal η
s ¼ 1

4π [22], and is
renormalization scheme independent [39].

11The cascading QGP with spontaneously broken chiral
symmetry is unstable [34].

12We work in the computation scheme with P ¼ gs ¼ 1.
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UV∶ fz2;4;0; z3;4;0g;
IR∶ fzh2;0; zh3;0g: ð3:4Þ

Implementing the holographic framework of Sec. II, we
confirm the general structure of the retarded Green’s
function (2.1), and identify

16πG5Γ̂w ¼ π2hh0
2ðfh1Þ2

ðf2a;1;0ð6K0 − 7Þ − 128z2;4;0Þ;

16πG5Γ̂q ¼ −
π2hh0
2ðfh1Þ2

ðf2a;1;0ð6K0 − 7Þ þ 128z3;4;0Þ: ð3:5Þ

In Fig. 1 we present the cascading QGP normalized
gravitational susceptibility 4π2Tκ

s as a function of the uni-
versal nonconformal deformation13 ð1

3
− c2sÞ (the left panel)

and as a function of model-specific T
Λ. The black dot

indicates holographic N ¼ 4 SYM result (1.11). The red
line is the independently computed14 leading perturbative
near-conformal approximation. It agrees with an accuracy
of ∼10−6 with the analytic result of [44],

4π2Tκ
s

¼ 1 −
9

4

�
1

3
− c2s

�
þOðð1 − 3c2sÞ2Þ: ð3:6Þ

The vertical dashed magenta line indicates the first-order
confinement/deconfinement phase transition at T ¼ Tc, and
the vertical dashed orange line indicates the second-order

chiral symmetry breaking phase transition at T ¼ TχSB.
Finally, the vertical dashed blue line indicates the terminal
temperature of the chirally symmetric phase of the cascad-
ing gauge theory plasma, see (1.21).
In Fig. 2 we present the results for the normalized shear

relaxation time Rτπ (1.27) of the cascading gauge theory
plasma. Here, the agreement with the leading near-
conformal analytic result of [44] is ∼3 × 10−6,

Rτπ ¼ 1þ 9ð16− π2Þ
32ð2− ln2Þ

�
1

3
− c2s

�
þOðð1− 3c2sÞ2Þ: ð3:7Þ

In Fig. 3 we focus on the behavior of the cascading
gauge theory susceptibility

κ̂ ≡ 16πG5κ ð3:8Þ

close to criticality, see (1.21): the left panel presents
dimensionless quantity κ̂

T2, and the right panel shows its
temperature derivative. From the plots it is clear the that the
near-critical susceptibility of the cascading QGP is given by
(1.23); given (2.1), the latter implies (1.34).

IV. N = 2� QGP

In this section we follow notations of [35]. We omit the
technical details and highlight the results only.
The effective five-dimensional gravitational action used

to describe N ¼ 2� gauge theory plasma contains the
Einstein-Hilbert term, and two scalars dual to operators
of conformal dimensions Δ ¼ f2; 3g. Following the gen-
eral discussion in Sec. II, we expect two-parameter family
of the renormalization scheme dependence of its gravita-
tional susceptibility.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

–4

–3

–2

–1

0

1

0.54 0.56 0.58 0.60 0.62
–40

–30

–20

–10

0

FIG. 1. The normalized gravitational susceptibility κ of the cascading QGP as a function of the nonconformal deformation parameter
ð1
3
− c2sÞ (the left panel), and the ratio T

Λ (the right panel). The red line is the leading near-conformal approximation, and the vertical lines
represent various phase transitions in this QGP.

13This parameter is useful in comparing different holographic
models among themselves, and with the lattice QCD data (when
available). Its use was originally advocated for in [43].

14The thermal state of the cascading QGP is constructed
perturbatively in the limit ln T

Λ ≫ 1, see Appendix D of [41],
followed by the corresponding perturbative solution of (2.12).
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The black brane dual toN ¼ 2� QGP is characterized by
8 parameters (see Eqs. (2.19) and (2.31) of [35]):

UV∶ fδ̂3; ρ11; ρ10; χ0; χ10g;
IR∶ fah; r0; c0g; ð4:1Þ

where fρ11; χ0g are the mass parameters of N ¼ 2� gauge
theory (see Eq. (3.12) of [35]):

ρ11¼
ffiffiffi
2

p

24π2
e−6ah

�
mb

T

�
2

; χ0 ¼
1

23=4π
e−3ah

�
mf

T

�
: ð4:2Þ

Parameters (4.1) determine the thermodynamics of the
theory (see Eqs. (2.36)–(2.39) of [35]):

16πG5P ¼ 1

2
δ̂43

�
1þ ρ211ð24 ln 2 − 96 ln δ̂3 þ 16δ2 þ 24Þ

þ 2χ10χ
2
0 − 24ρ10ρ11

þ χ40

�
−
2

3
ln 2þ 8

3
ln δ̂3 þ δ1 þ

10

9

��
;

16πG5ϵ ¼ 2δ̂43 − 16πG5P; 4G5s ¼ δ̂33e
3ah ;

T ¼ δ̂3
2π

e−3ah : ð4:3Þ

In (4.3) the arbitrary constants δ1 and δ2 introduce the
scheme dependence to one-point correlation function of
the N ¼ 2� boundary stress-energy tensor. With
Minkowski space supersymmetry, i.e., when m2

b ¼ m2
f,

FIG. 2. The normalized shear relaxation time Rτπ (1.27) of the cascading QGP as a function of the nonconformal deformation
parameter ð1

3
− c2sÞ (the left panel), and the ratio T

Λ (the right panel). The red line is the leading near-conformal approximation, and the
vertical lines represent various phase transitions in this QGP.

FIG. 3. Behavior of κ̂ ≡ 16πG5κ close to criticality, i.e., as T → Tu þ 0, see (1.21). Tu is represented by the vertical dashed blue line.
The leading nonanalytic term of the cascading gauge theory gravitational susceptibility close to criticality is κnonanalytic ∝ �ðT − TuÞ3=2.
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and correspondingly χ20 ¼ 6ρ11, the supersymmetry pre-
serving renormalization requires

0 ¼ 9δ1 þ 6þ 4δ2: ð4:4Þ

For a given black brane geometry, a solution of (2.12) is
further characterized by four parameters:

UV∶ fz2;2;0; z3;2;0g;
IR∶ fzh2;0; zh3;0g: ð4:5Þ

Implementing the holographic framework of Sec. II, we
confirm the general structure of the retarded Green’s
function (2.1), and identify

16πG5Γ̂w ¼ π2e6ah
�
−
2

ffiffiffi
2

p

9
ð12 ln δ̂3 þ 9δ3 þ 5 − 3 ln 2Þχ20 − 8

ffiffiffi
2

p
δ4ρ11 − 4z2;2;0

�
;

16πG5Γ̂q ¼ −π2e6ah
�
−
2

ffiffiffi
2

p

9
ð12 ln δ̂3 þ 9δ3 þ 5 − 3 ln 2Þχ20 − 8

ffiffiffi
2

p
δ4ρ11 þ 4z3;2;0

�
: ð4:6Þ

Arbitrary constants δ3 ↔ δf and δ4 ↔ δb introduce the
renormalization scheme dependence in accordance with the
general discussion in Sec. II.
An interesting feature of the N ¼ 2� QGP with m2

b ¼
m2

f is that the limit T
mb

→ 0 is given by the conformal
thermodynamics of a certain five-dimensional theory,
compactified on S1 [45]. The local properties of plasma,
such as the transport coefficients, are unaffected by the
compactification. The precise matching of the N ¼ 2�

thermodynamics in the T
mb

→ 0 limit with that of the CFT5

thermodynamics was explained in [46]; it can be easily
extended to the matching of the Green’s functions, with the
(perhaps the obvious) result:

lim
T=mb→0

RκjN¼2�;mb¼mf
¼ RκjCFT5

;

lim
T=mb→0

Rτπ jN¼2�;mb¼mf
¼ Rτπ jCFT5

; ð4:7Þ

where in view of the renormalization scheme dependence
of the gravitational susceptibility of the N ¼ 2� QGP we
use (1.15). The relaxation time τπ of the CFT5 plasma was
computed in [47]

τπTjCFT5
¼ 5

8π

�
2 −

π

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2ffiffiffi
5

p
s

þ 1ffiffiffi
5

p coth−1
ffiffiffi
5

p
−
1

2
ln 5

�
⇒ Rτπ jCFT5

¼ 1.15ð4Þ: ð4:8Þ

We reproduce (4.8), and additionally find

Rτπ jCFT5
¼ 5

4
: ð4:9Þ

In Fig. 4 we collect the gravitational susceptibility
parameter Rκ, see (1.15), for all the models we study:
the N ¼ 2� plasma with m2

b ¼ m2
f (the gray curve), the

FIG. 4. The gravitational susceptibility parameterRκ, see (1.15), for the N ¼ 2� plasma with m2
b ¼ m2

f (the gray curve), the N ¼ 2�
plasma withmb ≠ 0 andmf ¼ 0 (the green curve), and the cascading QGP (the black curve). The vertical dashed blue line identifies the
critical behavior as c2s → 0. Notice that while Rκ diverges for the N ¼ 2� QGP with mf ¼ 0, it remains finite for the cascading gauge
theory plasma.
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N ¼ 2� plasma withmb ≠ 0 andmf ¼ 0 (the green curve),
and the cascading QGP (the black curve). The black dot
indicates the N ¼ 4 SYM result (1.11), and the magenta
dot indicates the CFT5 result (4.9). The red line is the near-
conformal approximation to Rκ for the cascading gauge
theory plasma. The vertical dashed blue line identifies the
critical behavior with the vanishing speed of the sound
waves, i.e., T → Tcrit (1.19) for N ¼ 2� plasma with
mf ¼ 0, and T → Tu (1.21) for the cascading gauge theory
plasma.
In Fig. 5 we highlight the critical behavior of Rκ in the

N ¼ 2� QGP with mf ¼ 0. Since in the critical region, see
the right panel,

T − Tcrit ∝ ðc2sÞ2; ð4:10Þ

and, see the left panel,

Rκ ∝ −
1

c2s
; ð4:11Þ

we extract the divergent critical behavior ofRκ as in (1.20).
In Fig. 6 we collect the shear relaxation time parameter

Rτπ , see (1.27), for all the models we study (the left panel):
the N ¼ 2� plasma with m2

b ¼ m2
f (the gray curve), the

N ¼ 2� plasma withmb ≠ 0 andmf ¼ 0 (the green curve),
and the cascading QGP (the black curve). The black dot

FIG. 5. TheN ¼ 2� QGP withmf ¼ 0 has a terminal temperature Tcrit (1.19), represented by the horizontal dashed blue line. Close to
criticality, the gravitational susceptibility parameter Rκ of the model diverges as Rκ ∝ − 1

c2s
∝∓ 1ffiffiffiffiffiffiffiffiffiffi

T−Tcrit
p .

FIG. 6. The left panel: the shear relaxation time parameter Rτπ , see (1.27), for all the models we study: the N ¼ 2� plasma with
m2

b ¼ m2
f (the gray curve), the N ¼ 2� plasma with mb ≠ 0 and mf ¼ 0 (the green curve), and the cascading QGP (the black curve).

Notice that below some temperature (the vertical pink dashed line), the shear relaxation time of theN ¼ 2� QGP with mf ¼ 0 becomes
negative. The right panel: the shear relaxation time of theN ¼ 2� QGP withmf ¼ 0 diverges as in (1.30) as c2s → 0, represented by the
vertical dashed blue line.
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indicates the N ¼ 4 SYM result (1.25), and the magenta
dot indicates the CFT5 result (4.8). The red line is the near-
conformal approximation to Rτπ for the cascading gauge
theory plasma. Notice that the shear relaxation time of the
N ¼ 2� plasma with mf ¼ 0 becomes negative for
T < 1.003ð0ÞTcrit, represented by the vertical dashed pink
line. In the right panel we show the critical behavior of the
shear relaxation time of the N ¼ 2� QGP with mf ¼ 0 as
T → Tcrit, Rτπ ∝ − 1

c2s
, leading to (1.30).
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