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We analyze the time evolution of several physical observables, namely the pressure anisotropy, the scalar
condensate, the charge density, and also, for the first time, the nonequilibrium entropy for a Bjorken
expanding strongly coupled N ¼ 4 supersymmetric Yang-Mills plasma charged under an Abelian Uð1Þ
subgroup of the global SUð4Þ R symmetry. This represents a far-from-equilibrium, hot and dense strongly
coupled quantum fluid with a critical point in its phase diagram. For some sets of initial data preserving all
the energy conditions, dynamically driven transient violations of the dominant and the weak energy
conditions are observed when the plasma is still far from the hydrodynamic regime. The energy conditions
violations get stronger at larger values of the chemical potential to temperature ratio, μ=T, indicating that
those violations become more relevant as the strongly coupled quantum fluid approaches its critical regime.
For some of those energy conditions violations, a clear correlation with different plateau structures formed
in the far from equilibrium entropy is observed, indicating the presence of transient, early time windows
where the Bjorken expanding plasma has zero entropy production even while being far from equilibrium.
The hydrodynamization of the pressure anisotropy and also the much later thermalization of the scalar
condensate are generally found to be delayed, within small relative tolerances, as μ=T is increased toward
criticality. The value of μ=T in the medium is enhanced by increasing its initial charge density and/or also
by reducing its initial energy density.
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I. INTRODUCTION

The analysis of the evolution of the medium produced in
ultrarelativistic heavy ion collisions [1–5], which leads to
the formation of tiny droplets of a strongly coupled quark-
gluon plasma [6–9] in high energy particle colliders,
constitutes one of the main contemporary motivations to
study the real time physics of far-from-equilibrium media
and also how hydrodynamization and thermalization are
achieved at later times [10,11].
Although QCD is the fundamental microscopic theory

describing the strong nuclear interaction, a self-consistent,
first principles microscopic description of heavy ion
collisions is currently unavailable. This is mainly due to

the fact that during the evolution of the medium created in
such collisions, QCD matter passes through several differ-
ent regimes, which include strongly coupled physics [9],
requiring therefore a nonperturbative treatment of QCD.
The main of such approaches is lattice QCD, which is
greatly successful in the description of QCD spectroscopy
[12,13] and QCD thermodynamics at zero [14–17] and
moderate values of baryon chemical potential [18–21].
However, mainly due to the so-called sign problem
[22–25], current lattice QCD calculations face severe
difficulties regarding the calculation of physical observ-
ables at large values of baryon density, which are relevant
for the search of a putative critical point in the QCD phase
diagram in the plane of temperature and baryon chemical
potential, and also concerning the calculation of physical
observables evaluated at real time, which are important in
the analysis of nonequilibrium phenomena.
In face of the aforementioned limitations, several differ-

ent alternative and simpler approaches based on phenom-
enological models, effective theories, and also toy models
are usually employed to make either quantitative predic-
tions that may be tested against experimental heavy ion
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data or to obtain possible qualitative insights on some
general aspects of the quark-gluon plasma.
One such alternative or complementary approach is the

holographic gauge/gravity duality [26–29]. Indeed, differ-
ent holographic models can be devised, with either a more
phenomenological and quantitative approach to QCD [30–
53] or with a more qualitative focus on possible broad and
general properties of strongly coupled media [54,55]
(which may not be necessarily tied to specific quantitative
results in QCD). In this very regard, probably the most
important and general outcome of the holographic gauge/
gravity duality is the almost universal result for the shear
viscosity to entropy density ratio in strongly coupled
quantum fluids, η=s ¼ 1=4π, which is valid for any
isotropic and translationally invariant gauge/gravity dual
with two derivatives of the metric field in the gravity action
[56–58].
Realistically emulating all the stages of heavy ion

collisions in holography is something currently unfeasible,
mainly because the holographic system in the gauge/
gravity duality approach is always strongly coupled, there-
fore missing the correct time evolution of the effective
coupling of the medium in actual heavy ion collisions.
However, an interesting and important line of investigation
can be established on the grounds of understanding the
physical possibilities and also putative general properties,
arising from the real time dynamics of far from equilibrium
strongly coupled quantum fluids, in contrast to the scenar-
ios realized in classical weakly coupled approaches
like kinetic theory [59–61]. Contrasting such different
approaches may lead, e.g., to a better qualitative under-
standing on the essential physical properties behind the
several different stages comprised in actual heavy ion
collisions. Particularly, in the context of far from equilib-
rium holography, different physical observables have been
studied under several different kinds of dynamic gauge/
gravity dual models; see, e.g., Refs. [62–95] for a non-
exhaustive list.
In the present work, we proceed with our analyses of

far-from-equilibrium holographic dynamics in the con-
text of a strongly coupled conformal plasma expanding
according to the inhomogeneous boost invariant Bjorken
flow [96]. We investigate how several physical observ-
ables of a top-down holographic Einstein-Maxwell-
Dilaton toy model for a hot and dense plasma with a
critical point in its phase diagram, called the One R-
Charged Black Hole (1RCBH) model [97–102] (see also
Ref. [35]), are affected by different variations of the far-
from-equilibrium initial data (like the initial charge and
energy densities), leading to different values of the
chemical potential to temperature ratio of the medium,
μ=T. In a previous work [85], the Bjorken flow for
this model was analyzed mainly in terms of how the
hydrodynamization time associated to the convergence of
the pressure anisotropy to the Navier-Stokes result is

affected by increasing the value of μ=T toward criticality.
By considering variations of the initial charge density of
the medium, while keeping fixed both the initial profile
for the metric anisotropy and the initial energy density, it
was observed that, on average, the fluid takes more time
to converge to the Navier-Stokes hydrodynamic constit-
utive relation as μ=T increases, with the hydrodynamiza-
tion time of the pressure anisotropy displaying a
particularly sharp rise close to the critical point of
the model.
On the other hand, there are also several important

aspects of the 1RCBH model undergoing Bjorken flow
that have not been analyzed in [85] and whose study
constitutes the specific focus of the present work.
Namely, (a) in order to see the late time effective
thermalization of the scalar condensate, which is asso-
ciated to its convergence to the corresponding thermo-
dynamic equilibrium result, in the present work, we carry
out our numerical simulations for much longer times
(what clearly demands a numerical code implemented
using efficient programming languages for numerical
purposes, as we will discuss in Appendix C); (b) in order
to analyze several qualitatively different physical pos-
sibilities for the time evolution of the system, we deploy a
more general and qualitatively varied set of initial data,
now including also the analysis for variations of the initial
energy density of the medium and variations of the initial
profile for the bulk dilaton field (besides variations of the
initial charge density and of the initial profile for the
metric anisotropy); (c) more importantly, for the first
time, we also analyze the holographic entropy production
[63,103] in the 1RCBHmodel expanding according to the
Bjorken flow dynamics.
Regarding the holographic entropy of a fluid in thermo-

dynamic equilibrium, it is well known that it is dual to the
Bekenstein-Hawking black hole entropy [104,105] mea-
sured by the area of the event horizon of a static black hole
in equilibrium within the higher dimensional bulk.1

However, when the fluid is far from equilibrium, there
are clear indications that the area of a dynamic event
horizon is no longer an adequate measure of the entropy of
the medium. In fact, as argued, e.g., in [115], one expects
that entropy production is local in time, therefore, associ-
ating the far-from-equilibrium entropy to the area of a
dynamic event horizon seems unnatural, since in such a
context, the event horizon can only be determined by
knowing the entire future evolution of the black hole
geometry, and consequently, it is a global rather than a
local observable. Moreover, in the case of the holographic
conformal soliton flow [116], which corresponds to an

1For other notions of the concept of entropy also employed in
the holographic gauge/gravity duality in different contexts, see,
e.g., Refs. [106–113]. For a recent nonholographic calculation of
entropy production in Bjorken flow within the context of the
QCD phase diagram, see Ref. [114].
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ideal fluid and, thus, has zero entropy production at all
times, the area of the event horizon diverges [115],
providing an explicit example that it is not an adequate
measure of holographic entropy production. On the
other hand, the area of the apparent horizon is calculated
locally in time, as expected for an entropy function.
Furthermore, for the conformal soliton flow, the area of
the apparent horizon is constant in time [115], as expected
for the entropy of an ideal fluid.2 Indeed, in many other
works in the holographic literature, the nonequilibrium
entropy has been associated to the area of a dynamic
apparent horizon [63,65,66,70,71,79,117–119], and we
also follow the same approach. Since here, the apparent
horizon later converges to the event horizon close to
equilibrium, the holographic nonequilibrium entropy so
defined is assured to converge to the usual Bekenstein-
Hawking thermodynamic entropy in equilibrium, what
should be observed at late times in the evolution of the
dynamic system.
In two previous works [90,91], by analyzing the

dynamical evolution of some initial data, we pointed out
some notable correlations between far-from-equilibrium
plateau structures observed in the entropy, indicating the
presence of transient, early time windows with zero
entropy production in the Bjorken expanding N ¼ 4
supersymmetric Yang-Mills (SYM) plasma at zero den-
sity and some later transient violations of classical energy
conditions [120,121] in the medium. Although violations
of classical energy conditions by quantum effects are well
known (see, e.g., the discussions in [122,123]), the
physical possibility that such violations maybe can also
happen during the dynamical evolution of the QCD
medium produced in heavy ion collisions is something
not currently contemplated in the literature since phe-
nomenological models of the prehydrodynamic stage of
heavy ion collisions are commonly modeled using
classical kinetic theory approaches [124], where such
violations do not take place due to the positiveness of the
single particle distribution function [125].3 More gener-
ally, as shown in [90,91] in the context of the holographic
Bjorken flow and as also known from some other far-
from-equilibrium holographic dynamics [127], it is
important to recognize that strongly coupled quantum
fluids may generally display dynamically driven

violations of classical energy conditions, even for some
initial data satisfying all such conditions.
In the present work, we shall see that such violations

are generally enhanced by increasing the value of μ=T in
the hot and dense medium described by the holographic
1RCBH model. We will also discuss the correlations
observed when plateau structures are produced in the
nonequilibrium entropy and later violations of energy
conditions and how the value of μ=T affects such
correlations.
This work is organized as follows. In Sec. II, we review

the holographic formulation of the Bjorken flow for the
1RCBH model, providing more details than in the
previous work [85], which will be useful for the reader
interested in reproducing our results, and we also briefly
present some specific results for the thermodynamics of
the model, which will be used in the analysis of the
effective thermalization of the scalar condensate and in
some analytical consistency checks for the late time
numerics of our calculations, involving also the non-
equilibrium entropy. In Sec. III, we discuss the form of the
set of initial data, which will be analyzed in the present
work, and how we shall organize their different variations;
besides also defining the set of normalized observables,
we will consider studying different physical aspects of the
dynamical evolution of the selected initial data. We also
briefly review the formulas for the holographic non-
equilibrium entropy and the dominant and weak energy
conditions. In Secs. IV, V, and VI we analyze, respec-
tively, the effects associated to variations in the initial
charge density, the initial energy density, and the initial
dilaton profile, while keeping the remaining initial data
fixed. We shall work with a subset of initial metric
anisotropies originally considered for the SYM plasma
in [90,91], which will imply several qualitatively different
physical possibilities for the dynamic evolution of the
system, allowing us to extract possible general conclu-
sions from the analysis presented. In Sec. VII, we present
a summary with our main conclusions and future per-
spectives, while the appendices are devoted to discussions
on numerical error analysis, further physical consistency
checks of our numerical solutions, and also an analysis of
our numerical code’s performance, clearly showing the
need for using efficient programming languages for
numerical purposes in the present work.
We use a mostly plus metric signature and natural units

where c ¼ ℏ ¼ kB ¼ 1.

II. HOLOGRAPHIC BJORKEN FLOW FOR THE
1RCBH PLASMA

The 1RCBHmodel [97–102] (see also Refs. [35,83,128])
is a solution of the five dimensional N ¼ 8 gauged super-
gravity action [98] which, in turn, corresponds to a con-
sistent truncation of type IIB superstrings on AdS5 × S5.
This was shown to lie within a class of solutions equivalent

2As discussed in [115], for the conformal soliton flow, the
system does not settle down to a stationary state at late times, and
the apparent horizon does not converge to the event horizon in
this case, contrary to what happen in cases where dissipation
drives the evolution of the system.

3It would be important to check, within transport approaches,
whether such violations can be observed outside the classical
regime due to quantum effects, what requires moving from
classical kinetic theory to the quantum Kadanoff-Baym
equations [126].
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to near-extremal spinning D3-branes on AdS5 × S5 [101].
The Kaluza-Klein compactification of S5 on the spinning
D3-branes solutions leads to a global SUð4Þ R-charge
symmetry, which has three independent Cartan subgroups
Uð1Þa ×Uð1Þb ×Uð1Þc associated with three distinct con-
served charges ðQa;Qb;QcÞ of the black hole background
[98]. The general solution is known as the STUmodel, while
the particular case of the 1RCBH model is obtained by
considering only one charge by setting Q≡Qa and
Qb ¼ Qc ¼ 0. The effective five-dimensional theory so
obtained is holographycally dual to a N ¼ 4 SYM plasma
at finite temperature with a chemical potential associated to
the conserved R charge transforming under the Abelian
Uð1Þa subgroup of the global SUð4Þ R-charge symmetry.
The effective five-dimensional bulk action comprises the
metric field, a scalar dilaton field, and an Abelian Maxwell
field,

S¼ 1

2κ25

Z
d5x

ffiffiffiffiffiffi
−g

p �
R−

fðϕÞ
4

FμνFμν−
1

2
ð∂μϕÞ2−VðϕÞ

�
;

ð1Þ

where κ25 ≡ 8πG5, with G5 being the five-dimensional
Newton’s constant, and the dilaton potential VðϕÞ and the
coupling function fðϕÞ between the dilaton and Maxwell
fields are given by

VðϕÞ¼−
1

L2
ð8eϕ=

ffiffi
6

p
þ4e−

ffiffiffiffiffiffi
2=3

p
ϕÞ; fðϕÞ¼ e−2

ffiffiffiffiffiffi
2=3

p
ϕ;

ð2Þ

with L being the asymptotic AdS5 radius (which from now
on, we set to unity for simplicity). The bulk action (1) is
supplemented by two boundary terms: the Gibbons-
Hawking-York action [129,130], needed for the well-
posedness of the boundary Dirichlet problem, and the
counterterm action [83], required in the holographic
renormalization procedure [131–133] in order to consis-
tently remove the boundary divergences of the on-shell
action.
Several different aspects of the 1RCBH model have been

already studied in the literature. For instance, the thermo-
dynamics of the model was detailed discussed in [35,128],
where it was shown that this model has a critical point at
μ=T ¼ π=

ffiffiffi
2

p
, which is identified by the divergences of the

second (and higher order) derivatives of the pressure, like
the heat capacity and the charge susceptibility. Since the
model has vanishing trace anomaly, it is conformal, and all
the dimensionless combinations of physical observables in
equilibrium are functions of the dimensionless ratio μ=T
(instead of functions of independent T and μ since in the
conformal case, there is no dimensionful scale in the
vacuum of the theory, contrary to what happens, e.g., in

QCD, where ΛQCD sets the scale with respect to which
other dimensionful quantities, like T and μ, can be
measured). For each possible value of μ=T, there are
two competing branches of solutions, one corresponding
to thermodynamically stable black hole backgrounds and
another one corresponding to unstable black holes. The
stable branch of black hole backgrounds constitutes the set
of physically relevant solutions of the 1RCBH model at
finite μ=T. Due to its conformal nature, the phase diagram
of the 1RCBH model is a line in the μ=T axis (instead of a
plane with independent T and μ directions), which starts at
μ=T ¼ 0, corresponding to the AdS5-Schwarzschild sol-
ution, dual to the SYM plasma at finite temperature and
zero chemical potential, and ends at the critical point
μ=T ¼ π=

ffiffiffi
2

p
—due to this peculiar feature, although there

is a critical point in the phase diagram of the 1RCBHmodel
(where several observables diverge with characteristic
critical exponents [35,128]), there is no phase transition
since in this model, μ=T cannot be increased past its
critical value.
Also, the conductivity and charge diffusion in the

1RCBH model were analyzed in [35]. The spectra of
quasinormal modes and their critical behavior were dis-
cussed in [83,128]. The holographic renormalization and
the far-from-equilibrium homogeneous isotropization
dynamics were presented in [83]. The evolution of holo-
graphic complexity [134], the holographic entanglement
entropy and mutual information [135], the entanglement of
purification [136], and the critical behavior of the hydro-
dynamic derivative series [137] were also analyzed for the
1RCBH model. The far-from-equilibrium Bjorken flow
dynamics and the analysis of the hydrodynamization times
of the medium, including the vicinity of the critical point,
were presented in [85].
Having discussed the above introductory remarks, the

main purposes of the present section of the paper are the
following: First, we briefly present below some specific
results for the thermodynamics of the model, which will be
used in the analysis of the effective thermalization of the
scalar condensate and in some analytical consistency
checks for the late time numerics of our calculations,
involving also the nonequilibrium entropy. Next, as the
main focus of the present section, we will review the
holographic formulation of the Bjorken flow dynamics of
the 1RCBH model in more detail than in the previous short
paper of Ref. [85].
Our new results will be mainly presented in Secs. IV, V,

and VI, after a discussion on the organization of the initial
data and the normalization of the relevant physical observ-
ables in Sec. III.

A. Some important thermodynamic results

Let X be any physical observable and let us define
X̂≡κ25X¼4π2X=N2

c. By considering Eqs. (4.21) and
(4.24) of [83], one obtains for the dual quantum field
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theory in thermal equilibrium the following result for the
dimensionless ratio of the scalar condensate hÔϕi nor-
malized by the square root of the energy density ϵ̂ of the
medium,

hÔϕi
ϵ̂1=2

����
ðeqÞ

¼ κ5
hOϕi
ϵ1=2

����
ðeqÞ

¼ 2Q2

3M
; ð3Þ

where Q and M are the charge and the mass of the
equilibrium black hole solution. On the other hand, from
Eq. (2.9) of [128], one gets

M ¼ r̃EH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̃2EH þQ2

q
; ð4Þ

where r̃EH is the radial location of the event horizon in
equilibrium. By substituting Eq. (4) into Eq. (3), it follows
that

hÔϕi
ϵ̂1=2

����
ðeqÞ

¼ 2ðQ=r̃EHÞ2
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðQ=r̃EHÞ2

p : ð5Þ

By using Eq. (2.12) of [128], the result above can be
written as below:

hÔϕi
ϵ̂1=2

����
ðeqÞ

¼
4½1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ðx=xcÞ2

p
x=xc

�2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2½1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ðx=xcÞ2

p
x=xc

�2
r ; ð6Þ

where we defined the notation x=xc ≡ ðμ=TÞ=ðπ= ffiffiffi
2

p Þ
as in [85],4 and the lower (upper) signs specify the
thermodynamically stable (unstable) branch of equilibrium
1RCBH solutions. The corresponding results are displayed
in Fig. 1(a).

(a) (b)

(c)

FIG. 1. Analytical equilibrium results for dimensionless ratios involving (a) the scalar condensate, (b) the entropy density, and (c) the
charge density, all of them normalized by the energy density. We display the thermodynamically stable and unstable branches of
equilibrium 1RCBH solutions. In the stable branch, at μ=T ¼ 0, one recovers the pure thermal SYM plasma results.

4Note that the notation x≡ μ=T has nothing to do with the
spatial coordinate x (which is not actually relevant in the present
work). In particular, xc ≡ π=

ffiffiffi
2

p
denotes the critical point.
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Also, by using Eqs. (2.15) and (2.17) of [128] and by taking into account the fact that in a four-dimensional conformal
theory, as in the case of the 1RCBH plasma, ϵ ¼ 3p, one obtains that

ŝ4=3

ϵ̂

����
ðeqÞ

¼ κ2=35

s4=3

ϵ

����
ðeqÞ

¼ ð4π2Þ1=3ðs=N
2
cT3Þ4=3

3p=N2
cT4

����
ðeqÞ

¼ ð4π2Þ1=3 ½
π2

16
ð3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðx=xcÞ2

p
Þ2ð1 ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðx=xcÞ2
p

Þ�4=3
3π2

128
ð3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðx=xcÞ2

p
Þ3ð1 ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðx=xcÞ2
p

Þ ; ð7Þ

where, as before, the lower (upper) signs specify the thermodynamically stable (unstable) branch of equilibrium 1RCBH
solutions. The corresponding results are shown in Fig. 1(b). Moreover, in a completely analogous way, one can also easily
obtain from Eqs. (2.16) and (2.17) of [128] the following results for the dimensionless ratio:

ρ̂4=3

ϵ̂

����
ðeqÞ

¼ κ2=35

ρ4=3

ϵ

����
ðeqÞ

¼ ð4π2Þ1=3ðρ=N
2
cT3Þ4=3

3p=N2
cT4

����
ðeqÞ

¼ ð4π2Þ1=3 ½ x
16
ð3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðx=xcÞ2

p
Þ2�4=3

3π2

128
ð3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðx=xcÞ2

p
Þ3ð1 ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðx=xcÞ2
p

Þ ; ð8Þ

which are displayed in Fig. 1(c).
The thermodynamically stable equilibrium results

derived above will be used to obtain the value of μ=T in
the medium from the late time evolution of each far-from-
equilibrium initial data and also to analyze the late time
effective thermalization of the scalar condensate in the
Bjorken flow of the 1RCBH model. Since these are
analytical results, they will be also employed to make
important physical consistency checks of our numerical
results in the late time evolution of the system.

B. Bjorken flow dynamics

Now we review in more details the holographic formu-
lation of the Bjorken flow for the 1RCBH model [85].
Let us begin by writing down the general Einstein-

Maxwell-Dilaton equations of motion coming from the
extremization of the bulk action (1),

Rμν −
gμν
3

�
VðϕÞ − fðϕÞ

4
F2
αβ

�
−
1

2
∂μϕ∂νϕ

−
fðϕÞ
2

FμρF
ρ
ν ¼ 0; ð9aÞ

∇μðfðϕÞFμνÞ ¼ 1ffiffiffiffiffiffi−gp ∂μðfðϕÞFμνÞ ¼ 0; ð9bÞ

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νϕÞ − ∂ϕVðϕÞ −

∂ϕfðϕÞ
4

F2
μν ¼ 0: ð9cÞ

Now we particularize the above results to the Bjorken
flow symmetry [96], which is a geometry commonly used
in the context of heavy ion collisions to provide a simplified
modeling of the expansion of the medium near the beam
axis. The Bjorken symmetry corresponds to boost invari-
ance along the beam line, which we take as the z axis,
where the fluid expands at the speed of light, plus trans-
lation and Oð2Þ rotation invariance in the transverse xy
plane. In practice, this means that in the Bjorken flow, one
is completely neglecting the dynamics of the medium in the

transverse plane, which is the reason why this flow is
usually employed only near midrapidity in the context of
heavy ion collisions. The Bjorken symmetry is more
naturally described in terms of the Milne coordinates
ðτ; ξ; x; yÞ, where the proper time τ and the spacetime
rapidity ξ are defined by

τ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
;

ξ≡ arctanhðvÞ ¼ arctanh

�
z
t

�
¼ 1

2
ln

�
tþ z
t − z

�
; ð10Þ

in terms of which the boundary four-dimensional
Minkowski metric is written as

ds2Mink4
¼ −dτ2 þ τ2dξ2 þ dx2 þ dy2: ð11Þ

The expectation value of the energy-momentum tensor is
written as hTμ

νi ¼ diagð−ε; pL; pT; pTÞ, where for a con-
formal system, as in the case of the 1RCBH model, the
longitudinal and transverse pressures are written as func-
tions of the energy density and its time derivative as
follows,

pLðτÞ¼−ϵðτÞ− τ∂τϵðτÞ; pTðτÞ¼ ϵðτÞþ τ

2
∂τϵðτÞ; ð12Þ

so that the pressure anisotropy of a conformal fluid
undergoing Bjorken flow is given by

Δp
ϵ

≡ pT − pL

ϵ
¼ 2þ 3

2
τ
∂τϵ

ϵ
: ð13Þ

Using five-dimensional generalized infalling Eddington-
Finkelstein coordinates suited to the holographic imple-
mentation of the characteristic formulation of general
relativity [63], the ansatz for the bulk Einstein-Maxwell-
Dilaton fields compatible with the Bjorken symmetry can
be written as follows [85],
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ds2 ¼ 2dτ½dr − Aðτ; rÞdτ� þ Σðτ; rÞ2½e−2Bðτ;rÞdξ2
þ eBðτ;rÞðdx2 þ dy2Þ�;

Aμdxμ ¼ Φðτ; rÞdτ; ϕ ¼ ϕðτ; rÞ; ð14Þ

where r is the radial coordinate of the asymptotically AdS5
spacetime, whose boundary is at r → ∞, where τ becomes
the usual four-dimensional proper time of the Bjorken
flow. In these coordinates, infalling radial null geodesics
satisfy τ ¼ constant, while outgoing radial null geodesics
satisfy dr=dτ ¼ Aðτ; rÞ. The metric in Eq. (14) is also
invariant under radial diffeomorphism shifts of the form
r → rþ λðτÞ, with arbitrary λðτÞ.
By substituting the ansatz (14) into the general

Einstein-Maxwell-Dilaton equations of motion (9a)–(9c),
one obtains the following set of coupled 1þ 1 partial
differential equations [85],5

∂τE þ AE0 þ
�
3
dþΣ
Σ

þ ∂ϕf

f
dþϕ

�
E ¼ 0; ð15aÞ

3Σ0

Σ
þ ∂ϕf

f
ϕ0 þ E0

E
¼ 0; ð15bÞ

4ΣðdþϕÞ0 þ6ϕ0dþΣþ6Σ0dþϕþΣE2
∂ϕf−2Σ∂ϕV¼ 0;

ð15cÞ

ðdþΣÞ0 þ
2Σ0

Σ
dþΣþ Σ

12
ð2V þ fE2Þ ¼ 0; ð15dÞ

ΣðdþBÞ0 þ
3

2
ðB0dþΣþ Σ0dþBÞ ¼ 0; ð15eÞ

A00þ 1

12

�
18B0dþB−

72Σ0dþΣ
Σ2

þ6ϕ0dþϕ−7fE2−2V

�
¼0;

ð15fÞ

Σ00 þ Σ
6
ð3ðB0Þ2 þ ðϕ0Þ2Þ ¼ 0; ð15gÞ

dþðdþΣÞ þ
Σ
2
ðdþBÞ2 − A0dþΣþ Σ

6
ðdþϕÞ2 ¼ 0; ð15hÞ

where X0 ≡ ∂rX is the directional derivative along infalling
radial null geodesics, while dþX ≡ ½∂τ þ Aðτ; rÞ∂r�X is the
directional derivative along outgoing radial null geodesics,
and we also defined E ≡ −Φ0. Notice there are five

background functions to be determined, fAðτ; rÞ;Σðτ; rÞ;
Bðτ; rÞ;ϕðτ; rÞ; Eðτ; rÞg, and there are also five dynamical
equations (15b)–(15f), besides three constraint equations
corresponding to Eqs. (15a), (15g), and (15h). As we are
going to discuss in a moment, Eqs. (15b)–(15g) constitute a
nested set of equations of motion that can be systematically
integrated using numerical techniques, while the constraint
Eqs. (15a) and (15h) can be used to monitor the accuracy of
the numerical solutions so obtained, as it will be discussed
in the numerical error analysis to be presented in
Appendix B.
Let us now work out the near-boundary ultraviolet

expansions of the bulk fields taking into account the
boundary conditions associated to the holographic
Bjorken flow. The bulk metric given in Eq. (14) must
flow to the AdS5 geometry in the ultraviolet, which is
conformally equivalent to the four-dimensional Minkowski
metric (11) at the boundary. In order to satisfy this
condition, one must impose the following boundary con-
ditions for the metric coefficients:

Aðτ; r → ∞Þ ∼ r2

2
; Bðτ; r → ∞Þ ∼ −

2

3
lnðτÞ;

Σðτ; r → ∞Þ ∼ τ1=3r: ð16Þ

Indeed, by substituting (16) into the five-dimensional
metric in Eq. (14) one obtains in the generalized infalling
Eddington-Finkelstein coordinates,

lim
r→∞

ds2 ¼ ds2AdS5 ¼ 2dτdrþ r2ds2Mink4
; ð17Þ

where r2 is the global conformal factor of AdS5. Moreover,
regarding the bulk dilaton field in the 1RCBH model, one
notices from the dilaton potential in Eq. (2) that the
conformal dimension of the associated scalar condensate
in the dual quantum field theory at the boundary is Δϕ ¼ 2;
consequently, the dilaton field must flow to zero in the
ultraviolet as implemented by the following boundary
condition,

ϕðτ; r → ∞Þ ∼ ϕ4−Δϕ
ðτÞ

r4−Δϕ
¼ ϕ2ðτÞ

r2
: ð18Þ

Finally, concerning the nontrivial component of the
Maxwell field, it is related to the R-charge chemical
potential of the quantum fluid at the boundary according
to the following boundary condition:

Φðτ → ∞; r → ∞Þ ¼ μ: ð19Þ

Taking into account the above boundary conditions, the
near-boundary ultraviolet expansions of the bulk fields are
given by [83,85,131]

5In writing down the constraint Eq. (15a) coming from one
component of Maxwell’s equations, we made use of the other
nontrivial component of Maxwell’s equations, given by Eq. (15b),
taking also into account that, from the definitions of dþ and E,
one may rewrite ðdþΦÞ0 ¼ −∂τE − A0E − AE0. Moreover, in
writing down the constraint Eq. (15h) coming from Einstein’s
equations, we made use of the Hamiltonian constraint (15g) also
following from Einstein’s equations.
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Aðτ; rÞ ¼ 1

2
½rþ λðτÞ�2 − ∂τλðτÞ þ

X∞
n¼1

anðτÞ
rn

; ð20aÞ

Bðτ; rÞ ¼ −
2

3
lnðτÞ þ

X∞
n¼1

bnðτÞ
rn

; ð20bÞ

Σðτ; rÞ ¼ τ1=3½rþ λðτÞ� þ
X∞
n¼0

snðτÞ
rn

; ð20cÞ

ϕðτ; rÞ ¼
X∞
n¼2

ϕnðτÞ
rn

; ð20dÞ

Φðτ; rÞ ¼ Φ0ðτÞ þ
X∞
n¼2

ΦnðτÞ
rn

; ð20eÞ

where the vast majority of the ultraviolet expansion
coefficients fanðτÞ;bnðτÞ;snðτÞ;ϕnðτÞ;ΦnðτÞgmay be fixed
as functions of just a few undetermined coefficients and
their time derivatives. This can be accomplished by sub-
stituting the above ultraviolet expansions into the Einstein-
Maxwell-Dilaton equations of motion and them solving the
resulting algebraic equations order by order in powers of r.
By working with the ultraviolet expansions up to order
n ¼ 8, one identifies four undetermined coefficients in the
aforementioned procedure: fa2ðτÞ;ϕ2ðτÞ;Φ0ðτÞ;Φ2ðτÞg.
The values of the ultraviolet coefficients fa2ðτÞ;ϕ2ðτÞg
at the initial time slice τ0 can be freely chosen since they
correspond to two of the four initial data of the 1RCBH
model undergoing Bjorken flow, as we are going to discuss
in a moment6; once their initial values are chosen, their
subsequent time evolutions are determined by numerically
solving the nested set of partial differential equations
previously derived, as it will be discussed in more details
afterward in the text. Moreover, at order n ¼ 6 in the
aforementioned algebraic procedure, one fixes that
Φ2ðτÞ ¼ c=τ, where c is an undetermined constant; how-
ever, from the Bjorken flow hydrodynamic analysis of the
local charge conservation equation, ∇μhĴμi ¼ 0, one con-
cludes that for a conformal fluid, like the 1RCBH model,
the time evolution of the R-charge density is given by
ρ̂ðτÞ≡ hĴτi ¼ ρ0=τ, where ρ0 is a parameter setting the
initial charge density of the medium [85]. Since the
holographic renormalization procedure fixes that ρ̂ðτÞ≡
hĴτi ¼ −hĴτi ¼ −Φ2ðτÞ [83], one then concludes that
Φ2ðτÞ ¼ c=τ ¼ −ρ0=τ, where ρ0 is also one of the freely
chosen initial data of the system [85]. Finally, none of the

other ultraviolet expansion coefficients of the bulk fields
directly depend onΦ0ðτÞ, which may be formally identified
with the value of the R-charge chemical potential through
the boundary condition (19) applied to the series expansion
in (20e). However, as it is clear from Eq. (19), the value of
μ=T in the Bjorken flow of the 1RCBH model is not an
initial data, and it can only be estimated in the late time
evolution of the system [85], when the fluid approaches the
equilibrium regime, as it will be explained afterward in
the text.
Before discussing the general schematics to integrate the

nested set of 1þ 1 partial differential equations of motion
of the system, let us consider the radial integration of the
Maxwell equation (15b), where we make use of the specific
form of Maxwell-dilaton coupling function given in (2),

3

Z
dΣ
Σ

− 2

ffiffiffi
2

3

r Z
dϕþ

Z
dE
E

¼ 0

⇒ E ¼ −Φ0 ¼ ec̄Σ−3e2
ffiffiffiffiffiffi
2=3

p
ϕ; ð21Þ

where c̄ is a radial integration constant, which can be
fixed by evaluating (21) close to the boundary at r → ∞. In
order to do it, we consider the near-boundary expansions
for Eðτ; r → ∞Þ ∼ −∂rðΦ0 þΦ2r−2Þ ¼ 2Φ2r−3 and for

ec̄Σðτ; r → ∞Þ−3e2
ffiffiffiffiffiffi
2=3

p
ϕðτ;r→∞Þ ∼ ec̄τ−1r−3, in which case,

one concludes that ec̄ ¼ 2Φ2ðτÞτ ¼ −2ρ0, where we used
the aforementioned relationΦ2ðτÞ ¼ −ρ0=τ. Consequently,

Eðτ; rÞ ¼ −2ρ0Σðτ; rÞ−3e2
ffiffiffiffiffiffi
2=3

p
ϕðτ;rÞ; ð22Þ

so that the bulk radial electric field E ¼ −Φ0 is completely
determined in terms of the metric coefficient Σ and the
dilaton field ϕ.
At this point, we may lay down the general reasoning

used to numerically integrate the nested set of 1þ 1 partial
differential equations of motion describing the Bjorken
flow dynamics of the 1RCBH model:

(i) On the hypersurface defined at the initial time slice
τ0, one chooses the initial profiles for the metric
anisotropy coefficient Bðτ0; rÞ and for the dilaton
field ϕðτ0; rÞ, besides also the initial values for the
charge density ρ0 and for the dynamical ultraviolet
coefficient a2ðτ0Þ7;

(ii) Next one radially solves the Hamiltonian constraint
(15g) to obtain Σðτ0; rÞ, which at this step, automati-
cally fixes the value of Eðτ0; rÞ through Eq. (22);

(iii) Next one radially solves Eq. (15d) to obtain
dþΣðτ0; rÞ;

6More precisely, as we are going to discuss, ϕ2ðτÞ is the
boundary value of the subtracted dilaton field, ϕ2ðτÞ¼
ϕsðτ;u¼ 0Þ, with the initial profile of the subtracted dilaton
field being one of the four initial data of the system. Once this
profile is chosen, one automatically has the specification of the
initial value ϕ2ðτ0Þ ¼ ϕsðτ0; u ¼ 0Þ.

7As we will discuss in details in the next Secs. II C and II D,
one also has to choose the initial value for the radial shift function
λðτ0Þ, while its time evolution may be conveniently obtained by
requiring that the radial position of the apparent horizon remains
fixed during the time evolution of the system [69].
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(iv) Next one radially solves Eq. (15e) to obtain
dþBðτ0; rÞ;

(v) Next one radially solves the dilaton Eq. (15c) to
obtain dþϕðτ0; rÞ;

(vi) Next one radially solves Eq. (15f) to obtain Aðτ0; rÞ;
(vii) At this step, from the definition of the directional

derivative along outgoing radial null geodesics,
dþ ≡ ∂τ þ Aðτ; rÞ∂r, one already has f∂τBðτ0; rÞ;
∂τϕðτ0; rÞg, besides also ∂τa2ðτ0Þ (as we will discuss
in details in the next Secs. II C and II D), which
together with the initial profiles chosen for the
metric anisotropy and the dilaton field and the initial
value chosen for a2ðτÞ, comprise the set of initial
conditions required to evolve fBðτ0; rÞ;ϕðτ0; rÞ;
a2ðτ0Þg to the next time slice τ0 þ Δτ using some
discrete integration technique (here, we employ the
fourth order Adams-Bashforth method to integrate

in time, while the radial integrations are performed
using the pseudospectral method [138]);

(viii) Repeat the previous steps to obtain all the fields in
the current time slice and iteratively evolve the
system to the next time slices until reaching any
desired end time τend for the numerical simulations.

Furthermore, as aforementioned, the constraint Eqs. (15a)
and (15h) are used to check the numerical accuracy of the
solutions obtained with the above general algorithm, as we
shall discuss in Appendix B.

C. Renormalized one-point functions, field redefinitions
and the apparent horizon

The first few terms in the ultraviolet near-boundary
expansions of the bulk fields (20a)–(20e) explicitly read
as below,

Aðτ; rÞ ¼ r2

2
þ λrþ λ2 − 2∂τλ

2
þ a2

r2
þ −4λa2 þ ∂τa2

2r3
þOðr−4Þ; ð23aÞ

Σðτ; rÞ ¼ τ1=3rþ 1þ 3τλ

3τ2=3
−

1

9τ5=3r
þ 5þ 9τλ

81τ8=3r2
−
20þ 60τλþ 54τ2λ2 þ 27τ4ϕ2

2

486τ11=3r3
þOðr−4Þ; ð23bÞ

Bðτ; rÞ ¼ −
2

3
lnðτÞ − 2

3τr
þ 1þ 2τλ

3τ2r2
−
2þ 6τλþ 6τ2λ2

9τ3r3

þ 6þ 24τλþ 36τ2λ2 þ 24τ3λ3 − 36τ4a2 − 2τ4ϕ2
2 − 27τ5∂τa2 − 3τ5ϕ2∂τϕ2

36τ4r4

−
1

180τ5r5
½24þ 120τ2λ2ð2þ 2τλþ τ2λ2Þ − 48τ4a2 þ 315τ5∂τa2 þ 35τ5ϕ2∂τϕ2 þ 15τ6ð∂τϕ2Þ2

− 20τλð−6þ 36τ4a2 þ 2τ4ϕ2
2 þ 27τ5∂τa2 þ 3τ5ϕ2∂τϕ2Þ þ 135τ6∂2τa2 þ 15τ6ϕ2∂

2
τϕ2� þOðr−6Þ; ð23cÞ

ϕðτ; rÞ ¼ ϕ2

r2
þ −2λϕ2 þ ∂τϕ2

r3
þ 36τλ2ϕ2 þ

ffiffiffi
6

p
τϕ2

2 þ ð3 − 36τλÞ∂τϕ2 þ 9τ∂2τϕ2

12τr4
þOðr−5Þ; ð23dÞ

½dþB�ðτ; rÞ ¼ −
1

3τ
þ 1

3τ2r
−
1þ τλ

3τ3r2
þ 6þ 12τλþ 6τ2λ2 þ 36τ4a2 þ 2τ4ϕ2

2 þ 27τ5∂τa2 þ 3τ5ϕ2∂τϕ2

18τ4r3
þOðr−4Þ; ð23eÞ

½dþΣ�ðτ;rÞ¼
τ1=3r2

2
þð1þ3τλÞr

3τ2=3
þ−1þ2τλþ3τ2λ2

6τ5=3
þ 10

81τ8=3r
þ−100−120τλþ972τ4a2þ81τ4ϕ2

2

972τ11=3r2
þOðr−3Þ; ð23fÞ

½dþϕ�ðτ; rÞ ¼ −
ϕ2

r
þOðr−2Þ: ð23gÞ

The holographic renormalization procedure for the
1RCBH model [83] allows one to write down the renor-
malized one-point functions of the dual quantum field
theory, namely, the expectation values of the boundary
energy-momentum tensor hTμνi, the Uð1Þ vector current
hJμi, and the scalar condensate hOϕi, in terms of the bulk
gravity ultraviolet coefficients fa2ðτÞ;ϕ2ðτÞ;Φ2ðτÞ ¼
−ρ0=τg and their time derivatives. In order to obtain those

relations, one first needs to relate the holographic radial
coordinates r and ρ̄written,8 respectively, in the generalized
infalling Eddington-Finkelstein coordinates, where we
developed our previously discussed analysis of the

8We use here the bar to denote the radial Fefferman-Graham
coordinate ρ̄ in order to avoid confusing its notation with the
charge density ρðτÞ.
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holographic Bjorken flow dynamics, and in the Fefferman-
Graham coordinates used in the holographic renormaliza-
tion procedure [83]. For the holographic Bjorken flow, this
relation is explicitly given by [91]

rðρ̄Þ ¼ 1ffiffiffī
ρ

p −
a2ðτÞρ̄3=2

4
−
∂τa2ðτÞρ̄2

10
þOðρ̄5=2Þ: ð24Þ

By substituting Eq. (24) into the near-boundary expansions
(23a)–(23g), one identifies the relevant ultraviolet coeffi-
cients in Fefferman-Graham coordinates entering the
holographic renormalization formulas for the one-point
functions of the dual quantum field theory at the boundary
[83]. The final results for the renormalized one-point
functions of the 1RCBH plasma undergoing Bjorken flow
read as follows [85]:

ϵ̂ðτÞ≡ κ25hTττiðτÞ ¼ −3a2ðτÞ −
1

6
ϕ2ðτÞ2; ð25aÞ

p̂TðτÞ≡ κ25hTx
xiðτÞ¼ κ25hTy

yiðτÞ

¼−3a2ðτÞ−
1

6
ϕ2ðτÞ2−

3

2
τ∂τa2ðτÞ−

1

6
τϕ2ðτÞ∂τϕ2ðτÞ;

ð25bÞ

p̂LðτÞ≡κ25hTξ
ξiðτÞ

¼ 3a2ðτÞþ
1

6
ϕ2ðτÞ2þ3τ∂τa2ðτÞþ

1

3
τϕ2ðτÞ∂τϕ2ðτÞ;

ð25cÞ

ρ̂ðτÞ≡ κ25hJτiðτÞ ¼ −Φ2ðτÞ ¼
ρ0
τ
; ð25dÞ

hÔϕiðτÞ≡ κ25hOϕiðτÞ ¼ −ϕ2ðτÞ: ð25eÞ

From the above holographic formulas for the physical
observables of the 1RCBH plasma, one can immediately
confirm that the boundary system is conformal since it has
vanishing trace anomaly: hT̂μ

μi ¼ −ϵ̂þ p̂L þ 2p̂T ¼ 0.
In order to facilitate the numerical implementation of

the general steps previously discussed to integrate the

equations of motions of the system, we make use of field
redefinitions corresponding to subtractions of the leading
order near-boundary terms in the ultraviolet expansions of
the bulk fields (23a)–(23g), such that the boundary values
of the subtracted fields go to radial constants at the
boundary,

u2Asðτ; uÞ≡ Aðτ; uÞ − 1

2u2
−
λ

u
−
λ2

2
þ ∂τλ; ð26aÞ

u3Σsðτ;uÞ≡Σðτ;uÞ− τ1=3

u
−
1þ3τλ

3τ2=3
þ u

9τ5=3
−
ð5þ9τλÞu2

81τ8=3
;

ð26bÞ

u4Bsðτ; uÞ≡ Bðτ; uÞ þ 2 lnðτÞ
3

þ 2u
3τ

−
ð1þ 2τλÞu2

3τ2

þ ð2þ 6τλþ 6τ2λ2Þu3
9τ3

; ð26cÞ

u2ϕsðτ; uÞ≡ ϕðτ; uÞ; ð26dÞ

u3½dþB�sðτ; uÞ≡ ½dþB�ðτ; uÞ þ
1

3τ
−

u
3τ2

þ ð1þ τλÞu2
3τ3

;

ð26eÞ

u2½dþΣ�sðτ; uÞ≡ ½dþΣ�ðτ; uÞ −
τ1=3

2u2
−
1þ 3τλ

3τ2=3u

−
−1þ 2τλþ 3τ2λ2

6τ5=3
−

10u

81τ8=3
; ð26fÞ

u½dþϕ�sðτ; uÞ≡ ½dþϕ�ðτ; uÞ; ð26gÞ

Esðτ; uÞ ¼ Eðτ; uÞ; ð26hÞ

where we defined the new radial coordinate u≡ 1=r,
in terms of which the boundary lies at u ¼ 0. In terms
of the above subtracted fields, one can easily see that the
corresponding boundary values are given by the following
radial constants [85]:

Asðτ; u ¼ 0Þ ¼ a2; ð27aÞ

Σsðτ; u ¼ 0Þ ¼ −
20þ 60τλþ 54τ2λ2 þ 27τ4ϕ2

2

486τ11=3
; ð27bÞ

Bsðτ; u ¼ 0Þ ¼ 6þ 24τλþ 36τ2λ2 þ 24τ3λ3 − 36τ4a2 − 2τ4ϕ2
2 − 27τ5∂τa2 − 3τ5ϕ2∂τϕ2

36τ4
; ð27cÞ

ϕsðτ; u ¼ 0Þ ¼ ϕ2; ð27dÞ

½dþB�sðτ; u ¼ 0Þ ¼ 6þ 12τλþ 6τ2λ2 þ 36τ4a2 þ 2τ4ϕ2
2 þ 27τ5∂τa2 þ 3τ5ϕ2∂τϕ2

18τ4
; ð27eÞ
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½dþΣ�sðτ; u ¼ 0Þ ¼ −100 − 120τλþ 972τ4a2 þ 81τ4ϕ2
2

972τ11=3
; ð27fÞ

½dþϕ�sðτ; u ¼ 0Þ ¼ −ϕ2: ð27gÞ

The equations of motion to be numerically solved as
functions of ðτ; uÞ are then given by the original equations
of motion rewritten in terms of the subtracted fields, whose
boundary values were obtained above.
Before proceeding to a discussion on the numerics in

Sec. II D, we briefly discuss the calculation of the apparent
horizon of the far-from-equilibrium black hole solutions.
The apparent horizon is the outermost trapped null

surface inside the event horizon, separating a spacetime
region where the geodesics are directed outward with light
rays moving outward and a region where the light rays
along the same geodesics move inward. Consequently,
inside the apparent horizon all light rays move inward—see
e.g., Fig. 2 of Ref. [63] for a clear illustration. The apparent
horizon converges to the event horizon at late times, when
the black hole geometry approaches equilibrium. Since the
apparent horizon lies inside the event horizon, by cutting
off the radial integration of the bulk equations of motion at
some position inside the apparent horizon, one assures that
the radial domain of the bulk geometry causally connected
to observers at the boundary is adequately taken into
account, and no physical information is lost in such
integration procedure.
In the holographic Bjorken flow, the radial position of

the apparent horizon within the bulk generally presents
wide fluctuations during the time evolution of the system.
This is clearly inconvenient if one wants to cut off the radial
integration at some value of the holographic radial coor-
dinate and hold this cutoff fixed for any value of time, since
these wide fluctuations may eventually lead the radial
cutoff to lie beyond, instead of behind the apparent horizon
for some values of time, which could lead to loss of
information and inaccurate physical results. Fortunately, it
is possible to fix this issue by using the radial diffeo-
morphism shift invariance mentioned below Eq. (14),
which involves the function λðτÞ. Indeed, since it is an
arbitrary function of time, λðτÞ may be chosen in a way
such as to keep the radial position of the apparent horizon
fixed during the time evolution of the system [69].
For any metric field of the form shown in Eq. (14), by

assuming that the radial position of the apparent horizon
rAH remains constant in time, one calculates it as the value
of the radial coordinate which satisfies the following
condition [69],

½dþΣ�ðτ; rAHÞ ¼ 0: ð28Þ

By requiring that ∂τrAHðτÞ ¼ 0 and that Eq. (28) remain
valid at all times, it follows that ∂τ½dþΣ�ðτ; rAHÞ ¼ 0,

implying that dþ½dþΣ�ðτ;rAHÞ¼Aðτ;rAHÞ∂r½dþΣ�ðτ;rAHÞ.
Substituting this result into the constraint Eq. (15h), and
then combining it with other components of Einstein’s
equations, one obtains that

Aðτ;uAHÞ¼
6ð½dþB�ðτ;uAHÞÞ2þ2ð½dþϕ�ðτ;uAHÞÞ2

2VþfE2
; ð29Þ

where we used Eq. (28). By using now Eq. (26a)
evaluated at the apparent horizon position u ¼ uAH, it
follows that

∂τλðτÞ¼ u2AHAsðτ;uAHÞþ
1

2u2AH
þλðτÞ
uAH

þλ2ðτÞ
2

−Aðτ;uAHÞ:

ð30Þ

Once one chooses the initial value λðτ0Þ; the function
λðτÞ is evolved in time by using Eq. (30), which keeps
the radial position of the apparent horizon fixed during
the time evolution. In practice, as done in [90,91], we
choose λðτ0Þ ¼ 0 and solve Eq. (28) using Eq. (26b) with
the Newton-Raphson method. In this way, the apparent
horizon remains fixed, within some numerical tolerance,
in its initial position calculated with the initial condi-
tion λðτ0Þ ¼ 0.

D. Numerical solver

In order to numerically integrate the nested set of 1þ 1
partial differential equations of motion of the system, we
discretize the radial and time directions. We employ the
pseudospectral method [138] to integrate in the radial
direction and make use of the fourth order Adams-
Bashforth method to integrate in the time direction. In
both cases, the general algorithmic steps are the same
discussed, e.g., in [83,91], and we refer the interested
reader to those works for the details.
Here, we supplement the information concerning

the extra steps required to implement these algorithms
in the case of the 1RCBH model undergoing Bjorken
flow. The complete set of freely chosen initial data needed
to be specified on the initial time slice τ0 is given by
fBsðτ0; uÞ;ϕsðτ0; uÞ; a2ðτ0Þ; ρ0; λðτ0Þg. In order to evolve
the system to the next time slices, one also needs to obtain
the expressions for the time derivatives of these data. As
discussed at the end of Sec. II C, we set here λðτ0Þ ¼ 0,
and ∂τλðτÞ is given by Eq. (30). On the other hand,
the physically different initial data will be determined
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by different choices for the subset fBsðτ0; uÞ;ϕsðτ0; uÞ;
a2ðτ0Þ; ρ0g, which will be discussed in Sec. III. It remains,
therefore, the task of obtaining the expressions for the time
derivatives f∂τBsðτ; uÞ; ∂τϕsðτ; uÞ; ∂τa2ðτÞg required to
evolve the system in time.

The expressions for ∂τBs and ∂τϕs can be derived from
the expressions for dþB ¼ ∂τBþ A∂rB and dþϕ ¼ ∂τϕþ
A∂rϕ rewritten in terms of the subtracted fields and the
radial coordinate u ¼ 1=r. After some tedious algebraic
manipulations, one arrives at the following results,

∂τBsðτ; uÞ ¼
½dþB�s

u
−

2

3τ4u
−
2As

3τ
þ 2uAs

3τ2
−
2u2As

3τ3
þ 4u3AsBs þ

2Bs

u
þ B0

s

2
þ u4AsB0

s

þ
�
4Bs −

2

uτ3
þ 4uAs

3τ
−
2u2As

τ2
þ uB0

s

�
λþ

�
−

1

3τ3
−

7

3τ2u
þ 2uBs −

2u2As

τ
þ u2B0

s

2

�
λ2

−
�
1

τ2
þ 4

3τu

�
λ3 −

λ4

τ
þ
�

2

3τ3
− 4uBs − u2B0

s þ
2λ

τ2
þ 2λ2

τ

�
∂τλ; ð31Þ

∂τϕsðτ; uÞ ¼
½dþϕ�s

u
þ ϕ0

s

2
þ u4Asϕ

0
s þ

ϕs

u
þ 2u3Asϕs þ ðuϕ0

s þ 2ϕsÞλþ
�
u2ϕ0

s

2
þ uϕs

�
λ2 − ð2uϕs þ u2ϕ0

sÞ∂τλ; ð32Þ

where X0
sðτ; uÞ≡ ∂uXsðτ; uÞ is evaluated at any constant

time slice by applying the pseudospectral finite differ-
entiation matrix [138] to the numerically known solution
Xsðτ; uÞ, which is expressed as a vector withN components
corresponding to the values of Xsðτ; uÞ on top of the N
collocation points of the Chebyshev-Gauss-Lobatto radial
grid [83,91].
Regarding the expression for ∂τa2ðτÞ, it can be deter-

mined directly from Eq. (27c) once ∂τϕ2ðτÞ is known,
which in turn follows from Eqs. (23d) and (26d),

∂τϕ2ðτÞ ¼ ϕ0
sðτ; u ¼ 0Þ þ 2λðτÞϕ2ðτÞ: ð33Þ

In the algorithms employed in [83,85,90,91] to integrate
in the radial direction, the boundary values of the fields are
calculated separately, which can be done here by using
Eqs. (27a)–(27g) and the following results also coming
from the near-boundary expansions (23a)–(23g),

∂τBsðτ;u¼ 0Þ¼−
2

3τ5
−
2λ

τ4
−
2λ2

τ3
−
2λ3

3τ2
þ2∂τλ

3τ3
þ2λ∂τλ

τ2

þ2λ2∂τλ

τ
−
7∂τa2
4

−
7ϕ2∂τϕ2

36
−
τð∂τϕ2Þ2

12

−
3τ∂2τa2

4
−
τϕ2∂

2
τϕ2

12
; ð34Þ

∂τϕsðτ; u ¼ 0Þ ¼ ∂τϕ2; ð35Þ

where, in particular, the following second derivatives are
obtained from Eqs. (23c) and (23d), respectively,

∂
2
τa2ðτÞ ¼ −

4B0
sðτ; u¼ 0Þ

3τ
−

8

45τ6
−

8λ

9τ5
−
16λ2

9τ4
−
16λ3

9τ3

−
8λ4

9τ2
þ 16a2
45τ2

þ 16λa2
3τ

þ 8λϕ2
2

27τ
−
7∂τa2
3τ

þ 4λ∂τa2

−
7ϕ2∂τϕ2

27τ
þ 4λϕ2∂τϕ2

9
−
ð∂τϕ2Þ2

9
−
ϕ2∂

2
τϕ2

9
;

ð36Þ

∂
2
τϕ2ðτÞ ¼

2ϕ00
s ðτ; u ¼ 0Þ

3
− 4λ2ϕ2

−
ffiffiffiffiffi
2

27

r
ϕ2
2 −

∂τϕ2

3τ
þ 4λ∂τϕ2: ð37Þ

We close this section by remarking that for the numerical
calculations carried out in the present work, we used N ¼
21 collocation points in the radial grid and a time step size
of Δτ ¼ 12 × 10−5. However, for three specific initial
conditions to be discussed next, we needed to increase
the number of collocation points to N ∼ 30 in order to
eliminate numerically spurious oscillations in the normal-
ized scalar condensate at early times.

III. NONEQUILIBRIUM ENTROPY, INITIAL
DATA, PHYSICAL OBSERVABLES, AND ENERGY

CONDITIONS

In this section, we discuss the holographic formula for
the nonequilibrium entropy density, the form of the initial
data fBsðτ0; uÞ;ϕsðτ0; uÞ; a2ðτ0Þ; ρ0g, which will be ana-
lyzed in the present work; besides presenting the con-
ventions we will use to plot the dimensionless ratios for the
physical observables and also the form of the dominant and
weak energy conditions for a conformal fluid undergoing
Bjorken flow.
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Concerning the holographic calculation of the nonequi-
librium entropy density, it proceeds as follows [63,90,91].
The area of the apparent horizon reads,

AAHðτÞ ¼
Z

d3x
ffiffiffiffiffiffi
−g

p ju¼uAH ¼
Z

dxdydξ
ffiffiffiffiffiffi
−g

p ju¼uAH

¼ ffiffiffiffiffiffi
−g

p ju¼uAHA ¼ jΣðτ; uAHÞj3A; ð38Þ

where VðτÞ ¼ τA ¼ τ
R
dxdydξ is the expanding volume

of the medium in Bjorken flow. Analogously to the
Bekenstein-Hawking relation, one obtains for the non-
equilibrium holographic entropy the following relation,
written in terms of the area of the apparent horizon,

SAHðτÞ ¼
AAHðτÞ
4G5

¼ 2πjΣðτ; uAHÞj3A
κ25

; ð39Þ

and the entropy density is, therefore,

ŝAHðτÞ≡ κ25sAHðτÞ ¼ κ25
SAHðτÞ
VðτÞ ¼ 2πjΣðτ; uAHÞj3

τ
; ð40Þ

where Σðτ; uAHÞ is calculated in terms of the numerical
result for Σsðτ; uAHÞ through Eq. (26b) evaluated at the
radial location of the apparent horizon.
Regarding the initial profile for the subtracted metric

anisotropy coefficient, we are going to work with the
following general form [90,91] (which is considerably
broader than the forms considered, e.g., in [85,139]),

Bsðτ0; uÞ ¼ Ω1 cosðγ1uÞ þ Ω2 tanðγ2uÞ þ Ω3 sinðγ3uÞ

þ
X5
i¼0

βiui þ
α

u4

�
−
2

3
ln

�
1þ u

τ0

�

þ 2u3

9τ30
−

u2

3τ20
þ 2u
3τ0

�
; ð41Þ

such that one needs to choose the values of the parameters
fΩi; γi; βi; αg in (41), and also the values of the initial data
fϕsðτ0; uÞ; a2ðτ0Þ; ρ0g in order to fully specify a given
initial condition. We take τ0 ¼ 0.2 as the initial time of our
numerical simulations and evolve each initial condition up
to τend ¼ 35. This end time used in our present numerical
simulations is about five times larger than considered in
previous works [85,90,91], what is needed in order to be
able to see the effective thermalization of the scalar
condensate at late times in the evolution of the system.
The set of parameters fΩi; γi; βi; αg in (41), which we are
going to explore in this paper. is provided in Table I. With
these different profiles for Bsðτ0; uÞ, it is possible to
generate many physically different possibilities for the
time evolution of the 1RCBH plasma expanding according
to the Bjorken flow dynamics.

In what concerns the initial profile for the subtracted
dilaton field, we are going to consider the following general
form,

ϕsðτ0;uÞ¼
X3
i¼0

aiuiþα0e−u
2=σþα1cosðω1uÞþα2sinðω2uÞ;

ð42Þ

The set of parameters fai;αi; σ;ωig in (42) which we are
going to explore in this paper is provided in Table II.9

As discussed before, the initial data ρ0 sets the initial
value of the charge density of the medium, ρ̂ðτ0Þ ¼ ρ0=τ0.
On the other hand, a2ðτ0Þ together with ϕ2ðτ0Þ ¼
ϕsðτ0; u ¼ 0Þ specify the initial value of the energy density
of the fluid, ϵ̂ðτ0Þ, according to Eq. (25). In Sec. IV, we will
present our results for the physical observables of the
1RCBH plasma undergoing Bjorken flow, using as initial
data, the profiles for Bsðτ0; uÞ given in Table I with
variations on the initial charge density of the medium,
keeping fixed its initial energy density and setting
ϕsðτ0; uÞ ¼ 0. In Sec. V, we vary instead the initial energy
density of the medium, while keeping fixed its initial

TABLE I. Set of parameters for the initial profile of the
subtracted metric anisotropy (41) analyzed in this work.

Bs# Ω1 γ1 Ω2 γ2 Ω3 γ3 β0 β1 β2 β3 β4 β5 α

1 0 0 0 0 0 0 0.5 −0.5 0.4 0.2 −0.3 0.1 1
2 0 0 0 0 0 0 −0.2 −0.5 0.3 0.1 −0.2 0.4 1
3 0 0 0 0 0 0 0.1 −0.4 0.3 0 −0.1 0 1
4 0 0 1 1 0 0 0 0 0 0 0 0 1
5 0 0 0 0 0 0 −0.2 −0.5 0 0 0 0 1
6 0 0 0 0 0 0 −0.2 −0.4 0 0 0 0 1
7 0 0 0 0 0 0 −0.2 −0.6 0 0 0 0 1
8 0 0 0 0 0 0 −0.3 −0.5 0 0 0 0 1
9 0 0 0 0 1 8 0 0 0 0 0 0 1
10 1 8 0 0 0 0 −0.2 −0.5 0 0 0 0 1
11 0.5 8 0 0 0 0 −0.2 −0.5 0 0 0 0 1

TABLE II. Set of parameters for the initial profile of the
subtracted dilaton field (42) analyzed in this work.

ϕs# a0 a1 a2 a3 α0 α1 α2 σ ω1 ω2

1 0 0 0 0 0 0 0 2 0 0
2 0 1 1 0 0 0 0 2 0 0
3 −0.8 1.1 0.6 0 0 0 0 2 0 0
4 0.7 −0.9 0 0.4 0 0 0 2 0 0
5 0 0 0 0 0.5 0 0 2 0 0
6 0 0 0 0 0 1 0 2 1 0
7 0 0 0 0 0 0 1 2 0 5

9Notice that ϕs1 in Table II is the trivial dilaton profile,
ϕsðτ0; uÞ ¼ 0.
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charge density and setting again ϕsðτ0; uÞ ¼ 0. In Sec. VI,
we shall analyze the results obtained with the different
profiles for ϕsðτ0; uÞ given in Table II, while keeping fixed
the remaining initial data.
Regarding the physical observables we shall

consider in this work, they will be expressed through the
following dimensionless ratios:Δp̂=ϵ̂¼ðp̂T−p̂LÞ=ϵ̂, which
is obtained from Eqs. (25a)–(25c); hÔϕi=ϵ̂1=2, which is
obtained from Eqs. (25a) and (25e); ρ̂4=3=ϵ̂, which is
obtained from Eqs. (25a) and (25d); while for the entropy,
we will use the ratio ŝ4=3AH=ϵ̂, which is obtained from
Eqs. (25a) and (40), only in the late time physical consis-
tency analysis of the numerical solutions to be discussed in
Appendix A. Indeed, while ŝ4=3AH=ϵ̂ is important to check the
late time convergence of the entropy density to the thermo-
dynamically stable branch of equilibrium black hole sol-
utions previously discussed in Sec. II A, since the energy

density is a nontrivial function of time, one needs a different
dimensionless normalization for the entropy density sAHðτÞ
in order to be able to follow the actual time evolution of the
entropy function SAHðτÞ, which is directly related to the area
of the apparent horizon AAHðτÞ through Eq. (39). This is
important in order to check the validity of the second law of
thermodynamics during the time evolution of the fluid,
which is associated here with the fact that the area of the
apparent horizon should not decrease as a function of time
during the evolution of the system; moreover, it is also
important to directly track the time evolution of the area of
the apparent horizon because flat regions for this observable
are a direct measure of regions in the time evolution of the
fluid with zero entropy production [90,91]. Thus, for the
main physical analyses present in this paper, we are going to
describe the time evolution of the entropy of the medium
through the following dimensionless ratio,

(a) (b)

(c) (d)

FIG. 2. (a) Normalized pressure anisotropy (solid lines) and the corresponding hydrodynamic Navier-Stokes result (dashed lines),
(b) normalized nonequilibrium entropy ŜAH=AΛ2 ¼ τŝAH=Λ2, (c) normalized charge density, and (d) normalized scalar condensate
(solid lines) and the corresponding thermodynamic stable equilibrium result (dashed lines). Results obtained for variations of ρ0 keeping
fixed Bs1 in Table I with a2ðτ0Þ ¼ −6.67. Note that xc ≡ ðμ=TÞc ¼ π=

ffiffiffi
2

p
is the critical point.
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τŝAHðτÞ
Λ2

¼ ŜAHðτÞ
AΛ2

¼ 2πAAHðτÞ
AΛ2

¼ 2πjΣðτ; uAHÞj3
Λ2

; ð43Þ

where Λ is an energy scale, extracted for each initial
condition, through a fit of the late time result for the full
numerical energy density to its corresponding analytical
hydrodynamic Navier-Stokes result [85]. This energy scale
shall also be used to define the following effective dimen-
sionless time measure, ωΛðτÞ≡ τTeffðτÞ, where we follow
[10,90,91] and take the effective nonequilibrium temper-
ature (at zero density), TeffðτÞ, to be given by the third-order
hydrodynamic truncation for the energy density of the pure
thermal SYM plasma [140],

Tð0Þ
3rdðτÞ ¼

Λ
ðΛτÞ1=3

�
1 −

1

6πðΛτÞ2=3 þ
−1þ ln 2

36π2ðΛτÞ4=3

þ −21þ 2π2 þ 51 ln 2 − 24 ln2 2
1944π3ðΛτÞ2

�
: ð44Þ

All the aforementioned dimensionless ratios for the physical
observables of the 1RCBHplasma undergoingBjorken flow
will be numerically interpolated as functions of the dimen-

sionless time measure ωΛðτÞ≡ τTð0Þ
3rdðτÞ in order to plot our

main results in Secs. IV and V.
Regarding the value of μ=T for each initial condition,

as discussed before, it is not an initial data in the Bjorken
flow of the 1RCBH plasma; instead, it is extracted from the
latest time result for ½ρ̂4=3=ϵ̂�ðτÞ, which is matched to the
corresponding thermodynamically stable equilibrium
result for ½ρ̂4=3=ϵ̂�ðeqÞ discussed in Sec. II A. Clearly, for
a reliable estimate of the value of μ=T, this matching
procedure needs to be done when ½ρ̂4=3=ϵ̂�ðτÞ is almost
stabilized in a constant value at late times, and the result
will be more precise the larger the end time τend of the
numerical simulations.
Closely related to the above discussion, several impor-

tant analytical consistency checks of our numerical results

(a) (b)

(c) (d)

FIG. 3. (a) Normalized pressure anisotropy (solid lines) and the corresponding hydrodynamic Navier-Stokes result (dashed lines),
(b) normalized nonequilibrium entropy ŜAH=AΛ2 ¼ τŝAH=Λ2, (c) normalized charge density, and (d) normalized scalar condensate
(solid lines) and the corresponding thermodynamic stable equilibrium result (dashed lines). Results obtained for variations of ρ0 keeping
fixed Bs2 in Table I with a2ðτ0Þ ¼ −6.67. Note that xc ≡ ðμ=TÞc ¼ π=

ffiffiffi
2

p
is the critical point.

HOLOGRAPHIC ENTROPY PRODUCTION IN A BJORKEN … PHYS. REV. D 106, 126023 (2022)

126023-15



can be performed. Since all the near-equilibrium hydro-
dynamic results and also all the equilibrium thermody-
namic results are functions of μ=T, and not of the specific
initial conditions of the far-from-equilibrium fluid,
once the value of μ=T for a given initial condition,
extracted from the late time analysis of ½ρ̂4=3=ϵ̂�ðτÞ, is
plugged into the analytical expressions for ½hÔϕi=ϵ̂1=2�ðeqÞ
and ½ŝ4=3AH=ϵ̂�ðeqÞ in the thermodynamically stable branches
of equilibrium black hole solutions, one has the asymp-
totic values that should be attained at late times by the
dynamical observables ½hÔϕi=ϵ̂1=2�ðτÞ and ½ŝ4=3AH=ϵ̂�ðτÞ;
moreover, for ½Δp̂=ϵ̂�ðτÞ, one should obtain at late
times convergence of the numerical results to the corre-
sponding analytical hydrodynamic Navier-Stokes (NS)
results coming from Eq. (13),

�
Δp̂
ϵ̂

�
NS
ðτ; μ=TÞ ¼ 2þ 3

2
τ
∂τϵ̂NSðτ; μ=TÞ
ϵ̂NSðτ; μ=TÞ

; ð45Þ

with ϵ̂NSðτ; μ=TÞ given by Eq. (12) of [85] evaluated at the
same value of μ=T obtained from the late time analysis of
½ρ̂4=3=ϵ̂�ðτÞ. We indeed consistently see, for all the initial
conditions, the late time convergence of all these physical
observables to their corresponding analytical hydrody-
namic or thermodynamic results evaluated at the same
value of μ=T. These outcomes constitute independent and
highly nontrivial physical consistency checks of our
numerical simulations by analytical results in the late
time regime of the system.
We close this section by briefly reviewing the weak

energy condition (WEC) and the dominant enegy condition
(DEC) for a conformal fluid expanding according to the
Bjorken flow dynamics, which will be important in our
physical analyses in the course of the next sections. These
classical energy conditions are commonly postulated in
general relativity in order to constrain the content of matter’s
energy-momentum tensor used in Einstein’s equations and
ensure energy positiveness, even though some quantum

(a) (b)

(c) (d)

FIG. 4. (a) Normalized pressure anisotropy (solid lines) and the corresponding hydrodynamic Navier-Stokes result (dashed lines),
(b) normalized nonequilibrium entropy ŜAH=AΛ2 ¼ τŝAH=Λ2, (c) normalized charge density, and (d) normalized scalar condensate
(solid lines) and the corresponding thermodynamic stable equilibrium result (dashed lines). Results obtained for variations of ρ0 keeping
fixed Bs3 in Table I with a2ðτ0Þ ¼ −6.67. Note that xc ≡ ðμ=TÞc ¼ π=

ffiffiffi
2

p
is the critical point.
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effects are known to violate such classical energy conditions
[122,123]. The WEC states that hT̂μνitμtν ≥ 0 for any
timelike vector tμ. It implies the following inequalities for
a conformal fluid undergoing Bjorken flow [90,91,141]:

ϵ̂ðτÞ ≥ 0; f∂τϵ̂ðτÞ ≤ 0; τ∂τ ln½ϵ̂ðτÞ� ≥ −4g

⇒ −4 ≤
�
Δp̂
ϵ̂

�
ðτÞ ≤ 2: ð46Þ

Therefore, one may violate the WEC by either having
a negative energy density and/or by having a normalized
pressure anisotropy assuming values outside the
aformentioned interval. All the cases with transient, far-
from-equilibrium violations of the WEC analyzed
here, and also in Refs. [90,91], were related to violations
on the bounds for the pressure anisotropy in (46), while the
energy density was always positive during the time
evolution of the medium. We further remark that for a
conformal fluid, the strong energy condition (SEC), stating

that hT̂μνitμtν ≥ −hT̂μ
μi=2 is equivalent to the WEC since

hT̂μ
μi ¼ 0 in a conformal system. On the other hand, the

DEC states that for any future-directed timelike vector tμ,
Xμ ≡ −hT̂μνitν must also be a future-directed timelike or
null vector. This is a sufficient but not a necessary condition
to establish causal propagation of matter [121]. It was
shown in [90,91] that for a conformal fluid, the DEC
implies the following inequalities, which are more restric-
tive than the WEC (46),

ϵ̂ðτÞ ≥ 0; −1 ≤
�
Δp̂
ϵ̂

�
ðτÞ ≤ 2: ð47Þ

IV. RESULTS FOR VARIATIONS OF THE INITIAL
CHARGE DENSITY

In this section, we analyze the time evolution of several
different far-from-equilibrium initial conditions of the
Bjorken expanding 1RCBH plasma, where for each profile

(a) (b)

(c) (d)

FIG. 5. (a) Normalized pressure anisotropy (solid lines) and the corresponding hydrodynamic Navier-Stokes result (dashed lines),
(b) normalized nonequilibrium entropy ŜAH=AΛ2 ¼ τŝAH=Λ2, (c) normalized charge density, and (d) normalized scalar condensate
(solid lines) and the corresponding thermodynamic stable equilibrium result (dashed lines). Results obtained for variations of ρ0 keeping
fixed Bs4 in Table I with a2ðτ0Þ ¼ −6.67. Note that xc ≡ ðμ=TÞc ¼ π=

ffiffiffi
2

p
is the critical point.
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for the initial subtracted metric anisotropy specified in
Eq. (41) and in Table I, we consider variations of the initial
charge density of the medium (25d), ρ̂ðτ0Þ ¼ ρ0=τ0, while
keeping fixed its initial energy density (25a), ϵ̂ðτ0Þ ¼
−3a2ðτ0Þ (we set ϕsðτ0; uÞ ¼ 0 throughout this section).
The corresponding results are shown in Figs. 2–12.
We remark that, due to the presence of several initial
data that can be independently varied in the 1RCBH
plasma, in the present and in the following sections,
we plot the time evolution of many initial conditions in
order to explore in details several qualitatively different
possibilities for the dynamic evolution of the relevant
physical observables of the 1RCBH plasma undergoing
Bjorken flow. The several pictures considered illustrate
the main general features and observations we summarize
in the text.
One notices that by increasing the initial charge density

of the 1RCBH plasma (by increasing ρ0), while keeping its
initial energy density fixed, the value of μ=T in the medium
is enhanced, producing the following effects on the

physical observables analyzed as functions of the dimen-
sionless time measure ωΛ:

(i) ½Δp̂=ϵ̂�ðωΛÞ: the hydrodynamization of the pressure
anisotropy of the medium, as measured by its
convergence, within small relative tolerances, to
the Navier-Stokes regime, is generally delayed as
μ=T increases (in line with what was reported in
[85]). The enhancement of μ=T also leads to differ-
ent physical possibilities for the maxima and the
minima of the pressure anisotropy (not always both
extrema are simultaneously present): While for all
the initial conditions considered that present a
minimum, we observed an increase of its magnitude,
for initial conditions presenting a maximum, its
magnitude can either increase or decrease depending
on the chosen profile for the initial subtracted metric
anisotropy Bsðτ0; uÞ; moreover, in the cases where
far-from-equilibrium transient violations of the DEC
(47) and of the WEC (46) are observed, such
violations increase with increasing μ=T, clearly

(a) (b)

(c) (d)

FIG. 6. (a) Normalized pressure anisotropy (solid lines) and the corresponding hydrodynamic Navier-Stokes result (dashed lines),
(b) normalized nonequilibrium entropy ŜAH=AΛ2 ¼ τŝAH=Λ2, (c) normalized charge density, and (d) normalized scalar condensate
(solid lines) and the corresponding thermodynamic stable equilibrium result (dashed lines). Results obtained for variations of ρ0 keeping
fixed Bs5 in Table I with a2ðτ0Þ ¼ −6.67. Note that xc ≡ ðμ=TÞc ¼ π=

ffiffiffi
2

p
is the critical point.
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indicating that they become more and more relevant
as the system approaches criticality at large charge
densities.

(ii) ŜAHðωΛÞ=AΛ2: the magnitude of this dimensionless
ratio always decreases as μ=T is increased. For
different choices of the profile for the initial sub-
tracted metric anisotropy Bsðτ0; uÞ, one may realize
different physical possibilities for the time evolution
of the entropy of the medium, with the presence or
absence of early time (quasi)plateau structures.
When single or double plateaus are produced in
the time evolution of the entropy, indicating the
existence of far-from-equilibrium time windows
with no entropy production in the Bjorken expand-
ing fluid, it is later observed almost or effective
violations of DEC from below with Δp̂=ϵ̂ ∼ −1
or Δp̂=ϵ̂ < −1, respectively (in line with the
observations reported in [90,91] for the particular
case corresponding to the pure thermal SYM
plasma with μ=T ¼ 0—here, we also observe the

aforementioned correlations under much more gen-
eral situations with μ=T ≥ 0).10 In particular, we
notice the following general trend regarding the
deformation of such plateau structures as μ=T is
increased, leading to progressively lower dips in the
pressure anisotropy: First a single plateau is formed,
which then becomes more spread out in the ωΛ
direction, and next it is progressively deformed into
double plateaus, then becoming double quasipla-
teaus, until the plateau structure is finally lost
for sufficiently strong violations of the DEC from
below (in such a progression, the lower plateau
structure is undone earlier than the higher plateau).
We also observe that it is possible to form a single

(a) (b)

(c) (d)

FIG. 7. (a) Normalized pressure anisotropy (solid lines) and the corresponding hydrodynamic Navier-Stokes result (dashed lines),
(b) normalized nonequilibrium entropy ŜAH=AΛ2 ¼ τŝAH=Λ2, (c) normalized charge density, and (d) normalized scalar condensate
(solid lines) and the corresponding thermodynamic stable equilibrium result (dashed lines). Results obtained for variations of ρ0 keeping
fixed Bs6 in Table I with a2ðτ0Þ ¼ −6.67. Note that xc ≡ ðμ=TÞc ¼ π=

ffiffiffi
2

p
is the critical point.

10We remark that, in general, such correlations do not hold in
reverse order; i.e., there are evolutions for the 1RCBH plasma
with transient violations of DEC that present no far-from-
equilibrium plateaus in the entropy of the medium (see, e.g.,
Fig. 10).
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quasiplateau (i.e., with a time derivative close but
not actually zero) in the far-from-equilibrium en-
tropy, which leads to no posterior violations of the
DEC (see, e.g., Fig. 7; in particular, for ρ0 ¼ 0, this
has been already seen in [90,91] for the SYM
plasma at μ=T ¼ 0; see the initial condition No. 20
in those works, corresponding to the curve in cyan
with the highest initial entropy). We also remark
that we have not observed the final two steps in the
aforementioned general trend of progressive defor-
mations of the plateau structures in cases with
μ=T ¼ 0 (i.e., the progressive deformation of the
double plateaus into double quasiplateaus and the
final loss of the plateau structure was only observed
in association with later, progressively stronger
violations of the DEC from below with nonzero
values of the initial charge density, which leads to a
medium with μ=T > 0—this will be further illus-
trated in Fig. 28 in Appendix A).

(iii) ½ρ̂4=3=ϵ̂�ðωΛÞ: the magnitude of this observable al-
ways increases as μ=T is increased, but its qualita-
tive behavior at early times may be very different
depending on the chosen profile for the initial
subtracted metric anisotropy Bsðτ0; uÞ: While in
some cases, this observable monotonically decreases
in time, in other cases, it presents the formation of
extrema at early times, with the peculiar feature that
the position of these extrema in the axis of the
dimensionless time measure ωΛ displays little to
almost no variation as μ=T is enhanced.

(iv) ½hÔϕi=ϵ̂1=2�ðωΛÞ: the effective thermalization of
the scalar condensate, as measured by its con-
vergence, within small relative tolerances, to the
thermodynamically stable equilibrium, is gener-
ally delayed as μ=T increases, and it only occurs
for time scales much larger than the ones observed
for the hydrodynamization of the pressure
anisotropy. The enhancement of μ=T always leads

(a) (b)

(c) (d)

FIG. 8. (a) Normalized pressure anisotropy (solid lines) and the corresponding hydrodynamic Navier-Stokes result (dashed lines),
(b) normalized nonequilibrium entropy ŜAH=AΛ2 ¼ τŝAH=Λ2, (c) normalized charge density, and (d) normalized scalar condensate
(solid lines) and the corresponding thermodynamic stable equilibrium result (dashed lines). Results obtained for variations of ρ0 keeping
fixed Bs7 in Table I with a2ðτ0Þ ¼ −6.67. Note that xc ≡ ðμ=TÞc ¼ π=

ffiffiffi
2

p
is the critical point.
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to an increase in the magnitude of the scalar
condensate, with the formation of at least one
maximum as function of the dimensionless time
measure ωΛ, with other later extrema possessing
smaller magnitudes being also eventually ob-
served for some high values of μ=T in the
medium.

We close this section with an extra technical informa-
tion regarding the numerical simulations used to obtain
the results displayed in Figs. 2–12. For almost all the
initial conditions considered in those results, it is enough
to use N ∼ 20 collocations points in the radial grid in order
to obtain convergent and physically reliable results for all
the observables considered. However, specifically for
Bs11 in Table I with a2ðτ0Þ ¼ −7.1 and ρ0 ¼ 1, we noted
spurious numerical oscillations at early times for the
scalar condensate, with such an issue being completely
fixed by increasing the number of collocation points
to N ∼ 30.

V. RESULTS FOR VARIATIONS OF THE INITIAL
ENERGY DENSITY

In this section, we analyze the time evolution of
several different far-from-equilibrium initial conditions
of the Bjorken expanding 1RCBH plasma, where for each
profile for the initial subtracted metric anisotropy speci-
fied in Eq. (41) and in Table I, we consider variations of
the initial energy density of the medium (25a), ϵ̂ðτ0Þ ¼
−3a2ðτ0Þ (we set again ϕsðτ0; uÞ ¼ 0 throughout this
section), while keeping fixed its initial charge density
(25d), ρ̂ðτ0Þ ¼ ρ0=τ0. The corresponding results are
shown in Figs. 13–23.
One notices that by decreasing the initial energy density

of the 1RCBH plasma (by decreasing ja2ðτ0Þj), while
keeping its initial charge density fixed, the value of μ=T
in the medium is enhanced, producing for the physical
observables analyzed as functions of the dimensionless
time measure ωΛ generally the same physical possibilities

(a) (b)

(c) (d)

FIG. 9. (a) Normalized pressure anisotropy (solid lines) and the corresponding hydrodynamic Navier-Stokes result (dashed lines),
(b) normalized nonequilibrium entropy ŜAH=AΛ2 ¼ τŝAH=Λ2, (c) normalized charge density, and (d) normalized scalar condensate
(solid lines) and the corresponding thermodynamic stable equilibrium result (dashed lines). Results obtained for variations of ρ0 keeping
fixed Bs8 in Table I with a2ðτ0Þ ¼ −7. Note that xc ≡ ðμ=TÞc ¼ π=

ffiffiffi
2

p
is the critical point.
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as discussed in Sec. IV. However, for a given profile for the
initial subtracted metric anisotropy Bsðτ0; uÞ, considering
the enhancement of μ=T of the medium caused specifically
by increasing its initial charge density or specifically by
reducing its initial energy density, it is something that may
lead to qualitatively different outcomes for some physical
observables. For instance, by comparing Figs. 2 and 13 for
Bs1 in Table I, one notices that the peak of the normalized
pressure anisotropy is reduced (increased) by increasing
μ=T associated to increasing (decreasing) the initial charge
(energy) density of the medium.
We close this section with an extra technical information

regarding the numerical simulations used to obtain the
results displayed in Figs. 13–23. For almost all the initial
conditions considered in those results, it is enough to use
N ∼ 20 collocations points in the radial grid in order to
obtain convergent and physically reliable results for all the
observables considered. However, specifically for Bs8 in
Table I with ρ0 ¼ 0.4 and a2ðτ0Þ ¼ −6.4, and also for Bs11

with ρ0 ¼ 0.8 and a2ðτ0Þ ¼ −6.67, we noted spurious
numerical oscillations at early times for the scalar con-
densate, with such issues being completely fixed by
increasing the number of collocation points to N ∼ 30.

VI. RESULTS FOR VARIATIONS OF THE INITIAL
DILATON PROFILE

In this section, we analyze the time evolution of some
different far-from-equilibrium initial conditions of the
Bjorken expanding 1RCBH plasma, where we consider
variations of the initial profile for the subtracted dilaton
field specified in Eq. (42) and in Table II, while keeping
fixed all the other initial data. One notices from Eq. (25a)
that when the boundary value of the initial profile for
the subtracted dilaton field is nonvanishing, ϕ2ðτ0Þ ¼
ϕsðτ0; u ¼ 0Þ ≠ 0, it contributes to the initial energy
density of the medium, ϵ̂ðτ0Þ ¼ −3a2ðτ0Þ − ϕ2ðτ0Þ2=6.
The corresponding results are shown in Figs. 24 and 25.

(a) (b)

(c) (d)

FIG. 10. (a) Normalized pressure anisotropy (solid lines) and the corresponding hydrodynamic Navier-Stokes result (dashed lines),
(b) normalized nonequilibrium entropy ŜAH=AΛ2 ¼ τŝAH=Λ2, (c) normalized charge density, and (d) normalized scalar condensate
(solid lines) and the corresponding thermodynamic stable equilibrium result (dashed lines). Results obtained for variations of ρ0 keeping
fixed Bs9 in Table I with a2ðτ0Þ ¼ −6.67. Note that xc ≡ ðμ=TÞc ¼ π=

ffiffiffi
2

p
is the critical point.
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In the case of time evolutions with zero charge density,
as displayed in Fig. 24, one typically has relatively small
variations of the pressure anisotropy and the entropy at
early times in terms of variations of the initial dilaton
(keeping fixed the remaining initial data). On the other
hand, the relative variations of the scalar condensate
before thermalization may be large depending on the
chosen profiles for the initial dilaton field. The fact that
the scalar condensate may be nonzero when the 1RCBH
fluid is far from equilibrium, even for time evolutions
with zero charge density, implies that there are far-from-
equilibrium solutions with zero charge density in the
1RCBH model that are different from pure thermal SYM
solutions far from equilibrium. Indeed, even though the
asymptotic equilibrium state is the same for all initial
conditions with ρ0 ¼ 0, since in those cases μ=T ¼ 0 and
the equilibrium state in the 1RCBH model only depends
on the value of μ=T, at early times, when ϕsðτ0; uÞ ≠ 0,
the time evolutions with zero charge density in the

1RCBH plasma develop transiently nontrivial profiles
for the scalar condensate (which vanish when the medium
thermalizes). One also notices from Figs. 24(b) and 24(d)
that the thermalization time associated to the effective
equilibration of the scalar condensate is considerably
larger than the hydrodynamization time of the pressure
anisotropy of the medium.
In the case of time evolutions at finite charge density, as

shown in Fig. 25, again there are typically relatively small
variations of the pressure anisotropy, entropy, and charge
density at early times, while the relative variations of the
scalar condensate may be large. The value of μ=T is
typically almost insensitive to variations only on the initial
dilaton profile.
Interestingly, and completely different from all the cases

considered with ϕsðτ0; uÞ ¼ 0, when the initial dilaton
profile is nontrivial, the scalar condensate typically
acquires negative values with pronounced dips when the
medium is still far from equilibrium.

(a) (b)

(c) (d)

FIG. 11. (a) Normalized pressure anisotropy (solid lines) and the corresponding hydrodynamic Navier-Stokes result (dashed lines),
(b) normalized nonequilibrium entropy ŜAH=AΛ2 ¼ τŝAH=Λ2, (c) normalized charge density, and (d) normalized scalar condensate
(solid lines) and the corresponding thermodynamic stable equilibrium result (dashed lines). Results obtained for variations of ρ0 keeping
fixed Bs10 in Table I with a2ðτ0Þ ¼ −7.75. Note that xc ≡ ðμ=TÞc ¼ π=

ffiffiffi
2

p
is the critical point.
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We close this section by observing in Fig. 24 that, just
as it happens for the pressure anisotropy and the scalar
condensate, also the normalized entropy converges to a
single curve at late times when μ=T is kept fixed (in the
case of Fig. 24, it is zero). In two previous works of ours
[90,91], it was not very clear that the entropy does
converge to a single curve (it seemed instead that it
was converging to a tiny band of values for different
initial conditions at zero chemical potential) because the
numerical fits done to obtain the energy scale Λ [see
below Eq. (43)] were not very precise, since they were
calculated at not very late times. In the present work,
since we evolved each initial condition for much
longer times than in Refs. [90,91], we were able to
obtain precise results for Λ, such that the normalized
entropy ŜAH=AΛ2 ¼ τŝAH=Λ2 clearly converges to a
single curve for different initial conditions evolving into
the same value of μ=T at late times.

VII. CONCLUSIONS AND FUTURE
PERSPECTIVES

In this paper, we studied the time evolution of several
different far-from-equilibrium initial states for a hot and
dense strongly coupled quantum fluid expanding according
to the Bjorken flow dynamics. The corresponding medium,
called the 1RCBH plasma, describes a conformal N ¼ 4
SYM plasma charged under an Abelian Uð1Þ group of the
SUð4Þ R symmetry, having a critical point in its phase
diagram. We analyzed the time evolution of the Bjorken
expanding 1RCBH plasma, taking into account the behav-
ior of several physical observables, including, for the first
time, the calculation of the holographic nonequilibrium
entropy for this model.
We observed that the value of μ=T in the medium is

enhanced either by increasing its initial charge density or
by decreasing its initial energy density. We found that
as μ=T is enhanced toward its critical value, the

(a) (b)

(c) (d)

FIG. 12. (a) Normalized pressure anisotropy (solid lines) and the corresponding hydrodynamic Navier-Stokes result (dashed lines),
(b) normalized nonequilibrium entropy ŜAH=AΛ2 ¼ τŝAH=Λ2, (c) normalized charge density, and (d) normalized scalar condensate
(solid lines) and the corresponding thermodynamic stable equilibrium result (dashed lines). Results obtained for variations of ρ0 keeping
fixed Bs11 in Table I with a2ðτ0Þ ¼ −7.1. Note that xc ≡ ðμ=TÞc ¼ π=

ffiffiffi
2

p
is the critical point.
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hydrodynamization of the pressure anisotropy of the
medium, measured by its late time convergence to the
corresponding Navier-Stokes regime, is generally delayed,
in line with previous work [85]. We have also seen, for the
first time, the effective thermalization of the scalar con-
densate, measured by its late time convergence to the
corresponding thermodynamically stable equilibrium,
which is also generally delayed as the R-charge density
of the medium, is increased. The thermalization of the
scalar condensate only happens at much later times than the
hydrodynamization of the pressure anisotropy, requiring
the numerical simulations to run for much longer times than
in previous works [85,90,91], which, in turn, demands the
numerical code to be implemented using efficient pro-
gramming languages for numerical calculations.
For some sets of initial data preserving all the classical

energy conditions, dynamically driven transient viola-
tions of the dominant and the weak energy conditions are

observed when the 1RCBH plasma is still far from the
hydrodynamic regime. The far-from-equilibrium viola-
tions of the dominant and weak energy conditions get
stronger at larger values of μ=T, indicating that such
violations become more and more relevant as the strongly
coupled quantum fluid approaches its critical regime. For
some of these energy conditions violations, it is observed
a clear correlation with a previous formation of different
plateau structures in the far-from-equilibrium entropy of
the medium, indicating the presence of transient, early
time windows where the Bjorken expanding plasma has
zero entropy production even while being far from
equilibrium.
More specifically, when single or double plateaus are

produced in the time evolution of the far-from-equilibrium
entropy of the medium, later observed are almost or
effective violations of DEC from below with Δp̂=ϵ̂ ∼ −1
or Δp̂=ϵ̂ < −1, respectively, in line with the observations

(a) (b)

(c) (d)

FIG. 13. (a) Normalized pressure anisotropy (solid lines) and the corresponding hydrodynamic Navier-Stokes result (dashed lines),
(b) normalized nonequilibrium entropy ŜAH=AΛ2 ¼ τŝAH=Λ2, (c) normalized charge density, and (d) normalized scalar condensate
(solid lines) and the corresponding thermodynamic stable equilibrium result (dashed lines). Results obtained for variations of a2ðτ0Þ
keeping fixed Bs1 in Table I with ρ0 ¼ 1.8. Note that xc ≡ ðμ=TÞc ¼ π=

ffiffiffi
2

p
is the critical point.
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in [90,91] for the pure thermal SYM plasma with μ=T ¼ 0,
although here, we also observe the aforementioned corre-
lations under much more general situations with μ=T ≥ 0.
In general, such correlations do not hold in reverse order;
i.e., there are evolutions for the 1RCBH plasma with
transient violations of DEC, which present no far-from-
equilibrium plateaus in the entropy of the medium.
In particular, we notice the following general trend

regarding the deformation of plateau structures as μ=T is
increased, leading to progressively lower dips in the
pressure anisotropy to energy density ratio: First a single
plateau is formed (near the boundary to DEC violation from
below, with Δp̂=ϵ̂ ∼ −1), which then becomes more spread
out in the time direction, and next it is progressively
deformed into double plateaus (with Δp̂=ϵ̂ < −1), then
becoming double quasiplateaus, until the plateau structure
is finally lost for sufficiently strong violations of the DEC
from below (in such a progression, the lower plateau

structure is undone earlier than the higher plateau). We
also observe that it is possible to form a single quasiplateau
(i.e., with a time derivative close but not actually zero) in
the far-from-equilibrium entropy, which leads to no pos-
terior violations of the DEC. However, we have not
observed the final two steps in the aforementioned general
trend of progressive deformations of plateau structures in
cases with μ=T ¼ 0—i.e., the progressive deformation of
the double plateaus into double quasiplateaus and the final
loss of the plateau structure was only observed in associ-
ation with later, progressively stronger violations of the
DEC from below (i.e., for Δp̂=ϵ̂ < −1) with nonzero
values of the initial charge density, which leads to a
medium with μ=T > 0. On the other hand, no particular
correlation has been noticed between peculiar features
in the far-from-equilibrium entropy of the medium and
violations of DEC and WEC from above (i.e., for
Δp̂=ϵ̂ > 2).

(a) (b)

(c) (d)

FIG. 14. (a) Normalized pressure anisotropy (solid lines) and the corresponding hydrodynamic Navier-Stokes result (dashed lines),
(b) normalized nonequilibrium entropy ŜAH=AΛ2 ¼ τŝAH=Λ2, (c) normalized charge density, and (d) normalized scalar condensate
(solid lines) and the corresponding thermodynamic stable equilibrium result (dashed lines). Results obtained for variations of a2ðτ0Þ
keeping fixed Bs2 in Table I with ρ0 ¼ 1.2. Note that xc ≡ ðμ=TÞc ¼ π=

ffiffiffi
2

p
is the critical point.
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We also analyzed variations on the initial profile for the
subtracted dilaton field. When the initial charge density of
the medium is set to zero but the initial dilaton is nontrivial,
the early time evolution of the 1RCBH medium is different
from pure thermal SYM far-from-equilibrium states since
in the case of the 1RCBH plasma, the scalar condensate
develops a nontrivial time dependence.11 At later times,
when the 1RCBH fluid approaches equilibrium, the scalar
condensate for charge neutral configurations goes to zero,
and all the other observables also match the pure thermal
SYM equilibrium state. This asymptotic time behavior is
expected since the equilibrium state in the 1RCBH model
only depends on the value of μ=T, which vanishes for
charge neutral configurations. When the initial charge

density and the initial dilaton are both nonzero, by varying
only the initial dilaton while keeping the remaining initial
data fixed, one typically notices relatively small variations
on the pressure anisotropy, entropy, and charge density,
while the relative variations on the scalar condensate may
be large when the system is still far-from-equilibrium. By
varying only the initial dilaton profile, the impact on the
value of μ=T in the medium is typically negligible.
Remarkably, in the cases with a nontrivial profile for the
initial dilaton field, the scalar condensate typically acquires
negative values and develops a pronounced dip when
the medium is still far-from-equilibrium. This is very
different from the solutions with zero initial dilaton, for
which the scalar condensate has been always observed to
be non-negative in the configurations generated in the
present work.
Although we have not calculated in the present work the

holographic entanglement entropy, whose second order

(a) (b)

(c) (d)

FIG. 15. (a) Normalized pressure anisotropy (solid lines) and the corresponding hydrodynamic Navier-Stokes result (dashed lines),
(b) normalized nonequilibrium entropy ŜAH=AΛ2 ¼ τŝAH=Λ2, (c) normalized charge density, and (d) normalized scalar condensate
(solid lines) and the corresponding thermodynamic stable equilibrium result (dashed lines). Results obtained for variations of a2ðτ0Þ
keeping fixed Bs3 in Table I with ρ0 ¼ 1.5. Note that xc ≡ ðμ=TÞc ¼ π=

ffiffiffi
2

p
is the critical point.

11The 1RCBH model features pure thermal SYM as a
particular case, which is obtained by setting both the initial
charge density and the initial subtracted dilaton profile to zero.
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functional derivative is related in Ref. [142] to the quantum
null energy condition (QNEC) [143], which is a local
energy condition proposed to hold for any quantum field
theory, we analyzed the behavior of the second order proper
time derivative of the nonequilibrium entropy associated to
the area of the apparent horizon. Due to the noisy numerical
data for the proper time evolution of the area of the apparent
horizon at finite density (see Appendix B 2), we restricted
our analysis of the second order derivative of the non-
equilibrium entropy to charge neutral solutions correspond-
ing to pure thermal SYM evolutions, which produce
significantly less noisy numerical data for the proper time
evolution of the area of the apparent horizon.
We looked at several different initial conditions and

compared the normalized pressure anisotropy and the
normalized logarithmic second order derivative of the
nonequilibrium entropy in cases with no violations of

the classical energy conditions and also in cases with
violations of DEC and WEC. The main conclusions we
obtained are illustrated with the plots in Fig. 26.
We found that when DEC or WEC and DEC are violated

from below (by having, respectively, Δp̂=ε̂ < −1 or
Δp̂=ε̂ < −4) and next WEC and DEC are violated from
above (by having Δp̂=ε̂ > 2), with no further violations
afterward, then the time evolution of (minus) the normal-
ized logarithmic second order derivative of the nonequili-
brium entropy is qualitatively similar to the time evolution
of the normalized pressure anisotropy, with the former
being slightly delayed in time relatively to the latter. If a
third violation happens afterward (generally corresponding
to a second violation of DEC from below), then this
correlation is lost with D2

τ ŜAH developing more extrema
than Δp̂=ε̂ (at the boundary of such a third violation, with
Δp̂=ε̂ ¼ −1, the extra extremum developed byD2

τ ŜAH is an

(a) (b)

(c) (d)

FIG. 16. (a) Normalized pressure anisotropy (solid lines) and the corresponding hydrodynamic Navier-Stokes result (dashed lines),
(b) normalized nonequilibrium entropy ŜAH=AΛ2 ¼ τŝAH=Λ2, (c) normalized charge density, and (d) normalized scalar condensate
(solid lines) and the corresponding thermodynamic stable equilibrium result (dashed lines). Results obtained for variations of a2ðτ0Þ
keeping fixed Bs4 in Table I with ρ0 ¼ 1.5. Note that xc ≡ ðμ=TÞc ¼ π=

ffiffiffi
2

p
is the critical point.
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inflection point). When no violations of DEC or WEC are

observed, or when just DEC is violated from below,D2
τ ŜAH

and Δp̂=ε̂ may generally display different behaviors
depending on the chosen initial conditions.
In this regard, when DEC or WEC and DEC are violated

from below and next WEC and DEC are violated from
above, with no further violations afterward, we found that
the curve for D2

τ ŜAH generally anticipates what will happen
with the curve for Δp̂=ε̂. Clearly, such an inferred corre-
lation is physically nontrivial, and it can be deeply
investigated elsewhere.

It would be also interesting to systematically investigate
the violation of energy conditions in other far-from-
equilibrium holographic models, as well as possible
correlations with early time windows with zero entropy
production for the out of equilibrium medium. It may be
that the correlations reported here and in [90,91] are general
for strongly coupled quantum fluids, which is then a
remarkable qualitative difference with regard to the physi-
cal possibilities, which may be realized in classical weakly
coupled approaches for nonequilibrium media, like kinetic
theory, where violations of energy conditions are not
observed.

(a) (b)

(c) (d)

FIG. 17. (a) Normalized pressure anisotropy (solid lines) and the corresponding hydrodynamic Navier-Stokes result (dashed lines),
(b) normalized nonequilibrium entropy ŜAH=AΛ2 ¼ τŝAH=Λ2, (c) normalized charge density, and (d) normalized scalar condensate
(solid lines) and the corresponding thermodynamic stable equilibrium result (dashed lines). Results obtained for variations of a2ðτ0Þ
keeping fixed Bs5 in Table I with ρ0 ¼ 0.6. Note that xc ≡ ðμ=TÞc ¼ π=

ffiffiffi
2

p
is the critical point.
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(a) (b)

(c) (d)

FIG. 18. (a) Normalized pressure anisotropy (solid lines) and the corresponding hydrodynamic Navier-Stokes result (dashed lines),
(b) normalized nonequilibrium entropy ŜAH=AΛ2 ¼ τŝAH=Λ2, (c) normalized charge density, and (d) normalized scalar condensate
(solid lines) and the corresponding thermodynamic stable equilibrium result (dashed lines). Results obtained for variations of a2ðτ0Þ
keeping fixed Bs6 in Table I with ρ0 ¼ 0.8. Note that xc ≡ ðμ=TÞc ¼ π=

ffiffiffi
2

p
is the critical point.
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(a) (b)

(c) (d)

FIG. 19. (a) Normalized pressure anisotropy (solid lines) and the corresponding hydrodynamic Navier-Stokes result (dashed lines),
(b) normalized nonequilibrium entropy ŜAH=AΛ2 ¼ τŝAH=Λ2, (c) normalized charge density, and (d) normalized scalar condensate
(solid lines) and the corresponding thermodynamic stable equilibrium result (dashed lines). Results obtained for variations of a2ðτ0Þ
keeping fixed Bs7 in Table I with ρ0 ¼ 0.6. Note that xc ≡ ðμ=TÞc ¼ π=

ffiffiffi
2

p
is the critical point.
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(a) (b)

(c) (d)

FIG. 20. (a) Normalized pressure anisotropy (solid lines) and the corresponding hydrodynamic Navier-Stokes result (dashed lines),
(b) normalized nonequilibrium entropy ŜAH=AΛ2 ¼ τŝAH=Λ2, (c) normalized charge density, and (d) normalized scalar condensate
(solid lines) and the corresponding thermodynamic stable equilibrium result (dashed lines). Results obtained for variations of a2ðτ0Þ
keeping fixed Bs8 in Table I with ρ0 ¼ 0.4. Note that xc ≡ ðμ=TÞc ¼ π=

ffiffiffi
2

p
is the critical point.
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(a) (b)

(c) (d)

FIG. 21. (a) Normalized pressure anisotropy (solid lines) and the corresponding hydrodynamic Navier-Stokes result (dashed lines),
(b) normalized nonequilibrium entropy ŜAH=AΛ2 ¼ τŝAH=Λ2, (c) normalized charge density, and (d) normalized scalar condensate
(solid lines) and the corresponding thermodynamic stable equilibrium result (dashed lines). Results obtained for variations of a2ðτ0Þ
keeping fixed Bs9 in Table I with ρ0 ¼ 0.9. Note that xc ≡ ðμ=TÞc ¼ π=

ffiffiffi
2

p
is the critical point.
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(a) (b)

(c) (d)

FIG. 22. (a) Normalized pressure anisotropy (solid lines) and the corresponding hydrodynamic Navier-Stokes result (dashed lines),
(b) normalized nonequilibrium entropy ŜAH=AΛ2 ¼ τŝAH=Λ2, (c) normalized charge density, and (d) normalized scalar condensate
(solid lines) and the corresponding thermodynamic stable equilibrium result (dashed lines). Results obtained for variations of a2ðτ0Þ
keeping fixed Bs10 in Table I with ρ0 ¼ 0.8. Note that xc ≡ ðμ=TÞc ¼ π=

ffiffiffi
2

p
is the critical point.

ROMULO ROUGEMONT and WILLIANS BARRETO PHYS. REV. D 106, 126023 (2022)

126023-34



(a) (b)

(c) (d)

FIG. 23. (a) Normalized pressure anisotropy (solid lines) and the corresponding hydrodynamic Navier-Stokes result (dashed lines),
(b) normalized nonequilibrium entropy ŜAH=AΛ2 ¼ τŝAH=Λ2, (c) normalized charge density, and (d) normalized scalar condensate
(solid lines) and the corresponding thermodynamic stable equilibrium result (dashed lines). Results obtained for variations of a2ðτ0Þ
keeping fixed Bs11 in Table I with ρ0 ¼ 0.8. Note that xc ≡ ðμ=TÞc ¼ π=

ffiffiffi
2

p
is the critical point.
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(a) (b)

(c) (d)

FIG. 24. (a) Normalized pressure anisotropy (solid lines) and the corresponding hydrodynamic Navier-Stokes result (dashed line),
(b) zoom of the pressure anisotropy up to the hydrodynamization region, (c) normalized nonequilibrium entropy ŜAH=AΛ2 ¼ τŝAH=Λ2,
and (d) normalized scalar condensate (solid lines) and the corresponding thermodynamic stable equilibrium result (dashed line). Results
obtained for variations of the initial profile for the subtracted dilaton field ϕsðτ0; uÞ in Table II, keeping fixed Bs1 in Table I with
a2ðτ0Þ ¼ −6.67 and ρ0 ¼ 0, which give solutions with μ=T ¼ 0. Note that when ϕsðτ0; uÞ ≠ 0, the scalar condensate presents a
nontrivial time evolution (with some impact also on other observables), different from pure thermal SYM states far from equilibrium,
even though the asymptotic equilibrium state (which depends only on the value of μ=T) is the same as in pure thermal SYM.
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(a) (b)

(c) (d)

FIG. 25. (a) Normalized pressure anisotropy (solid lines) and the corresponding hydrodynamic Navier-Stokes result (dashed lines),
(b) normalized nonequilibrium entropy ŜAH=AΛ2 ¼ τŝAH=Λ2, (c) normalized charge density, and (d) normalized scalar condensate
(solid lines) and the corresponding thermodynamic stable equilibrium result (dashed lines). Results obtained for variations of the initial
profile for the subtracted dilaton field ϕsðτ0; uÞ in Table II, keeping fixed Bs1 in Table I with a2ðτ0Þ ¼ −6.67 and ρ0 ¼ 1.6. Note that
xc ≡ ðμ=TÞc ¼ π=

ffiffiffi
2

p
is the critical point.
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APPENDIX A: FURTHER PHYSICAL
CONSISTENCY CHECKS AND DETAILS

In this appendix, we discuss some extra physical con-
sistency checks of our numerical results and also provide
some clear illustrations for the previously discussed behav-
ior regarding the formation of plateau structures in the far-
from-equilibrium entropy of the medium for some selected
initial data.
The radial location of the event horizon is determined by

the solution of the outgoing radial null geodesics equation
subjected to the condition that at asymptotically large
times, it is given by a zero of the metric coefficient Aðτ; rÞ,

(a) (b)

(c) (d)

FIG. 26. Comparison between the normalized pressure anisotropy (dashed lines), Δp̂=ε̂, and (minus) the normalized logarithmic
second order derivative of the nonequilibrium entropy (solid lines), D2

τ ŜAH ≡ τ∂τ½τ∂τ ln ðŜAH=AΛ2Þ�, for pure thermal SYM solutions
(ρ0 ¼ 0 ⇒ μ=T ¼ 0) plotted with different values of a2 and: (a) Bs1 in Table I, (b) Bs7, (c) Bs9, and (d) Bs10. The numerical factors in
front of D2

τ ŜAH were chosen to take the curves close to the corresponding results for the normalized pressure anisotropy in order to
facilitate graphical comparisons.
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drEHðτÞ
dτ

¼ Aðτ; rEHðτÞÞ; rEHðτ → ∞Þ ¼ rðeqÞEH ; ðA1Þ

where rðeqÞEH is the largest simple root of equation
Aðτ → ∞; rÞ ¼ 0, corresponding to the radial position of
the event horizon in equilibrium. Translating the above
conditions to the coordinate u ¼ 1=r and making use of the
subtracted field Asðτ; uÞ defined by Eq. (26a), one obtains
the following first order differential equation,

duEHðτÞ
dτ

¼ −u2EHðτÞAðτ; uEHðτÞÞ

¼ −u4EHðτÞAsðτ; uEHðτÞÞ −
1

2
− uEHðτÞλðτÞ

− u2EHðτÞ
�
λ2ðτÞ
2

− ∂τλðτÞ
�
;

uEHðτ → ∞Þ ¼ uðeqÞEH ðμ=TÞ; ðA2Þ

where uðeqÞEH ðμ=TÞ is the smallest simple root of the
following equation,

Aðτ → ∞; uÞ ¼ u2Asðτ → ∞; uÞ þ 1

2u2
þ λðτ → ∞Þ

u

þ λ2ðτ → ∞Þ
2

− ∂τλ

����
τ→∞

¼ 0: ðA3Þ

In practice, we approximate the asymptotic limit τ → ∞ in
Eq. (A3) by evaluating it at τ ¼ τend, where the end time

of the numerical simulations needs to be sufficiently large
so that the dynamical background black hole geometries are
near equilibrium at τ ¼ τend. The alternative nonequili-
brium entropy density associated to the area of the
dynamical event horizon can be calculated using Eq. (40)
with the substitution uAHðτÞ → uEHðτÞ. The corresponding
results comparing the time evolution of the apparent and the
event horizons and their associated entropy densities are
shown in Fig. 27 for a given far-from-equilibrium initial
condition. One can see that, as expected, the apparent
horizon is always behind the event horizon (notice that the
boundary is at u ¼ 0) and that they converge at late times.
Moreover, at early times, the normalized entropy density
½ŝ4=3AH=ϵ̂�ðτÞ associated to the apparent horizon is always less
than the corresponding result involving the event horizon,
while both converge to the same stable equilibrium result
at late times, as they should. In fact, this is one of the
important analytical consistency checks of our numerical
simulations in the late time evolution of the system, as
previously discussed in Sec. III.
In Fig. 28(a), we show for Bs5 in Table I at μ=T ¼ 0, a

sequence with progressive reductions of the initial energy
density of the medium, which progressively lower the dip
in the pressure anisotropy leading from no violations to
progressively stronger violations of the DEC (47) from
below. One notices from Fig. 28(b) the associated behavior
for the entropy of the medium, which progressively goes
from an absence of plateaus, to the formation of a single
plateau, which is next deformed into double plateaus, with

(a) (b)

FIG. 27. Time evolutions for: (a) the apparent horizon (AH) and the event horizon (EH); (b) the nonequilibrium entropy densities
associated to the areas of the apparent and the event horizons, normalized by the energy density. Results obtained for Bs1 in Table I with
a2ðτ0Þ ¼ −6.67 and ρ0 ¼ 2.2, for which μ=T ∼ 1.957 → x=xc ∼ 0.881, where xc ≡ ðμ=TÞc ¼ π=

ffiffiffi
2

p
is the critical point. The

corresponding results for the other observables of the 1RCBH plasma are displayed in Fig. 2. The analytical stable equilibrium
result for the normalized entropy density is obtained from Eq. (7).
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such plateau structures being explicitly confirmed by the
calculation of the time derivative of the entropy, as shown
in Fig. 28(c).
On the other hand, we show in Fig. 28(d) the time

derivative of the entropy for Bs11 in Table I at fixed initial
energy density, considering progressive enhancements
of the initial charge density of the fluid, which lead to a
richer variety of steps than in the previous analyzed case at
μ=T ¼ 0. Indeed, in Fig. 28(d), one notices that as μ=T is
progressively increased (leading to stronger violations of
the DEC from below, as previously displayed in Fig. 12),

the double plateaus are further deformed into double
quasiplateaus, until the plateau structure is finally lost for
strong enough violations of the DEC at high values of μ=T.
One also notices that the time derivative of the entropy

shown in Fig. 28(d) at finite μ=T is clearly more noisy than
the results displayed in Fig. 28(c) at μ=T ¼ 0. Indeed, the
results shown in Fig. 28(d) have been already smoothed out
by using a smoothing technique employed to reduce the
very strong numerical noise in the original data associated
to the area of the apparent horizon evaluated at finite μ=T,
as we discuss next in Appendix B.

(a) (b)

(c) (d)

FIG. 28. Zoom of the early time windows for: (a) the normalized pressure anisotropy, (b) the normalized nonequilibrium
entropy ŜAH=AΛ2 ¼ τŝAH=Λ2, and (c) the normalized time derivative of the nonequilibrium entropy—results obtained for variations
of a2ðτ0Þ ¼ f−8.1 ðhigher line in salmon with one minimumÞ; −7.9; −7.7; −7.5; −7.3; −7.1; −6.9; −6.83; −6.7; −6.5; −6.3;
−6.1 ðhigher line in turquoise with one maximumÞg keeping fixed Bs5 in Table I with ρ0 ¼ 0 (these correspond to pure thermal
SYM evolutions with μ=T ¼ 0); the black dashed line corresponds to a2 ¼ −6.83 and defines the transition between the salmon and
turquoise curves. (d) Zoom of the early time windows for the normalized time derivative of the nonequilibrium entropy obtained for
variations of ρ0 keeping fixed Bs11 in Table I with a2ðτ0Þ ¼ −7.1 (results obtained with the smoothing technique used to reduce
numerical noise, to be discussed in Appendix B); the corresponding results for the other observables of the 1RCBH plasma are displayed
in Fig. 12. Note that xc ≡ ðμ=TÞc ¼ π=

ffiffiffi
2

p
is the critical point.
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APPENDIX B: NUMERICAL ERROR ANALYSIS

In this appendix, we briefly discuss some details regard-
ing the numerical error and the treatment of the inherent
noise in our code.

1. Monitoring the convergence and the constraints

We have two constraint equations, denoted here by CE
and CM, respectively given by Eqs. (15h) and (15a), which
are used to globally monitor the time evolution of the initial
data. In order to accomplish such a task, we define a root
mean square (RMS) norm,12

jjCjj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

Z
uIR

0

duC2

s
; ðB1Þ

which is our measure of error for the time evolution of any
given initial condition. The integral in Eq. (B1) is calcu-
lated using a Gauss-Lobatto quadrature off the collocation
points. By doing so, we display in Fig. 29, as a typical

example, the time evolution of the error of the constraints
for some values of the number of radial collocation points
for a given initial condition (as discussed in Sec. II D, we
use Δτ ¼ 12 × 10−5 as the time step size). The constraint
CM, given by Eq. (15a), displays an apparent high and
structured error. A careful study of this error led us to
efficiently remove the associated noise, which is crucial to
the more accurate calculation of the entropy, and particu-
larly its time derivative, which is used to confirm the
presence of plateaus with zero entropy production.

2. Treatment of numerical noise

As shown in Fig. 30(a), in the course of time, the
numerically calculated radial location of the apparent
horizon typically displays the same kind of structured
noise as observed for the constraint CM. This behavior is
not clearly noticed by eye in the associated entropy,13 but its
time derivative does manifest it in full swing. An additional
test was conducted for the calculation of the apparent
horizon. We used an alternative method to the Newton-
Raphson algorithm for that purpose, namely, a bisection
standard method. The result was numerically the same for a
similar numerical tolerance.

FIG. 29. Time evolution of the error of the constraints CE (a) and CM (b), for different numbers of collocation points, N, evaluated with
the RMS norm (B1) for Bs11 in Table I with a2ðτ0Þ ¼ −7.1 and ρ0 ¼ 0.6 (corresponding to a solution with μ=T ∼ 1.086, which gives
x=xc ∼ 0.489, where xc ≡ ðμ=TÞc ¼ π=

ffiffiffi
2

p
is the critical point). The situation is similar for the whole set of initial conditions considered

in this work.

12We denote by uIR the infrared radial cutoff used as the end
point of the radial integration deep into the bulk [90,91]. In the
present work, we selected different values for uIR (typically
between 1.0 and 1.2) depending on the initial condition consid-
ered, such as to have the initial value of the radial location of the
apparent horizon uAHðτ0Þ (calculated with λðτ0Þ ¼ 0) within the
radial grid u ∈ ½0; uIR�.

13However, it does become noticeable in the entropy at large
times by increasing the number of collocation points N.
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For all time evolutions, the noise was monitored, and
when required by the analysis of the time derivative of the
entropy, we treated it within the relevant time window, as
displayed, e.g., in Fig. 28(d). In the cases when it was not
enough to simply select an appropriate number of radial
collocation points in order to diminish the numerical noise
increasing with the action of time, we proceed to smooth
out the resulting data by using standard procedures and
tools. As an extra reference for the particular evolutions
with μ=T ¼ 0, we also compared our present results with
the outcomes from the numerical code developed for the
pure thermal SYM plasma undergoing Bjorken flow in
Refs. [90,91], which is much less noisy. We display in
Fig. 30(b) a comparison for the time derivative of the

entropy, where it becomes clear that our best implementa-
tion of the smoothing technique corresponds to the moving
window procedure. The algorithm is quite simple: We
select one window to fit a mean smooth curve, which is
later differentiated. Depending on the quality of the
result—comparing, e.g., with the reference pure thermal
SYM code [90,91]—we proceed to move the time windows
considered by doing subsamplings. For that purpose, we
implemented a short script using a couple of Python
libraries and functions. Particularly, the Scipy interpolating
tools for a smooth spline approximation. Without smooth-
ing out the results for the time derivative of the entropy, it is
not possible to extract useful information from this specific
numerical data, as it is clear from Fig. 30(b).

FIG. 30. Time evolution of the radial location of the apparent horizon uAHðτÞ (a), and the normalized time derivative of the
nonequilibrium entropy τ∂τ ln½τŝAH=Λ2� (b), with and without smoothing for Bs11 in Table I with a2ðτ0Þ ¼ −7.1 and ρ0 ¼ 0
(corresponding to a pure thermal SYM solution with μ=T ¼ 0).

ROMULO ROUGEMONT and WILLIANS BARRETO PHYS. REV. D 106, 126023 (2022)

126023-42



APPENDIX C: NUMERICAL CODE’S
PERFORMANCE

For this work, we developed a general code, which
makes use of different programming languages for differ-
ent tasks.
All the lengthy analytical and symbolic-algebraic manip-

ulations were implemented using Wolfram’s Mathematica
and the Riemannian Geometry & Tensor Calculus (RGTC)
library developed by Sotirios Bonanos. Although
Mathematica is useful for such tasks, it is extremely inefficient
to deal with numerical calculations when compared to other
programming languages like, e.g., Fortran and C.
Indeed, for the numerical simulations considered in the

present work, typically done with N ¼ 21 radial colloca-
tion points, a time step size of Δτ ¼ 12 × 10−5, and
with the evolutions computed within the long time
interval τ ∈ ½τ0 ¼ 0.2; τend ¼ 35�, it is practically unfea-
sible to numerically evolve a single initial data using
Mathematica. By considering a much shorter end time
for the simulations, like τend ¼ 7.5, as used in [90,91],

Mathematica takes several hours to run a single evolution
on an Intel Core i5 1.8 GHz Dual-Core; however, τend ¼
7.5 is not large enough to allow one to see the effective
thermalization of the scalar condensate as analyzed in the
present work, which generally requires a much larger value
for τend. Indeed, as mentioned in Sec. II D, we used here
τend ¼ 35, which can only be simulated using more
efficient programming languages for numerical purposes.
In this regard, we developed an integrated numerical

code combining Fortran and Python to automate each run,
including all the postprocessing and plotting. The per-
formance of this numerical code for each run with
the same general configurations as aforementioned,
including the calculation of Λ and μ=T in the postpro-
cessing, is about 20 minutes on an Intel Core i5 1.8 GHz
Dual-Core.
In order to standardize the runs between different

operating systems, we used a Docker container to configure
a virtual Linux machine and run the initial data to produce
all the results analyze in this work.
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