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For a strongly coupled system that has a gravity dual description, we show that the standard holographic
dictionary yields a non-negative susceptibility when the system is in thermodynamic equilibrium and the
correlation function is absolutely integrable. When the system has no spontaneous condensation or has a
spontaneous Z2-symmetry breaking, we find that the “trace energy condition” is violated in many cases.
There is a normalized grand potential density that is monotonic as accessing to lower scales, providing a
candidate c-function characterizing the number of effective degrees of freedom. Finally, we discuss a
“paradox” raising by the negative susceptibility in holography and its resolution.
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I. INTRODUCTION

Strongly coupled systems are ubiquitous in Nature,
ranging from nuclear physics, fluid dynamics, astrophysics
to condensed matter, etc. As the traditional perturbation
approach ceases to be applicable, it has been challenging to
understand those systems that involve strong interaction in
the nonperturbative regime. In recent years, the holographic
duality [1–4], which origins from string theory, offers us
a prospective tool to crack this hard nut. By mapping a
d-dimensional strong coupling theory to a (dþ 1)-
dimensional asymptotically anti–de Sitter (AdS) spacetime,
one can instead deal with generic gravitational phenomena
in terms of classical general relativity. This holographic
approach has been used to study various strongly coupled
systems, such as quark-gluon plasma [5–9], high temper-
ature superconductivity [10–14], strange metals [15–19],
and Fermi/non-Fermi liquids [20,21] and so on.
Since intensive investigations have been made, a natural

question arises: what kind of strongly coupled systems has
a dual gravitational description in holography? Considering

a dual system to be a critical point where an exact
conformal symmetry emerges, the authors of [22] provided
a criterion on whether such a critical point admits a dual
gravitational description. They argued that the normalized
entropy density [defined in Eq. (19)] should be equal to the
central charge. However, in most applications of holo-
graphic duality or interesting strongly coupled systems, the
boundary theory is deformed by some relevant operators. In
these cases, the criterion of [22] cooked for a conformal
field theory (CFT) fails. As we will show explicitly, the
normalized entropy can be different from the central charge
at the UV fixed point.
In this work, we give some judgments on whether a

strong coupling system has a dual description in holog-
raphy based on general considerations. For a d-dimen-
sional quantum field theory at finite temperature deformed
by N relevant operators oi with scaling dimension Δi

(i ¼ 1; 2;…;N ), its thermodynamics is governed by the
grand potential ψ ¼ ψðT; J⃗Þ such that hoii ¼ −∂ψ=∂Ji.
Here Ji and hoii are thermodynamic conjugate variables,
for which hoii are typically the relevant conserved charges
of the system (e.g., the electric charge density) and Ji the
corresponding “chemical potentials.” By using the basic
holographic dictionary, we will prove that the generalized
susceptibility ∂hoii=∂Ji for a system with a gravity dual
should be non-negative when the correlation function is
absolutely integrable. Moreover, we will show the viola-
tion of the trace energy condition for a thermodynamic
stable state, and introduce a normalized grand potential
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density that is monotonic as accessing to lower scales,
providing a candidate c-function characterizing the num-
ber of effective degrees of freedom at given energy scales.
Our results give a strong constraint on whether a gravi-
tational theory can describe any lower-dimensional ther-
mal equilibrium system within the holographic duality.
Finally, we will discuss a “paradox” rasing by the negative
susceptibility appearing in holography and its resolution.

II. REVIEW OF HOLOGRAPHY

Referring to the holographic duality, the operators oi of
boundary field theory are dual to bulk fields fφi; i ¼
1; 2;…N g in one higher dimension. The gravitational
bulk theory is given by the following action.

S ¼
Z

ddþ1x
ffiffiffiffiffiffi
−g

p �
Rþ dðd − 1Þ

l2
AdS

þ Lm

�
þ Sct: ð1Þ

Here g is the determinate of the bulk metric, R is the scalar
curvature, Lm stands for the Lagrangian of matter sector,
and Sct denotes some boundary terms which cancel the UV
divergence and ensure the variation is well defined. We will
set the AdS radius lAdS ¼ 1 with 16πGN ¼ c ¼ ℏ ¼ kB ¼
1 in our following discussion. By choosing a suitable
coordinate system with the holographic radial coordinate r,
the asymptotical expansion of each matter field near the
AdS boundary at r → ∞ has two independent branches.

φi ¼ φðsÞ
i rΔ̃i−dþsið1þ � � �Þ þ φðeÞ

i rsi−Δ̃ið1þ � � �Þ; ð2Þ

where si is the rank of φi [23]. Without loss of generality,
we assume d − Δ̃i ≤ Δ̃i such that Δ̃i ≥ d=2. In the so-
called “standard quantization,” one considers the leading

term φ⃗ðsÞ ¼ ðφðsÞ
1 ;…;φðsÞ

N Þ as the sources J⃗ of the dual
system. In this case, the scaling dimension Δi of oi is Δi ¼
Δ̃i and the scaling dimension of the source φðsÞ

i is d − Δ̃i.
One may have the so-called alternative quantization by

choosing φðeÞ
i as the source, for example, for the scalar case

with d=2 ≤ Δ̃i ≤ ðdþ 2Þ=2.
According to the standard holographic dictionary [2,3],

turning on the external source φðsÞ of the bulk field φ

corresponds to introducing the deformation
R
φðsÞ
i oiddx for

an operator oi in the dual field theory. In the thermody-
namical equilibrium case, the precise relationship is given
by the identification of the Euclidean partition functions for
both the bulk and field theories (We follow the convention
of Ref. [3]) [24]:

ZQFT ¼
�
exp

X
i

Z
φðsÞ
i oiddx

�
QFT

¼ Zbulk½gðEÞμν ;φi�; ð3Þ

where the bulk partition function is computed with the
boundary condition that at the asymptotically AdS

boundary φi approaches to a given source term φðsÞ
i of

Eq. (2). In the leading saddle point approximation, one can

compute Zbulk½gðEÞμν ;φi� by the on-shell bulk action
SEuclidean;on-shell, i.e., Zbulk ¼ e−SEuclidean;on-shell . On the other
hand, for a system in thermodynamic equilibrium that is
described by a stationary black hole with a well-defined
temperature T, the standard black hole thermodynamics
yields that the free energy (grand potential) Ψ is given by
Ψ ¼ −T lnZbulk ¼ TSEuclidean;on-shell. We will focus on a
homogeneous system in flat spacetime. DenotingΩd−1 to be
the spatial volume of the dual theory, the free energy density
reads

ψ ¼ T
Ωd−1

SEuclidean;on-shell ¼ −
T

Ωd−1
lnZQFT: ð4Þ

By definition, the expectation value of any operator X in
the above thermodynamic system is given by

hXi ≔ Z−1
QFT

�
X exp

X
i

Z
φðsÞ
i oiddx

�
QFT

: ð5Þ

Since the external source φðsÞ
i contributes to the partition

function via Eq. (3), one can prove

hoii ¼ −∂ψ=∂φðsÞ
i : ð6Þ

See Appendix A for more details. When φðsÞ
i ≠ 0, one

should require Δ̃i < d such that the operator oi is relevant
(or equivalently, the source will not destroy the asymp-
totically AdS geometry as r → ∞).

III. NON-NEGATIVITY OF SUSCEPTIBILITY

The basic holographic dictionary requires that the
external source φðsÞ

i contributes to the partition function
according to Eq. (3). The first-order derivative of ZQFT with
respect to the source gives Eq. (6). What will one obtain if
considering the second-order derivative? To answer this
question, let us rewrite the partition function of the
homogenous thermal equilibrium system into the following
form.

ZQFT ¼ heT−1Ωd−1

P
i
oiφ

ðsÞ
i iQFT ¼ heT−1

P
i
Oiφ

ðsÞ
i iQFT; ð7Þ

with Oi ≔ oiΩd−1. Then we have [26]

hoii ¼ TΩ−1
d−1∂φðsÞ

i
lnZQFT; ð8Þ

and

TΩd−1
∂hoii
∂φðsÞ

i

¼ T2
∂
2

φðsÞ
i

lnZQFT ¼ hO2
i i − hOii2: ð9Þ
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This leads to

∂hoii
∂φðsÞ

i

¼ hðOi − hOiiÞ2i
TΩd−1

≥ 0: ð10Þ

A similar result can be obtained in inhomogeneous states,
see Appendix B for more details. One sees that the special
coupling required in Eq. (3) not only leads to Eq. (6) but
also implies a “fluctuation-susceptibility relation” (10).
This is a direct corollary of the basic holographic dic-
tionary, Eq. (3), but did not draw sufficient attention in the
literature. At the end of this paper, we will show that some
widely used bulk models do not match Eq. (10). In
addition, let us stress here that the susceptibility could

be negative if the external source φðsÞ
i contributes to the

partition function in a different way (for example, the
diamagnetic materials, see Appendix C and Ref. [27] for
more discussions).
We emphasize that the non-negativity of susceptibility

results from thermodynamic stability is only valid in a few
special cases, for example, the “heat capacity” (the sus-
ceptibility of temperature) and the “minus of compress-
ibility” (the susceptibility of pressure). For more general
cases they have no relationship with each other and thus
one cannot use thermodynamic stability to argue the non-
negativity of susceptibility. One can refer to Appendix D
for more detailed discussions.
We now show that Eq. (10) gives the following constraint

hoiiφðsÞ
i ≥ 0: ð11Þ

for a thermodynamically stable phase if it has no sponta-
neous condensation or has spontaneous Z2-symmetry

breaking when φðsÞ
i ¼ 0, shown schematically in Fig. 1.

Although the latter does not describe all cases with
spontaneous symmetry breaking, a large class of interesting
phenomena including superconductivity and (anti)ferri-
magnetism, have the spontaneous Z2-symmetry breaking.
In the first case, the system has no spontaneous con-

densation when φðsÞ
i ¼ 0, i.e., hoii ¼ 0 if φðsÞ

i ¼ 0 (left

panel of Fig. 1). Then Eq. (10) immediately implies

φðsÞ
i hoii ≥ 0. In the second case, the system has spontaneous

condensation, e.g., there is a critical temperature Tc, below
which the thermodynamically favored states have hoii ≠ 0

when φðsÞ
i ¼ 0. As can be seen from the right panel of Fig. 1,

at φðsÞ ¼ 0 there are two condensed phases with the free
energies ψ− ¼ ψþ lower than that of the uncondensed
phase. When φðsÞ ¼ φ0 > 0 (the case for φ0 < 0 is similar),
since the susceptibility (10) is non-negative, there can be two
branches of o labeled by o1 and o2, respectively. Form
Eq. (6), one can find that their grand potential densities
satisfy ψ1 − ψþ ¼ −area of “gray region A” and ψ2 −
ψ− ¼ area of “green region B”. Therefore, the state corre-
sponding to o1 has lower free energy and thus is thermo-
dynamically favored. Moreover, this thermodynamically
favored state has hoiφ0 ¼ o1φ0 > 0. Therefore, we can

conclude that φðsÞ
i hoii ≥ 0 in a physically favored state. Note

that here we do not consider the metastable states.

IV. VIOLATION OF TRACE ENERGY CONDITION

Using the standard holographic dictionary [25,28,29],
the energy momentum tensor τab of the dual field theory is
given by

τab ¼ − lim
r→∞

2ffiffiffiffiffiffi
−h

p δSjon-shell
δhab

: ð12Þ

Here r2hab is the induced metric of the AdS boundary and
habjr→∞ ¼ ηab is the metric of the dual boundary theory.
We now show that, if the systems have no Weyl anomaly,
the energy-momentum tensor of Eq. (12) will satisfy

τ ¼
X
i

ðd − Δ̃i − siÞhoiiφðsÞ
i : ð13Þ

We begin with an infinitesimal variation on the boundary
quantities

ðhab;φðsÞ
i Þ → ðhab þ δhab;φ

ðsÞ
i þ δφðsÞ

i Þ: ð14Þ

Then we obtain

δSjon-shell ¼
Z
r→∞

ddx

�
δS
δhab

δhab þ
X
i

δS

δφðsÞ
i

δφðsÞ
i

�
; ð15Þ

which, by definition, gives

δSjon-shell ¼ −Ωd−1

�
τabδhab=2þ

X
i

hoiiδφðsÞ
i

�
: ð16Þ

Here we have used the fact that the boundary is flat and
homogenous. Now let us focus on the scaling transforma-
tion ðt; xAÞ → ðλ−1t; λ−1xAÞ inherited from the scaling

FIG. 1. The condensation hoi with respect to the source φðsÞ.
Left panel: no spontaneous condensation. Right panel: sponta-
neous Z2-symmetry breaking at φðsÞ ¼ 0. The black solid lines
stand for the thermodynamically favored trajectory.
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symmetry of the AdS spacetime. From the bulk point of
view, it means that there are no logarithmic terms in the
asymptotical expansion of both metric and matter fields at
the AdS boundary. Under the infinitesimal form λ ¼ eε

with 0 < ε ≪ 1, we have

δhab ¼ −2εhab; δφðsÞ
i ¼ εðd − Δ̃i − siÞφðsÞ

i : ð17Þ

Since this scaling transformation is a symmetry of the
action, we have δS ¼ 0 and obtain Eq. (13). A similar result
for the scalar field under Euclidian signature was discussed
in Refs. [25,30].
As we have argued that the basic holographic dictionary

(3) ensures hoiiφðsÞ
i ≥ 0 in a thermodynamically stable

phase of a system where there is no spontaneous con-
densation or there is a spontaneous Z2-symmetry breaking.
From Eq. (13) one finds that the trace of boundary stress
tensor should be non-negative, i.e.,

τ ≥ 0; ð18Þ

once d − Δ̃i − si > 0. It comes as a surprise and could be
an important feature of a strongly coupled system. On the
one hand, the trace of the energy-momentum tensor was
proved to be nonpositive in a field theory when the
interaction is negligible [31]. On the other hand,
Zel’dovich argued that in fluid matter the strong interaction
may raise a positive trace of energy-momentum tensor [32].
Moreover, the positive trace may appear in ultrastrongly
coupled systems, for example, the core of neutron stars
[33,34]. Under general conditions, we now show that the
basic holographic dictionary offers a strong constraint on
the trace of the energy-momentum tensor. It not only
provides a criterion for judging whether a strong coupling
system has a holographic dual description, but also
uncovers a potentially important property of some strongly
coupled systems.

V. MONOTONICITY OF THERMODYNAMIC
QUANTITIES

For a CFT, Refs. [22,35] considered the normalized
entropy density c̃ defined as the ratio of entropy density s
over Td−1:

c̃ ¼ s=ðTd−1γdÞ; ð19Þ

with γd a constant. In order to consider a general case
beyond CFT, we introduce the “normalized grand potential
density” g0 that is given by

ψ ¼ −d−1γdTdg0ðT;φðsÞ
i Þ: ð20Þ

We point out that g0 becomes a constant and reduces to c̃
for a CFT. Moreover, as shown in Ref. [22], for a CFTwith

central charge c, g0 ¼ c is a necessary condition for that a
CFT has a dual gravitational description.
When a CFT is deformed by some relevant operators,

both g0 and c̃ cease to be constant. Using s ¼ −∂ψ=∂T, we
can find that

ψd ¼ −Tsþ Tdþ1γdd−1
∂g0
∂T

; ð21Þ

where s is the entropy density.
Let us use the scaling hypothesis which stipulates that

the grand potential density is a homogeneous function of its
thermodynamic quantities. Here we consider the case of the
systems having no Weyl anomaly, for which the scaling
symmetry of the bulk fields guarantees that the dual
boundary theory has the scaling symmetry ðψ ; T;φðsÞ

i Þ →
ðλdψ ; λT; λd−Δ̃iφðsÞ

i Þ with λ a positive constant. Then,
Euler’s homogeneous function theorem yields

ψd ¼ −Ts −
X
i

ðd − Δ̃iÞφðsÞ
i hoii: ð22Þ

For a system that has no spontaneous condensation or has a
spontaneous Z2-symmetry breaking, we have shown that

hoiiφðsÞ
i ≥ 0 (11) in a thermodynamically stable phase.

Therefore, one immediately obtains from Eq. (22) that

∂g0=∂T ≤ 0: ð23Þ

i.e., g0 is a nonincreasing function of T. Moreover, using
Eqs. (19)–(21), we obtain

c̃ ¼ g0 þ d−1T
∂g0
∂T

≤ g0: ð24Þ

Therefore, for a strongly coupled system that has a dual
gravitational description, if it has no spontaneous conden-
sation or has a spontaneous Z2-symmetry breaking, g0
must be a nonincreasing function of T and should satisfy
c̃ ≤ g0. Let us consider the high-temperature limit, T → ∞,
for which other energy scales become irrelevant and
therefore the conformal symmetry will restore. We denote
the central charge in this limit to be cUV. Then the
normalized entropy density equals to the central charge
[22], i.e., c̃jT→∞ ¼ cUV. Note also that in the high-temper-
ature limit g0jT→∞ ¼ cUV. We then find that

g0 ≥ cUV: ð25Þ

It is still a longstanding issue to quantify the number of
effective degrees of freedom of a system as a function of its
energy scale. In particular, the c-theorem [36,37] hasn’t yet
been extended to a general case at all energy scales. Here
we provide a candidate c-function g0 which is monotonic as
one accesses lower scales and potentially gives a clear
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measurement for the number of effective degrees of free-
dom at a given temperature.

VI. DISCUSSION

A. Paradox of negative susceptibility

We now discuss a “paradox” raising by the negative
susceptibility, for which the resolution begs a new question
on the basic dictionary (3) but so far has received limited
attention. Although our following discussion will focus on
the scalar model, a similar phenomenon will also appear in
other fields.
We consider a simple model which describes a bulk free

scalar field φ in (dþ 1)-dimensions.

Lm ¼ −
1

2
∂
μφ∂μφ −

1

2
m2φ2: ð26Þ

This describes a scalar operator o at the boundary with the
conformal dimensionΔ. We consider the case for which the
backreaction of the scalar to the background geometry can
be ignored. In the following discussion, we focus on the
case

Δ ∈ ðd=2 − 1; d=2Þ ∪ ðd=2; dÞ;

due to the unitarity bound and the requirement that the
source will not destroy the asymptotically AdS geometry as
r → ∞. For simplicity, we do not consider the one that
saturates the BF bound with Δ ¼ d=2.
When Δ ∈ ðd=2 − 1; d=2Þ, we have to consider the

alternative quantization by choosing φðeÞ as the source,
i.e., J ¼ φðeÞ. From the bulk point of view, it corresponds to
ν ∈ ð0; 1Þ and Δ ¼ d=2 − ν with ν ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2=4þm2

p
. Then

we have

hoi ¼ ð2Δ − dÞφðsÞ ¼ −2νφðsÞ:

The relationship between φðsÞ and φðeÞ can be found by
solving the equation ∇2φ ¼ m2φ under the background of
Schwarzschild-AdS black brane. More precisely, the sol-
ution of φðrÞ can be expressed in terms of the hyper-
geometric function, from which the susceptibility reads

∂hoi
∂φðeÞ ¼ ðd− 2ΔÞ

�
d

4πT

�
2Δ−d

Kðd=2−Δ; dÞ; ð27Þ

with

Kðx; dÞ ¼ Γð1=2 − x=dÞ2Γð1þ 2x=dÞ
Γð1=2þ x=dÞ2Γð1 − 2x=dÞ : ð28Þ

Since Δ ∈ ðd=2 − 1; d=2Þ, one sees that susceptibility is
positive, as required by Eq. (10).

When d=2 < Δ < d, we must take the standard quan-
tization and choose J ¼ φðsÞ. The scaling dimension of the
operator o is Δ ¼ d=2þ ν. One obtains

hoi ¼ ð2Δ − dÞφðeÞ ¼ 2νφðeÞ;

from which one finds

∂hoi
∂φðsÞ ¼ ðd − 2ΔÞ

�
d

4πT

�
2Δ−d

Kðd=2 − Δ; dÞ: ð29Þ

One then immediately finds that the susceptibility is
negative because now Δ ∈ ðd=2; dÞ. This shows a paradox
since the basic relationship (3) requires that the suscep-
tibility should be non-negative.
We stress that such negative susceptibility of standard

quantization does not result from the “semiclassical
approximation” when using the dictionary (3), since the
negative susceptibility is always order Oð1Þ in those
models even in the large-N and weak gravitational coupling
limit. Moreover, this paradox cannot be relaxed even if one
considers the backreaction, since all such models will
reduce into the probe free scalar model when the source
is infinitesimal (see, e.g., Ref. [38]). For the same reason,
this paradox will also appear in the top-down models for
which the mass term of (26) is typically replaced by a
suitable potential term from a UV complete theory (see,
e.g., the supergravity model of Ref. [39]).

B. Resolution of the paradox

The free scalar field shows up in many string theory
compactifications, and the probe limit can be considered
when the scalar field appears as an excitation on probe D-
branes. Since most string compactifications are believed to
allow holographic dictionaries, the resolution of this para-
dox is necessary and important.
The key point is that we have implicitly assumed that

hoii defined via Eq. (5) should be finite at the thermal
equilibrium state. However, this is not always true in
quantum field theory. Let us now make some discussion
on this assumption. From the definition of the two-point
(connected) correlation function Gðx; yÞ, we have the
following relationship between the expected value and
the external source

hoðxÞi ¼
Z

Gðx; yÞφðsÞðyÞddy: ð30Þ

To ensure that hoðxÞi is finite for arbitrary bounded source,
it is necessary and sufficient that

Z
jGðx; yÞjddy < ∞; ð31Þ
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i.e., the correlation function should be absolutely
integrable.
If the condition (31) is satisfied, the expectation value

will be finite and so its derivative with respect to the source
is well defined. Therefore, the proof from Eqs. (7) to (10)
makes sense and the susceptibility will be non-negative.
However, if the condition (31) is violated, hoðxÞi computed
from (30) could be divergent. In this case, the susceptibility
obtained from holography does not correspond to the value
appearing in Eq. (10) since hðOi − hOiiÞ2 will also be
infinite in general. Instead, we should understand it in the
following way.

∂hoii
∂φðsÞ

i

				
holography

¼ analytical continuation or

× renormalization of
hðOi − hOiiÞ2i

TΩd−1
:

ð32Þ

Although hðOi − hOiiÞ2i is formally positive-definite, its
analytical continuation or renormalization could be neg-
ative. For example, the Riemann-Zeta function ζðsÞ is
formally defined as ζðsÞ ¼ P∞

n¼1 n
−s, which is positive

when it converges. However, its analytical continuation of
s ¼ −1 reads ζð−1Þ ¼ −1=12 < 0.
We now return to our scalar model. From the viewpoint

of holography, when the two boundary points are suffi-
ciently close to each other, their correlation cannot “feel”
the bulk interior and so the correlation will be dominated by
the near boundary geometry. As the result, their correlation
will be given by the form in AdS vacuum. When they are
separated far away, they will probe the black hole geometry
near the event horizon. Therefore, the correlation function
will be dominated by thermal fluctuation, which in general
will show an exponential decay. Thus, the correlation
function of the boundary theory satisfies the following
universal property.

Gðx; yÞ ∝
(

1
jx−yj2Δ ; Tjx − yj ≪ 1;

decay expotentially; Tjx − yj ≫ 1:

ð33Þ

It is now clear that the correlation function is “absolutely
integrable” if and only if Δ < d=2. One can then conclude
that the susceptibility must be non-negative for the scalar
field case if its scaling dimension is less than d=2.
When the scaling dimension Δ > d=2, the holographic

results should be understood as the analytical continuation
from Δ < d=2 to Δ > d=2. We have already obtained the
analytical result for Δ < d=2 [see Eq. (27)], i.e.,

χðΔÞ ¼ ðd − 2ΔÞ
�

d
4πT

�
2Δ−d

Kðd=2 − Δ; dÞ; ð34Þ

which is an analytical function of Δ and is well-defined
even when Δ > d=2. The uniqueness of analytical con-
tinuation implies that, after a suitable analytical continu-
ation to remove the divergency of hoi, the resulting
susceptibility for Δ > d=2 must still be given by the
expression (34). Thus, we obtain that the susceptibility,
in this case, is negative.
To further support the above discussion, we consider the

Bañados-Teitelboim-Zanelli (BTZ) black hole as an exam-
ple. The (Euclidean) thermal correlation function reads
Gðx; yÞ ≔ gðρ; τÞ with

gðρ; τÞ ≔
�
π

β

�
2Δ c0

ðsinh2 πρ
β þ sin2 πτ

β ÞΔ
: ð35Þ

Here x ¼ ðx1; τ1Þ; y ¼ ðx2; τ2Þ, ρ ¼ x1 − x2, τ ¼ τ1 − τ2,
and β ¼ 1=T. The parameter c0 is a positive factor. One
finds that this correlation function satisfies the behavior of
Eq. (33). The expectation value of the scalar operator then
reads

hoðx1; τ1Þi ¼
Z

gðx1 − x2; τ1 − τ2ÞφðsÞðx2; τ2Þdx2dτ2:

ð36Þ

In the homogenous case, φðsÞðx2; τ2Þ is constant, for which
we have

hoi ¼ φðsÞ
Z

gðr; τÞdrdτ: ð37Þ

We then obtain the susceptibility that is given by

χðΔÞ ¼
Z

gðρ; τÞdρdτ ¼


χ0; Δ < 1;

þ∞; Δ ≥ 1:
ð38Þ

with χ0 a finite positive number that depends on Δ. For the
case Δ < 1, we can choose the normalized factor c0 so that
the holographic result coincides with the integration (37).
For the case Δ ≥ 1, although hoi is formally defined by the
integration (37), its numerical value is ill defined. One
could treat hoi as the analytical function of Δ and make an
analytical continuation from Δ < 1 to Δ > 1. As a conse-
quence, a formally positively defined susceptibility now
becomes to be a negative value.
The resolution of the above “paradox” raises another

interesting issue. While the expectation value computed
from the field theory side could be divergent, the holo-
graphic computation yields a finite result. This suggests
that in quantum field theory the correct partition function
associated with the scalar operator should be
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ZQFT ¼ lim
ε→0

�
exp

X
i

Z
ε
½φðsÞ

i oi − CðφðsÞ
i Þ�ddx

�
QFT

; ð39Þ

so as to match holography. Here ε is a suitable cutoff that

regularizes the divergency when Δ > d=2. CðφðsÞ
i Þ is a

function of the source φðsÞ
i and cancels the divergency ofR

φðsÞ
i oiddx when Δ > d=2. CðφðsÞ

i Þ should also satisfy

limε→0 CðφðsÞ
i Þ ¼ 0 when Δ < d=2. Thus far, the details of

this new “counterterm” CðφðsÞ
i Þ are not clear to us, but it

must be a nonlinear function. Based on Eq. (C5) of
Appendix C, the susceptibility could be nonpositive due

to the appearance of nonlinear counterterm CðφðsÞ
i Þ. It is

worth having a deeper understanding of this issue in the
future.

VII. SUMMARY

We have shown some necessary conditions for a strongly
coupled system that allows a gravity dual description. More
precisely, for the case where the correlation function is
absolutely integrable, we have uncovered that the trace
energy condition should be violated once the scaling
dimension Δ̃ of the operator oi and its rank si satisfy
d − Δ̃i > si. Moreover, we have found a normalized grand
potential density g0 that is a monotonically decreasing
function of T and is larger than the central charge of the UV
limit. There is an interesting paradox associated with
negative susceptibility, for which we have discussed the
origin of such paradox and its resolution.
In the present study, we have limited ourselves to a

boundary system that is relativistic. Nevertheless, our
discussion can be generalized to some nonrelativistic
theories. In particular, in Lifshitz holography [40,41], the
temporal and spatial directions are scaled in a different way
ðt; xAÞ → ðλzt; λxAÞ with z the dynamical exponent. Such a
system is dual to an asymptotically Lifshitz black brane. A
similar discussion can be applied to those nonrelativistic
theories.
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APPENDIX A: DISCUSSION ABOUT
EXPECTATION VALUE

In this appendix, we will provide a detailed discussion on
the expectation value, in particular, Eq. (6). Consider a
quantum field theory in d-spacetime dimensions and
denote the field operator to be ϖ. Suppose that an external
source φðsÞ couples with an operator o. In general, for a
thermal equilibrium system, we can always write down the
“first law”

dψ ¼ −sdT − σdφðsÞ − � � � ; ðA1Þ

where

σ ≔ −∂ψ=φðsÞ: ðA2Þ

The quantity σ may be different from the expectation value
hoi, since in path integral formulism the expectation value
hoi is defined according to Eq. (5), i.e.,

hoi ≔
Z

D½ϖ�oe−S½ϖ;φðsÞ�=Z
D½ϖ�e−S½ϖ;φðsÞ�: ðA3Þ

If the action S½ϖ;φðsÞ� has the following form

S½ϖ;φðsÞ� ¼ S0½ϖ� −
Z

oφðsÞddx; ðA4Þ

one can prove that

σ ¼ hoi: ðA5Þ

Nevertheless, if S½ϖ;φðsÞ� has a different form from (A4),
the result of (A5) will become not valid. For example,
consider

S½ϖ;φðsÞ� ¼ S0½ϖ� −
Z

ðoφðsÞ þ λ1o2φðsÞ þ λ2o2φðsÞ2Þddx;

ðA6Þ

we have σ ≠ hoi.
Thus, to obtain Eq. (6), we have implicitly assumed that

the operator o and its “external source” φðsÞ couple with
each other in the following way

S½ϖ;φðsÞ� ¼ S0½ϖ� −
Z

ðoφðsÞÞddx; ðA7Þ

as shown in Eq. (3). This assumption is nontrivial when we
apply the holographic duality to the strong coupling
systems. Note that in many materials the external source
can contribute to the partition function in a different way,
see Appendix C for more details.
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APPENDIX B: SUSCEPTIBILITY
IN INHOMOGENEOUS CASE

In the main text, we have argued that the holographic
dictatory (3) requires a non-negative susceptibility for
homogeneous thermal equilibrium states. In this appendix,
we will show that this result can be generalized to an
inhomogeneous state. For simplicity, we only consider a
single operator that couples with its source φðsÞ by (A7).
The expectation value of oðxÞ can be obtained by

hoðxÞi ¼ δ lnZQFT

δφðsÞðxÞ : ðB1Þ

In following we will denote

h� � �i ≔ 1

ZQFT

�
� � � exp

Z
φðsÞoddx

�
QFT

:

If we define

Õ ≔
Z

oðxÞddx;

then the “total expectation value” is given by

hÕi ¼
�Z

oðxÞddx
�

¼
Z

hoðxÞiddx: ðB2Þ

Here we have used the fact that haþ bi ¼ hai þ hbi.
We now consider the “susceptibility,”which is defined as

the following functional derivative:

χðxÞ ≔ δ

δφðsÞðxÞ hÕi: ðB3Þ

It is straightforward to show that

χðxÞ ¼
Z

ddy
δ2

δφðsÞðxÞδφðsÞðyÞ lnZQFT

¼
Z

ddy½hoðyÞoðxÞi − hoðxÞihoðyÞi�

¼ hÕoðxÞi − hÕihoðxÞi: ðB4Þ

The function χðxÞ can be either positive or negative
somewhere. Nevertheless, its average on the whole
Euclidean spacetime, i.e.,

χ̄ ¼
Z

χðxÞ d
dx
V

¼
Z

½hÕoðxÞi − hÕihoðxÞi� d
dx
V

¼ hÕ2i − hÕi2
V

ðB5Þ

must be non-negative. Here V ≔
R
ddx. In the homogenous

and thermal equilibrium case, we have χ̄ ¼ ∂hoi=∂φðsÞ,
V ¼ T−1Ωd−1, and Õ ¼ T−1O. Then Eq. (B5) just reduces
to Eq. (10).

APPENDIX C: EXAMPLE OF NEGATIVE
SUSCEPTIBILITY

After showing the non-negativity of susceptibility, one
may have some confusion. For example, if we treat φðsÞ as
the external magnetic intensity B, it is well known that
many materials have negative magnetic susceptibility.
To understand this problem, let us consider the famous

“Landau diamagnetism” as an example. Though this is the
standard context in the textbook of statistic mechanics of
magnetic materials, the reader of the holographic duality
community might not be familiar with it. Therefore, we
make a brief introduction here (for more details, see,
e.g., Ref. [27]).
The Landau diamagnetism describes diamagnetism in a

free electron gas. In the presence of a uniform external
magnetic field B directed along the z-axis, a charged
particle would follow a helical path whose axis is parallel
to the z-axis and its projection on the ðx; yÞ-plane is a circle.
Quantum-mechanically, the energy associated with the
circular motion is quantized and reads

εn ¼ μBBð2nþ 1Þ þ p2
z=ð2mÞ; n ¼ 0; 1; 2;…; ðC1Þ

where μB is the Bohr magneton. At the high-temperature
limit, the system is effectively Boltzmannian. The partition
function in the continuous limit reduces to

Z ¼ exp

�
a0Ωd−1B

�X∞
n¼0

e−
μBBð2nþ1Þ

T

�Z
∞

−∞
e−

p2z
2mTdpz

�
: ðC2Þ

Here a0 is a positive constant and its expression can be
found in Ref. [27]. This gives us

Z ¼ exp

�
a0Ωd−1

B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πm=T

p
2 sinhðμBB=TÞ

�
: ðC3Þ

From the partition function (C3) one can find that the
susceptibility in the limit μBB ≪ T is given by

χ ¼ −
n̄μ2B
3T

< 0; ðC4Þ

with n̄ the particle number density.
It is clear that partition function (C3) cannot be written

into a magnetic dipole coupling, i.e.,

Z ≠ Tr exp½−ðH0 þ Bc1Þ=T�; ðC5Þ
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where both operators H0 and c1 are independent of B.
Thus, the response of applied magnetic field in a “Landau
diamagnetic” material cannot be described by Eq. (3).
In general, when we turn on the source y for a thermal

equilibrium system, the Hamiltonian can always be written
into H0 þH1, where H1 is the additional contribution due
to the external source y. Then the partition function reads
Z ¼ Tr e−ðH0þH1Þ=T , and the response is X ≔ T∂y lnZ. The
susceptibility is given by

∂X
∂y

¼ T−1½hð∂yH1Þ2i − h∂yH1i2� − h∂2yH1i: ðC6Þ

It is now manifest that if H1 is a linear function of y, the
stable equilibrium phase should have a non-negative
susceptibility. This is what we have found in the main
text. Otherwise, the susceptibility could be negative.
Indeed, in many materials, the response to an applied
magnetic field is complicated and is not simply described
by the local magnetic dipoles. In such cases, the suscep-
tibility can be negative.

APPENDIX D: SUSCEPTIBILITY AND
THERMODYNAMIC STABILITY

The “heat capacity” and “minus of compressibility” are
also two kinds of susceptibilities corresponding to temper-
ature and pressure, respectively. It is known that thermo-
dynamic stability requires both the heat capacity and the
minus of compressibility to be non-negative. This usually
leads to a widespread misconception: the non-negativity of
susceptibility is always necessary for thermodynamic
stability. This appendix aims to clarify this misunderstand-
ing. Particularly, we will explain why the susceptibility in
some cases has a relationship to stability but in other cases
it does not. In the following, we will use the heat capacity
and the magnetic susceptibility as concrete examples.
Let us first explain why the negative heat capacity will

lead to instability. This argument can be found in many
standard textbooks. We write it here again in order to
compare it with the magnetic susceptibility. The specific
heat is a susceptibility of temperature defined as

C ¼ ∂E=∂T: ðD1Þ

There are two characteristic properties that play key roles:
(1) The energy is a conserved charge.
(2) The energy can flow from the high-temperature

region into the low-temperature region spontane-
ously without causing any other change.

Let us consider an isolated system that contains two
subsystems A and B as shown in Fig. 2. Assume that the
system is in equilibrium at temperature T. Now consider
that, due to a fluctuation, the energy of subsystem A
becomes EA þ δEA with δEA > 0 and subsystem B then
becomes EB þ δEB. Since the total energy is conserved, we

have δEB ¼ −δEA < 0. Let us consider that the temperature
susceptibility C is negative. Therefore, the temperature of
subsystem A becomes TA ¼ T þ δTA < T and the temper-
ature of subsystem B becomes TB ¼ T þ δTB > T. Since
energy will run from the high-temperature region into the
low-temperature region spontaneously, more energies will
run into A from B. This results in the temperature of
subsystem B becoming higher and higher while its energy
becomes less and less. Thus, the system is unstable under
fluctuation. The same argument will also work for com-
pressibility if one uses “minus volume (−V)” to replace
energy and pressure to replace temperature.
Now let us consider the magnetic susceptibility which is

defined as

χ ¼ ∂M=∂H; ðD2Þ

where H stands for the magnetic field and M stands for the
magnetic moment. It is clear that M is not a conserved
charge since the magnetic moment can disappear. Moreover,
the magnetic momentM does not always flow from the high
magnetic field region into the low magnetic region sponta-
neously. For example, if one puts a magnet into the water
and then takes it out after a long time, one will find that the
magnetic moment of the magnet will not decrease and the
magnetic moment of water will not increase—no magnetic
moment runs from magnet into water. If one follows the
above argument of the specific heat, one can find the
following differences:
(1) The fluctuations of magnetic moment in two sub-

systems are independent.
(2) Even if at a special moment with δMA > 0 and

δMB < 0, the magnetic moment of subsystem B will
not run into subsystem A spontaneously without
causing any other change.

Therefore, it is easy to see that negative magnetic suscep-
tibility does not cause instability.
These two concrete examples clearly show that the non-

negativity of susceptibility and thermodynamical stability,
in general, will not have a close relationship. There is only
one simple situation, where the stability has a relationship
to the sign of susceptibility: the source contributes to the
action linearly—this is the situation considered in the
holographic formula (3).
We can also understand why the non-negativity of

susceptibility is not required by stability from the 2nd

FIG. 2. Energy fluctuations in two subsystems.
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law of thermodynamics. Let us consider the canonical
ensemble of which the dynamics is given by free energy
FðT; XÞ. The X stands for the extensive independent
variable (“minus volume,” particle number, magnetic
moment, and so on), and the conjugate intensive quality
(pressure, chemical potential, the magnetic field, and so on)
is denoted by y. Then one has

dF ¼ −SdT þ ydX: ðD3Þ

We begin with a “wrong” derivation on the stability of
the equilibrium condition. Since the 2nd law of thermo-
dynamics requires the free energy in an equilibrium state to
have minimal value, one has δ2F ≥ 0. Considering that the
temperature is fixed, one obtains

δ2F ¼ ∂
2F
∂X2

ðδXÞ2 ≥ 0 ⇒
∂y
∂X

≥ 0: ðD4Þ

This shows that the susceptibility should be non-negative.
Nevertheless, this is wrong since the equilibrium state also
requires δF ¼ 0. Following the logic of (D4), one should
obtain

δF ¼ ∂F
∂X

δX ¼ 0 ⇒ y ¼ 0: ðD5Þ

This is obviously wrong. Therefore, Eq. (D4) is not a
correct result.
The correct derivation is as follows. One separates the

system into two subsystems A and B. The 2nd law of
thermodynamics leads to the following equations on an
equilibrium state.

8>><
>>:

δF ¼ δFA þ δFB ¼ 0; ðequilibrium conditionÞ
δ2F ¼ δ2FA þ δ2FB ≥ 0; ðstable conditionÞ
CðXA;XBÞ ¼ 0; ðconstraint conditionÞ

ðD6Þ

Wewill show that the constraint condition is also important.
Let us first consider X ¼ −V as the concrete example.

Then the variable y stands for the pressure. In flat
spacetime, the variation of volume is caused by the
move/deformation of boundary between A and B. Thus,
the constraint equation reads

CðXA; XBÞ ¼ XA þ XB − X0: ðD7Þ

Here X0 is a constant and stands for the minus of total
volume. This leads to

δXA ¼ −δXB; δ2XA ¼ −δ2XB: ðD8Þ

The equilibrium condition then yields

δFA þ δFB ¼ yAδXA þ yBδXB ¼ ðyA − yBÞδXA ¼ 0: ðD9Þ

This gives us the correct equilibrium condition: the
pressures of the two subregions are the same. The stable
condition then shows that

δ2FA þ δ2FB ¼ yAδ2XA þ yBδ2XB þ ∂yA
∂XA

ðδXAÞ2

þ ∂yB
∂XB

ðδXBÞ2

¼
�
∂yA
∂XA

þ ∂yB
∂XB

�
ðδXBÞ2 ≥ 0: ðD10Þ

Here we have used the constraint condition (D8) and
yA ¼ yB. Now assume that A is the environment and is
large enough, i.e., XA ≫ XB. Then we have

				 ∂yA
∂XA

				 ≪
				 ∂yB
∂XB

				: ðD11Þ

Therefore, the stable condition (D10) immediately leads to
∂yB=∂XB ≥ 0. Since y stands for pressure and X stands for
−V, this gives us the correct stable condition: the minus of
compressibility should be non-negative.
For general variableX, such as the magnetic moment, one

should not expect that the constraint equation CðXA; XBÞ is
as same simple as Eq. (D7) since X may not be conserved.
Then one cannot obtain Eqs. (D8)–(D10), particularly, one
cannot obtain

yAδ2XA þ yBδ2XB ¼ 0: ðD12Þ

Therefore, the non-negative susceptibility is not always
guaranteed by the stability of equilibrium.

APPENDIX E: A BRIEF DISCUSSION
ON ALTERNATIVE QUANTIZATION

In the main text, we only consider the so called “standard
quantization.” The alternative quantization chooses the
term φ⃗ðeÞ ≔ ðφðeÞ

1 ;…;φðeÞ
N Þ to be the source. This corre-

sponds to a Legendre transformation ðT; φ⃗ðsÞÞ → ðT; φ⃗ðeÞÞ,
and the corresponding grand potential density becomes

fðT; φ⃗ðeÞÞ ¼ ψðT; φ⃗ðsÞÞ −
X
i

ζiφ
ðeÞ
i : ðE1Þ

Here ζi satisfies φ
ðeÞ
i ð∂ζi=∂φðsÞ

i ÞT ¼ ð∂ψ=∂φðsÞ
i ÞT in order to

match the first law

df ¼ −sdT −
X
i

ζidφ
ðeÞ
i : ðE2Þ
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The expectation values of the operators read hoii ¼
−∂f=∂φðeÞ

i ¼ ζi. The scaling dimension of hoi is
Δi ¼ d − Δ̃i. Note that we also need to modify the boundary
term Sct of the bulk action (1) such that the on-shell
Euclidian action satisfies TSEuclidian;on-shell ¼ fΩd−1. Then
the holographic dictionary requires

∂hoiiðT; φ⃗ðeÞÞ
∂φðeÞ

i

≥ 0: ðE3Þ

All our discussions in the standard quantization can be
applied to the case with the alternative quantization.
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