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We show that the crossing symmetric dispersion relation (CSDR) for 2-2 scattering leads to a fascinating
connection with knot polynomials and q-deformed algebras. In particular, the dispersive kernel can be
identified naturally in terms of the generating function for the Alexander polynomials corresponding to the
torus knot ð2; 2nþ 1Þ arising in knot theory. Certain linear combinations of the low energy expansion
coefficients of the amplitude can be bounded in terms of knot invariants. Pion S-matrix bootstrap data
respect the analytic bounds so obtained. We correlate the q-deformed harmonic oscillator with the CSDR-
knot picture. In particular, the scattering amplitude can be thought of as a q-averaged thermal two-point
function involving the q-deformed harmonic oscillator. The low temperature expansion coefficients are
precisely the q-averaged Alexander knot polynomials.
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I. INTRODUCTION

In the last few years, it has been realized that combining
the power of dispersion relations with crossing symmetry
leads to two-sided bounds on the low energy Taylor
expansion coefficients (Wilson coefficients) of 2-2 scatter-
ing amplitudes [1–5]. There are two complementary
dispersion relations in the literature that have been used
in these studies: (a) The fixed-t dispersion relation where
crossing symmetry is not manifest and (b) the crossing
symmetric dispersion relation (CSDR) where crossing
symmetry is manifest but locality is not [6–8]. The
CSDR has led to a surprising connection with an area of
mathematics [9–11] called geometric function theory
(GFT) [12–14].
In this paper, we will find a very interesting connection

between the CSDR, knot polynomials, and q-deformed
algebras. It has been known for a while that there are
surprising connections between knot theory and areas of
physics like quantum field theory (QFT), the Skyrme
model, and statistical physics [15–19]. In the context of
perturbative Feynman diagrams in QFT, a connection with
knot theory has been suggested in the literature and
reviewed in [20]. In particular, it was shown in [20], by
considering specific examples in ϕ4 perturbation theory,

that torus knots play a role in such calculations. One of the
main goals of this paper is to use a nonperturbative
dispersive representation to show how a class of knot
polynomials arise naturally in the description of 2-2
scattering of identical particles. Although our discussion
will focus on 2-2 scattering of scalars, as was shown in
[21], the CSDR form used in this paper is applicable to the
situation where we have external spinning particles as well.
Quite surprisingly, as we will elaborate later, the form of the
dispersive representation is ubiquitous and arises in con-
formal field theory (CFT) [8,22,23]. Hence, knot poly-
nomials will play a role in discussing conformal correlators
as well. At the onset, we should emphasize that our analysis
will only suggest a possible role of knots in the description
of scattering. We do not pretend to have a rigorous
justification for the same. We will nevertheless attempt
to interpret the knot parameter arising in our description in
terms of q-deformed algebras.
The oldest of the knot polynomials is the Alexander

polynomial introduced by Alexander in 1928 [24]. This
will be the main character in the present paper. We will
show how this polynomial naturally appears in the CSDR.
One of the simplest quantum field theories we study in an
introductory course in QFT is the ϕ3 theory and its cousins.
In the crossing symmetric variable, the Alexander poly-
nomials for a certain class of knots, called the torus knots,
make a natural appearance in the discussion of 2-2
scattering in such theories. The kernel in the CSDR
resembles a linear combination of ϕ3 and ϕ4 theories with
the mass parameter integrated over in a certain way. The
CSDR gives a nonperturbative representation of 2-2 scat-
tering describing, for instance, pion scattering.
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Some of the two-sided bounds, alluded to above, can be
recast in terms of the knot invariants involving the
Alexander polynomial of a ð2; 2nþ 1Þ torus knot evaluated
at a special value for the polynomial variable. This provides
a novel geometric picture for understanding these bounds.
As we will show using the CSDR, the derivatives of the
scattering amplitude with respect to the crossing symmetric
variable can be thought of as an average over the Alexander
polynomials. Equations (16) and (17) give bounds on the
derivatives of the amplitude, and hence on Wilson coef-
ficients, in terms of the Alexander polynomials; Eq. (17)
gives the global maxima for the absolute values in terms of
the knot crossing number. We use the pion S-matrix
bootstrap to test these bounds (Fig. 1) and find convincing
evidence. Similar bounds exist for a wide variety of cases,
e.g., in CFT and scattering of external spinning particles, as
we will discuss below.
Since the dispersion relation involves a kind of averaging

over the knot parameter, it begs the question what physical

picture can we keep in mind while thinking about the
CSDR-knot connection. To tackle this question, we observe
that the generating function of the Alexander polynomial
makes a mysterious appearance in another context in
physics. When we consider the q-deformed harmonic
oscillator as introduced by Biedenharn [28] and
Macfarlane [29], then it turns out that the thermal two-
point function involving the deformed oscillators [30] is
precisely the generating function of the Alexander poly-
nomial. This connection does not appear to have been
pointed out in the literature so far. We will make some
preliminary observations about what this connection can
teach about scattering. In particular, we derive the map in
Eq. (23), which relates the CSDR to a q-averaged thermal
two-point function of the q-deformed oscillator, and use it
to explain certain observations about 2-2 scattering of
identical particles in specific limits. We will begin by
reviewing some key points about the Alexander
polynomials.

II. SOME KNOT THEORY

The key player in our discussion will be the Alexander
polynomials for the ð2; 2nþ 1Þ torus knots. In the
Appendix, we review torus knots in more detail. For
now, it is sufficient to note that the ð2; 2nþ 1Þ torus knot
is one that wraps the longitude of the torus twice and the
meridian 2nþ 1 times. These knots are distinguishable
using the Alexander knot polynomials. For the ð2; 2nþ 1Þ
torus knots, these are given by

Að2;2nþ1ÞðqÞ ¼ q−n
q2nþ1 þ 1

qþ 1
: ð1Þ

While it is not obvious that these are Laurent polynomials
in q, one can easily explicitly verify that they are. (2nþ 1)
is also the number of crossings for the torus knot and is
an invariant. Furthermore, we note that Að2;2nþ1Þð1Þ ¼ 1,
while jAð2;2nþ1Þð−1Þj ¼ 2nþ 1; the latter is called the knot
determinant and is a knot invariant. In the situation where
q is a pure phase, it can be verified that 2nþ 1 is the
maximum absolute value for the knot polynomial.

A. Key observation

The key mathematical insight that enables us to correlate
the CSDR with the Alexander polynomials is the relation of
the latter with the Chebyshev polynomials of the second
kind. This observation was made in [31,32]. Denote by
UnðxÞ the Chebyshev polynomials of the second kind such
that U0ðxÞ ¼ 1; U1ðxÞ ¼ 2x;U2ðxÞ ¼ 4x2 − 1. The gener-
ating function of these polynomials is given by

1

1 − 2xzþ z2
¼

X∞
n¼0

znUnðxÞ: ð2Þ

FIG. 1. ρn vs a. The blue shaded region is the spread of values
obtained from the pion S-matrix bootstrap [25–27], with mπ ¼ 1.
The red dotted line is tree level ϕ3 with m ¼ 1, while the black
dotted line is one loop ϕ4 with m ¼ 1. The solid blue line is the
analytic minimum and the solid red line is the analytic maximum
given by Eq. (16). For ρ1 the red dotted line and the theoretical
minimum are on top of each other.
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This relation will be the key in relating the CSDR to the
Alexander knot polynomials. The relation between the
UnðxÞ and Að2;2nþ1ÞðtÞ is simply the following:

Að2;2nþ1ÞðqÞ ¼ UnðxÞ −Un−1ðxÞ;

where 2x ¼ qþ 1

q
: ð3Þ

Equivalently, we can verify [33]

1 − z
1 − 2xzþ z2

¼
X∞
n¼0

znAð2;2nþ1ÞðqÞ ð4Þ

with the above relation in Eq. (3) between q and x.
Generalizations of Eq. (3) for the torus knots of the type
ð3; pÞ can be found in [32]. We will touch upon these
generalizations below.

III. TORUS KNOTS IN QFT

Let us begin by discussing 2-2 scattering of ϕϕ → ϕϕ in
tree-level ϕ2ψ theory [34] in dþ 1 dimensions, one of the
simplest examples one encounters in a first course in QFT.
We will treat ϕ to be a massless scalar and ψ to be massive
scalar of mass m. The amplitude, up to an overall coupling
constant, is given by

Mðs; tÞ ¼ 1

m2 − s1
þ 1

m2 − s2
þ 1

m2 − s3
; ð5Þ

subject to the constraint s1 þ s2 þ s3 ¼ 0. Consider the
following change of variables [6]:

sk ¼ a

�
1 −

ðz − zkÞ3
z3 − 1

�
: ð6Þ

Here zk ¼ expð2πiðk − 1Þ=3Þ are the cube roots of unity.
One can check that s1 þ s2 þ s3 ¼ 0 and that

a ¼ s1s2s3
s1s2 þ s1s3 þ s2s3

: ð7Þ

The effect of this transformation is to map branch cuts in
the s1, s2, and s3 planes to arcs of a unit circle [6,7]. It is
easy to check that the amplitude is given by [35]

Mðz̃; aÞ − 3

m2
¼ β̂ð a

m2Þ
m2

z̃
1 − 2ξz̃þ z̃2

; ð8Þ

where z̃≡ z3 and β̂; ξ are given by

β̂ðαÞ ¼ 27α2ð3α − 2Þ;

2ξ ¼ 2 − 27

�
a
m2

�
2

þ 27

�
a
m2

�
3

: ð9Þ

Thus, using Eq. (4) we see that ð1 − z̃ÞðMðz̃; aÞ − 3
m2Þ is

the generating function of the ð2; 2nþ 1Þ Alexander knot
polynomials with knot parameter q given via
2ξ ¼ qþ 1=q. We can reexpress individual knot polyno-
mials in terms of Taylor expansion coefficients of the
amplitude. Define

ρn ¼
1

∂z̃Mðz̃; aÞ
�
∂
nþ1
z̃ Mðz̃; aÞ
ðnþ 1Þ! −

∂
n
z̃Mðz̃; aÞ

n!

�����
z̃¼0

: ð10Þ

Now using Eq. (3), we easily find

ρn ¼ UnðξÞ − Un−1ðξÞ ¼ Að2;2nþ1ÞðqÞ: ð11Þ

This relates the derivatives of the scattering amplitude to
the Alexander polynomials of ð2; 2nþ 1Þ torus knots. Note
that ξ ¼ 1 (equivalently, q ¼ 1) corresponds to a=m2 ¼ 0,
1 while ξ ¼ −1 (equivalently, q ¼ −1) gives a=m2 ¼ −1=3
or 2=3. In order to avoid singularities inside the unit disk
jz̃j ¼ 1, we need −1=3 ≤ a=m2 ≤ 2=3. So the crossing
number or knot determinant emerges at the boundary
values of this domain. This feature will carry over to the
CSDR. It is indeed gratifying to note that there is a
connection between the oldest knot polynomial and one
of the simplest quantum field theories. Now we turn to a
nonperturbative representation of scattering amplitudes via
the CSDR and examine what role knot polynomials
play there.

IV. CSDR AND BOUNDS WITH Að2;2n+ 1Þ

The idea behind a CSDR is to write a dispersion relation
treating a as a fixed parameter and the dispersive variable
to be z. As reviewed in [7], a fully crossing symmetric
amplitude then is a function of a; z3. In [13], it was shown
that the CSDR in [6,7] can be written in the form of the
Robertson representation of typical real functions in the
context of GFT [36]. This was then instrumental in giving
two-sided bounds on the (ratios of) Wilson coefficients of
the amplitude. In general, in order to describe scattering
of identical particles [37] in a situation where, in the
complex-s1 plane, there is a gap between the s1-channel
and s3-channel cuts, and where the amplitude for large js1j
falls off faster than js1j2, we have

Mðz̃; aÞ ¼ α0 −
2N
π

Z
ξmax

ξmin

dμðξÞ z̃
z̃2 − 2ξz̃þ 1

; ð12Þ

N ¼ −
π

2
∂z̃Mðz̃; aÞjz̃¼0; ð13Þ

and

dμðξÞ ¼ N −1dξImMðs01ðξ; aÞ; s2ðξ; aÞÞ ð14Þ
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defines a measure with ImMðs1; s2Þ denoting the s1-

channel discontinuity and s2 ¼ − s0
1

2
ð1 − ðs01þ3a

s0
1
−a Þ1=2Þ. More

details can be found in [7]. Here 2ξ ¼ 2 − 27ða=s01Þ2 þ
27ða=s01Þ3 as in Eq. (9). So an integral over ξ is an integral
over s01 since a is fixed. We will choose the cut in the s1
plane to begin at s1 ¼ 8=3 and this sets the normalization
for us. Our focus will be on the interval −8=9 ≤ a ≤ 16=9,
as in this range the amplitude is typically real [13]; this will
enable us to compare with the Bieberbach conjecture. In
this rangeN , dξ=ds01, and ImM are all positive [12,13], so
μðξÞ can be thought of as a probability measure. It is easy to
check that ξmax ¼ 1, while ξmin ¼ 1 − 243a2

128
þ 729a3

1024
. When

a ¼ −8=9; 16=9, ξmin ¼ −1, else it is > −1. We will now
derive an interesting inequality. Starting with Eqs. (10) and
(12), we have

ρn ¼
Z

ξmax

ξmin

dμðξÞAð2;2nþ1ÞðqÞ; ð15Þ

where 2ξ ¼ qþ 1
q. Using the positivity of the measure andR ξmax

ξmin
dμðξÞ ¼ 1, we easily find

Að2;2nþ1ÞðqÞjmin ≤ ρn ≤ Að2;2nþ1ÞðqÞjmax: ð16Þ

Here the maximum and minimum values of the knot
polynomials are for the argument in the range
ξmin ≤ ξ ≤ ξmax. A few examples when −1 ≤ ξ ≤ 1 are
−3 ≤ ρ1 ≤ 1;−1.25 ≤ ρ2 ≤ 5, and −7 ≤ ρ3 ≤ 1.63. These
results do not follow from the extrema of Un’s, which are
extremized at different values of ξ compared to Að2;2nþ1Þ.
The absolute value of the extremum satisfies

jρnj ≤ jAð2;2nþ1Þð−1Þj ¼ crossing number; ð17Þ

where we have used that the knot determinant/crossing
number maximizes jAð2;2nþ1ÞðqÞj for any a ∈ ½−8=9;16=9�.
This gives a knot theory interpretation of the global
maximum of jρnj. The equality occurs for theories like
the tree-level ϕ3 theory. Near a ∼ 0, ξ ∼ 1 and since
jAð2;2nþ1Þð1Þj ¼ 1, we find that ρn ∼ 1 near a ∼ 0. Plots
of ρ1 and ρ2 vs a for the pion bootstrap are shown in Fig. 1.
The data were obtained from the S-matrix bootstrap for
pions (π0π0 → π0π0) in [26] following [27]. In the pion
bootstrap, one assumes unitarity, crossing symmetry, and
the input of the ρ-resonance mass in the complex-s plane
[25]. In this manner, we get a family of consistent S
matrices. Since tree-level ϕ3 theory saturates the lower
bound for ρ1 in Eq. (16), this is as tight as possible, and
imposing nonlinear unitarity will not make the ρ1 lower
bound any tighter. S-matrix bootstrap data respect the
analytic bounds very well.
At this stage, we should point out that ρn was defined

such that we get bounds in terms of the Alexander

polynomials. Since Mðz̃; aÞ and ð1 − z̃ÞMðz̃; aÞ have
the same information insofar as the Taylor expansion
coefficients of the amplitude are concerned, the pictures
in terms of the Chebyshev and Alexander polynomials are
equivalent. For instance, as shown in the Appendix, the
global bounds can be rederived using different techniques
that make use of the Chebyshev polynomials. Nevertheless,
only the knot picture enables us to interpret the bounds in
terms of interesting topological quantities like the crossing
number or knot determinants. Further, what we find
fascinating is that the Alexander polynomials for the
ð2; 2nþ 1Þ torus knots appear to provide a complete basis
for the amplitude. In order to probe this further, it is
important to have a physical picture as to what the
averaging in Eq. (12) over the knot parameter q means.

V. q-DEFORMED HARMONIC OSCILLATOR

Equation (12) is telling us to think of the amplitude as a
certain integral over the mass parameter for ϕ3 theories
(with a specific ϕ4 contact term). In terms of knots, the
Taylor expansion coefficients of the amplitudes involve an
“averaging” over the knot parameter. What physical picture
can we keep in mind while trying to interpret this? To
address this, we will now correlate the CSDR with the
q-deformed oscillator [30], which features in the discus-
sion of the quantum group SUqð2Þ. The q-deformed
oscillator was introduced independently by Biedenharn
and Macfarlane in 1989 and has been studied in great detail
in the literature. The book [30] is a good reference for the
material used below. The q-oscillator uses three generators
b; b†, and N, satisfying bb† − qb†b ¼ q−N , ½N; b� ¼ −b,
and ½N; b†� ¼ b†. We have ðb†Þ† ¼ b and N† ¼ N. Here, q
is either a real number or a complex number with unit
modulus. In the latter case, which will be our focus, we also
have bb† − q−1b†b ¼ qN so that

b†b ¼ ½N�q; bb† ¼ ½N þ 1�q; ð18Þ

where we have introduced the q number

½x�q ≡ qx − q−x

q − q−1
: ð19Þ

When x is an integer, it can be checked that the q numbers
are just Chebyshev polynomials of the second kind [31,32].
Specifically,

½n�q ¼ Un−1

�
1

2

�
qþ 1

q

��
: ð20Þ

When q → 1, ½x�q → x. For a phase q ¼ eiθ, we have
½n�q ¼ sinðnθÞ= sinðθÞ, which obeys −κn ≤ ½n�q ≤ n with
−κn ¼ min0≤θ≤2π sinðnθÞ= sinðθÞ. This is what leads to the
Bieberbach-Rogosinski bounds in GFT [13]. The Fock space
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states jni obey Njni ¼ njni, b†jni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½nþ 1�q

q
jnþ 1i,

and bjni ¼
ffiffiffiffiffiffiffiffi
½n�q

q
jn − 1i, making it clear that ½n�q has to

be finite. For the q-oscillator, we can define the Hamiltonian
as [30]

H ¼ wN: ð21Þ

Quite remarkably, the thermal expectation value of b†b is
given by [30]

hb†biβ;q ¼
z̃ð1 − z̃Þ

z̃2 − 2ξz̃þ 1
; ð22Þ

where z̃≡ e−βw and 2ξ ¼ qþ 1=q. This is precisely the
form of the generating function [see Eq. (8)] for the
Alexander polynomials in terms of the dispersive kernel.
The expansion around z̃ ¼ 0 corresponds to zero temper-
ature limit β → ∞. Using this, we can write the map

Mðz̃; aÞ ¼ α0 −
2NZ
π

Z
ξmax

ξmin

dμðξÞhb†biβ;q;

Z ¼ eβw

eβw − 1
; ð23Þ

where 2ξ ¼ qþ 1=q as before andZ is the thermal partition
function for the q oscillator. When jξj ≤ 1, we have q to be
complex and jqj ¼ 1. This is precisely the case for q
discussed above. In other words, the amplitude is related
to the q average of the expectation value of b†b with inverse
temperature set by −ðln z̃Þ=w. The measure factor involves
the partial wave amplitudes and hides the dynamical
information. In the forward limit when a → 0, as well as
for large values of the dispersive variable s01, we have q → 1.
So in these regimes, we have the usual undeformed oscillator
picture where the corresponding knot polynomial is unity.
This last observation provides a physical interpretation

of the following feature of amplitudes. Near a ∼ 0 (also for
s01 ≫ a), all coefficients of z̃n are always negative. This is
because in this region we have an approximate description
in terms of the usual simple harmonic oscillator. According
to Eq. (23), the z̃n coefficients are related to the expectation
value of the usual number operator, which is positive.
Explicitly ½n�q → n > 0 and becauseN > 0 in Eq. (23), all
coefficients are negative. Due to the map, it is now also
clear why the coefficients of z̃n are bounded; this is an
inherited property from the construction whereby ½n�q is
bounded when q is a phase. The two-sided bounds on
Wilson coefficients arise due to the two-sided bounds on
the q numbers or, equivalently, due to the finite norms of
the Fock space states. Explicitly, with μðξÞ a probabilistic
measure factor, we have the obvious inequality
−κn ≤

R
dμðξÞ½n�q ≤ n, which is what was used using

different methods relying on GFT in [13].

In summary, the q-deformed harmonic oscillator map
provides an equivalent description of the CSDR. When q is
a phase, the measure factor in the CSDR is positive and is a
probability measure. Since each value of q corresponds to a
specific theory, we are essentially averaging over theories.

VI. APPLICATIONS IN CFT

Our discussion so far can be easily extended to CFTs.
Consider the four-point correlation function of identical
scalar primary operators. In [8], the dispersive representa-
tion of Mellin amplitudes for this case was considered and
found to be identical in form to the QFT case. In [22], it was
recently shown that the position space dispersion relation,
which makes the symmetry under the cross-ratio inter-
change manifest, has exactly the same kernel in the z̃
variable. Hence, whatever we have discussed so far readily
carries over to the situations where the CSDR is applicable.
For instance Eqs. (16) and (17) will be applicable in their
present forms in these cases. The only additional analysis
needed is to determine the range of parameters where the
measure is positive. In fact, even in situations where we
need higher subtractions, in [13] it was shown that the form
of the kernel factorizes into what we have been using so far,
times polynomials in z̃=ð1 − z̃Þ2. Thus, with minimal
changes, the discussion in this paper readily carries forward
to those situations as well. What is perhaps even more
surprising is that, in the case where we have defect CFTs,
e.g., [23], the dispersion relation there also has the same
kernel as what we have considered here. The discussion in
this paper will carry over to all these diverse situations.

VII. DISCUSSION

We derived bounds on the combination of derivatives of
the amplitude in terms of knot invariants. The expression
in Eq. (16) was in the form of an average over knot
polynomials. We gave a physical interpretation of this
quantity in terms of the q-deformed oscillator. In the future,
it will be useful to develop the q-deformed oscillator
picture further. An example of a question that would be
interesting to answer is this: In terms of the q-oscillator
picture, what restrictions on the averaging correspond to
local theories? We examine this question briefly using a
string theory example in the Appendix.
Note that Eq. (16) holds for any regular typically real

function inside the unit disk, which is known to respect the
Robertson representation. Thus, this connects typically real
functions with knot theory—a connection that has not been
pointed out previously, to the best of our knowledge. One
can ask if other knot polynomials like the Jones polynomial
can be expressed in terms of the amplitude using the CSDR.
It can be shown that, in this case, the Jones polynomials for
the torus ð2; 2nþ 1Þ is a linear combination of derivatives
including up to 3nþ 1 terms instead of the two terms for
the Alexander case. Thus, in a very tangible sense, the
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Jones polynomials are “more complex” from the ampli-
tudes perspective. It will be interesting to investigate this
kind of “complexity” in more generality using amplitudes.
It will also be interesting to examine the knot theory–
perturbative Feynman diagram connection in the program
of [20] using the CSDR.
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APPENDIX: USEFUL DETAILS

1. Alexander polynomials in knot theory

In this section, we will briefly review some background
material on Alexander polynomials for torus knots [38]. Let
us begin with a lightning review of knot polynomials in
general. Knot polynomials allow us to characterize knots.
Two knots are equivalent if they can be transformed into
each other using a finite number of Reidemeister moves
[39]. If the knot polynomials of two knots are different, then
the knots are not equivalent. The converse is not true; two
different knots can have the same knot polynomial. Several
famous knot polynomials are known—these include
Alexander, Conway-Alexander, Jones, Kauffmann, and
HOMFLY-PT. The oldest and perhaps the simplest of these
is the Alexander polynomials. We will see that, in the
CSDR, Alexander polynomials make a natural appearance,
so our focus will be on this. Torus knots are labeled by two
coprime integers ðp; qÞ. Here the curve depicting the knot
on the torus traverses p times along longitude and q times
along the meridian. For ðp; qÞ coprime, the torus knot is
prime; in other words, it cannot be decomposed into smaller
knots, much like how we define prime numbers. In the
CSDR, we will see that the torus knot ð2; 2nþ 1Þ, where n
is a positive integer, makes an appearance. For a ðp; qÞ torus
knot, the Alexander polynomials are given by1

Aðp;qÞðtÞ ¼ t−g
ðtpq − 1Þðt − 1Þ
ðtp − 1Þðtq − 1Þ ; ðA1Þ

where the genus g of the knot is given by

g ¼ 1

2
ðp − 1Þðq − 1Þ: ðA2Þ

In the case of interest p ¼ 2; q ¼ 2nþ 1 so that the genus is
n and

Að2;2nþ1ÞðtÞ ¼ t−n
t2nþ1 þ 1

tþ 1
: ðA3Þ

Further, the crossing number of the ð2; 2nþ 1Þ knot is
c ¼ 2nþ 1 and is also a topological invariant. In Fig. 2, we
show the knots corresponding to n ¼ 1; 2; 3.
The Alexander polynomials for the n ¼ 1; 2; 3 cases are

shown as follows:

Að2;3ÞðtÞ ¼ tþ 1

t
− 1; ðA4Þ

Að2;5ÞðtÞ ¼ t2 þ 1

t2
− t −

1

t
þ 1; ðA5Þ

FIG. 2. Some torus knots. Figures generated in Mathematica.

1Since it is conventional to use ðp; qÞ to label prime knots, we
will use t as the knot parameter in the Appendix.
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Að2;7ÞðtÞ ¼ t3 þ 1

t3
− t2 −

1

t2
þ tþ 1

t
− 1: ðA6Þ

The Alexander, Conway, and Jones polynomials for the
pentafoil knot are the same as the knot2 10132, which is
distinguished by the Kauffman polynomial. The Alexander
polynomials for any knot satisfy two important properties
that we note,

Að1Þ ¼ 1; ðA7Þ

jAð−1Þj ¼ invariant: ðA8Þ

The quantity jAð−1Þj is called the knot determinant and is a
special knot invariant. For the torus knot ð2; 2nþ 1Þ, we
have Að2;2nþ1Þð1Þ ¼ 1 and

jAð2;2nþ1Þð−1Þj ¼ 2nþ 1 ¼ c; ðA9Þ

which is the same as the crossing number and is the
maximum absolute value for the Alexander polynomial in
the interval 1

2
ðtþ 1

tÞ ∈ ½−1; 1�. In the main text, we will
switch to the notation t → q.

2. Deriving global bounds on jρnj using GFT

We can easily rederive the global bounds for ρ1 and ρ2 in
the main text using the Bieberbach-Rogosinski bounds for
a typically real function [40], which is regular inside the
unit disk. Writing Mðz̃; aÞ as

Mðz̃; aÞ ¼ α0 þ
X∞
n¼1

αnz̃n; ðA10Þ

we know that it is a typically real function inside the unit
disk jz̃j < 1 for a ∈ ½−8=9; 16=9� and obeys the
Bieberbach-Rogosinski inequalities [13]

−κn ≤
αn
α1

≤ n; n ≥ 2; ðA11Þ

where κn is n for even n and is some number less than n for
odd n. The precise number is unimportant. As an example,
consider n ¼ 2. Then the lhs of Eq. (15) in the main text is
jα2=α1 − 1j. Using the lower bound on α2=α1, which is −2,
we find jα2=α1 − 1j ≤ 3. Similarly, for n ¼ 3, we have
jα3=α1 − α2=α1j. Here we need the upper bound for α3=α1
and lower bound for α2=α1. Together this yields
jα3=α1 − α2=α1j ≤ 5. It is easy to check that the generali-
zation of this argument leads to

���� αnα1 −
αn−1
α1

���� ≤ 2nþ 1; ðA12Þ

using Eq. (A11). The rhs is precisely the knot determinant
for the torus knot ð2; 2nþ 1Þ. Note, however, that the
present analysis gives a stronger bound on ρn in terms
of the knot polynomial, which is a dependent, unlike
the a-independent Eq. (A11). Writing Mðs1; s2Þ ¼P

Mpqxpyq with x ¼ −ðs1s2 þ s1s3 þ s2s3Þ and y ¼
−s1s2s3 and defining wpq ¼ Wpq=W10, we get the same
two-sided bounds on w01 as GFT

3 and somewhat stronger
results for w11, w20, and w02 than using Eq. (A11) directly.

3. Some details of the pion bootstrap

Here we will summarize the key assumptions used in
obtaining the pion S matrices using the numerical S-matrix
bootstrap following [26,27]. To obtain pion S matrices, we
assume [27] Oð3Þ symmetry, unitarity, and crossing sym-
metry. In addition to these, we restrict the S matrices by
inputting the location of the ρ resonance. In the space of the
Adler zeros, we consider three different regions, which are
obtained as follows (mπ ¼ 1):
(1) Pion lake: This is obtained using the assumptions

stated above and was first obtained in [27]. The
inside of the lake is ruled out by the bootstrap. The S
matrices being used in the main text lie on the
boundary of the allowed region.

(2) River: This region is obtained on imposing sign
restrictions on the D- and S-wave scattering lengths.
The D-wave sign restrictions follow from dispersion
relation considerations, while the S-wave restrictions
are observed in chiral perturbation theory as well as
experimental results [26]. The allowed region looks
like a river and has an upper and lower boundary.
The S matrices being used lie on these boundaries.
Chiral perturbation theory lives at a kinklike feature
near the upper boundary [26].

The blue zones in Fig. 1 in the main text are obtained by
spanning over S matrices allowed by the bootstrap con-
siderations described above. In practice, we have 99 S
matrices at our disposal to generate the plots.

4. Að2;3ÞðtÞ and the S-matrix bootstrap

In this section, we will investigate the question: How
close are individual S matrices in the S-matrix bootstrap to
the Alexander polynomialAð2;3ÞðtÞ ¼ tþ 1=t− 1¼ 2ξ− 1.
To quantify this, we will define the distance between two
polynomials in the ξ variable as

dðp1jp2Þ ¼
Z

1

−1
dξðp1ðξÞ − p2ðξÞÞ2: ðA13Þ

2The nomenclature means that the (prime) knot has ten
crossings and in some standard list it is the 132nd knot with
ten crossings.

3This is the same that arises from the numerical techniques
of [4].
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Using this, we can compare how close ρ1 is to the
Alexander polynomial for the pion S matrices obtained
from the bootstrap. From the pion bootstrap, we express ρ1
as a function of ξ where ξ ¼ ξmin ¼ 1 − 243a2

128
þ 729a3

1024
. Then

we expand up to Oðξ6Þ. Focusing on the “upper river,” we
obtain the plot in Fig. 3. As is evident from the figure, most
S matrices are far from the knot polynomial. Interestingly,
the S-matrix that maximizes ρ1 at a ¼ 16=9 is also the one
that is nearest to the knot polynomial. All the S matrices
that have low values of dðp1jp2Þ as exhibited in Fig. 3(b)
are linear in ξ and have slopes close to 2 or 1. For future
work, it will be interesting to explore the connection
between minimization of dðp1jp2Þ and emerging integral
slope in more detail.

5. Type II string theory and knot polynomials

In this section, we will examine the type II tree-level
string amplitude for 2-2 dilaton scattering and show that the
low energy expansion can be well approximated by a sum
of knot polynomials. First, we will recast the discussion

about transcendentality in the amplitude in terms of the z̃; a
variables to make a statement about transcendentality and
the knot polynomials. We will follow the discussions
in [41,42].

a. Transcendentality and knots

The amplitude, up to an overall kinematic factor of
ðs1s2 þ s1s3 þ s2s3Þ2 is given by

Ãðs1;s2;s3Þ¼
1

s1s2s3

Γð1−s1ÞΓð1−s2ÞΓð1−s3Þ
Γð1þs1ÞΓð1þs2ÞΓð1þs3Þ

; ðA14Þ

where s1 þ s2 þ s3 ¼ 0. In terms of the z̃; a variables
introduced in the main text, we have the following
expansion around z̃ ¼ 0:

Ã −
1

s1s2s3
− 2ζð3Þ

¼ 54a2z̃ð−ζð5Þ þ aζð3Þ2Þ
þ 54a2z̃2ð−2ζð5Þ þ 2aζð3Þ2 þ 27a2ζð7Þ
þ 54a3ζð3Þζð5Þ
þ 9a4ðζð9Þ þ 2ζð3Þ3ÞÞ þOðz̃3Þ: ðA15Þ

Following [42], we assign the kinematic variable a a
transcendentality weight −1 and z̃ a weight 0. ζðnÞ has
weight n. Then it is easy to see that each term in the above
expansion has weight 3. We can discuss this a bit more
generally using the CSDR in Eq. (12) in the main text. First,
let us focus on the powers of a that appear at a particular
order in z̃. UnðξÞ is a degree-n polynomial, while ξ itself
involves degree-2 and degree-3 terms in a. The measure dξ
gives a factor 27a2ð3a − 2s01Þ, where we integrate over s01.
Then, for instance, at z̃2 order, we have n ¼ 1 and hence the
maximum degree of a is 6. In a local theory, this maximum
degree cannot change. Specifically, we have all integer
powers of a from 2 to 6. This is precisely the pattern above.
Then, since we have UnðξÞ ¼

P
n
k¼0 A

ð2;2kþ1ÞðtÞ with
tþ 1=t ¼ 2ξ, we easily note that the highest power of a
for a given n is associated with the top knot polynomial
Að2;2nþ1ÞðtÞ. Together with the measure factor, the highest
power of a is 3nþ 3. With the transcendentality assign-
ments for a, we conclude that, at a given order in z̃n,
Að2;2nþ1ÞðtÞ is associated with a maximum transcendental-
ity weight of 3n. Such relations between transcendentality
and knot polynomials have been conjectured before in
perturbative QFT—see [20]—although the details differ.
For instance, in [20], for perturbative ϕ4 theory, a corre-
spondence between ð2; 2nþ 1Þ torus knots and ζð2nþ 1Þ
has been proposed, as opposed to ζð3nÞ we find above. For
n ¼ 1, they are the same but not otherwise.

FIG. 3. (a) dðp1jp2Þ vs kwhere k labels the S matrix. (b) The ρ1
vs ξ for the k ¼ 21, 26, 27, 36 S matrices, which have low values
of dðp1jp2Þ. The k ¼ 27 that has the minimum value is indicated
in red, while the ϕ3 theory is in black.
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b. Low energy expansion in terms of knot polynomials

Now let us examine numerically the expansion
in Eq. (A14). We rewrite the rhs (up to two decimal
places) as

z̃ð−55.99a2 þ 78.03a3Þ þ z̃2ð−111.99a2 þ 156.05a3

þ 1470.17a4 − 3634.64a5 þ 2175.24a6Þ þOðz̃3Þ:
ðA16Þ

It can be expected that the low energy expansion should
be dominated by the first massive pole (see Appendix of [7]
for an explicit check). So the dispersive integral should
be well approximated by the lower limit of the integral,
which in our normalization starts at 1. Then, writing the

measure factor’s contribution as μðaÞ≡ 27a2ð3a − 2Þ, our
expectation is that Eq. (A16) is going to be approximated
by [Að2;1ÞðtÞ ¼ 1]

μðaÞðz̃Að2;1Þ þ z̃2ðAð2;1Þ þAð2;3ÞÞÞ þOðz̃3Þ; ðA17Þ

¼ z̃ð−54a2 þ 81a3Þ þ z̃2ð−108a2 þ 162a3 þ 1458a4

− 3645a5 þ 2187a6Þ þOðz̃3Þ: ðA18Þ

The agreement with Eq. (A16) is good. In fact, for higher
orders in z̃, the agreement becomes better, as shown in
Fig. 4. This works mainly because there is spin-0 domi-
nance [2,43,44] and hence the contribution from the
Legendre polynomial in the CSDR is trivial.

6. String amplitude in terms of q-oscillator

Here we quote the formula for the type II tree-level string
amplitude, used in the main text, in terms of the q-oscillator
representation. Explicitly, one can derive the fully crossing
symmetric expansion,

Ã −
1

s1s2s3
− 2ζð3Þ ¼ −Z

X∞
k¼1

μkhb†biβ;qk ; ðA19Þ

where Z and β are as defined in the main text, and qk is
defined via 2ξ ¼ 2 − 27ða=kÞ2 þ 27ða=kÞ3 ¼ qk þ 1=qk
and

μk ¼
27a2ð3ak − 2Þ

k3ðk!Þ2 ð−1Þk
�
1 −

k
2
ð1 − λkÞ

�
k−1

×

�
1 −

k
2
ð1þ λkÞ

�
k−1

; ðA20Þ

with λk ¼
ffiffiffiffiffiffiffiffi
kþ3a
k−a

q
and ðaÞb being the Pochhammer symbol,

making it clear that μk is a degree-k − 1 polynomial in
ðλkÞ2. In −1=3 ≤ a ≤ 2=3, which is where q is complex
with jqj ¼ 1, it can be checked that μk ≥ 0. Note that there
is a quantization in the q deformation in terms of the level k.
For k → ∞, qk → 1, while μk → 54 k2a−5

Γ2½a�. When z̃ → 0,

k ¼ 1 dominates. The locality constraints [7] are equivalent
to the statement that

P∞
k¼1½n�qkμk ¼ P3nðaÞ, where PkðaÞ

is a degree-k polynomial in a. Put differently, for a given n,
the top knot polynomial in the description is the torus
ð2; 2nþ 1Þ. The simplicity of these conditions should
enable a systematic study.

FIG. 4. Comparison of the z̃nþ1 coefficients for string (red)
and knot polynomial sum (blue) for n ¼ 2, 3. (a) Case n ¼ 2.
(b) Case n ¼ 3.

DISPERSION RELATIONS, KNOTS POLYNOMIALS, AND THE … PHYS. REV. D 106, 126019 (2022)

126019-9



[1] A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis, and
R. Rattazzi, Causality, analyticity and an IR obstruction to
UV completion, J. High Energy Phys. 10 (2006) 014.

[2] N. Arkani-Hamed, T. C. Huang, and Y. T. Huang, The EFT-
hedron, J. High Energy Phys. 05 (2021) 259.

[3] A. J. Tolley, Z. Y. Wang, and S. Y. Zhou, New positivity
bounds from full crossing symmetry, J. High Energy Phys.
05 (2021) 255.

[4] S. Caron-Huot and V. Van Duong, Extremal effective field
theories, J. High Energy Phys. 05 (2021) 280.

[5] C. de Rham, S. Kundu, M. Reece, A. J. Tolley, and S. Y.
Zhou, Snowmass white paper: UV constraints on IR
physics, arXiv:2203.06805.

[6] G. Auberson and N. N. Khuri, Rigorous parametric
dispersion representation with three-channel symmetry,
Phys. Rev. D 6, 2953 (1972).

[7] A. Sinha and A. Zahed, Crossing Symmetric Dispersion
Relations in Quantum Field Theories, Phys. Rev. Lett. 126,
181601 (2021).

[8] R. Gopakumar, A. Sinha, and A. Zahed, Crossing Sym-
metric Dispersion Relations for Mellin Amplitudes, Phys.
Rev. Lett. 126, 211602 (2021).

[9] W. Rogosinski, Über positive harmonische Entwicklungen
and typisch-reelle Potenzreihen, Math. Z. 35, 93 (1932).

[10] Louis de Branges, A proof of the Bieberbach conjecture,
Acta Math. 154, 137 (1985).

[11] Peter. L. Duren, Univalent Functions (Springer-Verlag, New
York, 1983).

[12] P. Haldar, A. Sinha, and A. Zahed, Quantum field theory and
the Bieberbach conjecture, SciPost Phys. 11, 002 (2021).

[13] P. Raman and A. Sinha, QFT, EFT and GFT, J. High Energy
Phys. 12 (2021) 203.

[14] A. Zahed, Positivity and geometric function theory constraints
on pion scattering, J. High Energy Phys. 12 (2021) 036.

[15] L. H. Kauffman, Knots and Physics, 3rd ed. (World Scien-
tific, Singapore, 2001).

[16] J. Baez and J. P. Muniain, Gauge Fields, Knots and Gravity
(World Scientific, Singapore, 1994).

[17] E. Witten, Quantum field theory and the Jones polynomial,
Commun. Math. Phys. 121, 351 (1989).

[18] E. Witten, Knots and quantum theory, https://www.ias.edu/
ideas/2011/witten-knots-quantum-theory.

[19] Y. M. Cho, Monopoles and Knots in Skyrme Theory, Phys.
Rev. Lett. 87, 252001 (2001).

[20] D. Kreimer, Knots and Feynman Diagrams, Cambridge
Lecture Notes in Physics (Cambridge University Press,
Cambridge, England, 2000).

[21] S. D. Chowdhury, K. Ghosh, P. Haldar, P. Raman, and A.
Sinha, Crossing symmetric spinning S-matrix bootstrap:
EFT bounds, SciPost Phys. 13, 051 (2022).

[22] A. Bissi and A. Sinha, Positivity, low twist dominance and
CSDR for CFTs, arXiv:2209.03978.

[23] J. Barrat, A. Gimenez-Grau, and P. Liendo, A dispersion
relation for defect CFT, arXiv:2205.09765.

[24] J. W. Alexander, Topological invariants of knots and links,
Trans. Am. Math. Soc. 30, 275 (1928).

[25] Further details about how the pion S matrices were obtained
can be found in the Appendix.

[26] A. Bose, P. Haldar, A. Sinha, P. Sinha, and S. S. Tiwari,
Relative entropy in scattering and the S-matrix bootstrap,
SciPost Phys. 9, 081 (2020); A. Bose, A. Sinha, and S. S.
Tiwari, Selection rules for the S-Matrix bootstrap,
arXiv:2011.07944.

[27] A. L. Guerrieri, J. Penedones, and P. Vieira, Bootstrapping
QCD Using Pion Scattering Amplitudes, Phys. Rev. Lett.
122, 241604 (2019).

[28] L. C. Biedenharn, The quantum group SU(2)-q and a
q analog of the boson operators, J. Phys. A 22, L873
(1989).

[29] A. J. Macfarlane, On q analogs of the quantum harmonic
oscillator and the quantum group SU(2)-q, J. Phys. A 22,
4581 (1989).

[30] M. Chaichian and A. P. Demichev, Introduction to Quantum
Groups (World Scientific, Singapore, 1996).

[31] A. M. Gavrilik and A.M. Pavlyuk, On Chebyshev poly-
nomials and torus knots, Ukr. J. Phys. 55, 129 (2010);
arXiv:0912.4674.

[32] A. M. Gavrilik and A. M. Pavlyuk, Alexander polynomial
invariants of torus knots T(n,3) and Chebyshev polyno-
mials, Ukr. J. Phys. 56, 680 (2011).

[33] While this has not been explicitly pointed out in the
literature, it is easy to verify that it is true.

[34] We could have also considered the massive ϕ3 theory, in
which case we can just work with the shifted Mandelstam
invariants s ¼ s1 þ 4=3m2 etc. so that s1 þ s2 þ s3 ¼ 0.

[35] Using Eq. (A3), (8) can be checked to be β
m2

z̃
ðz̃−tÞðz̃−1

tÞ
as

expected.
[36] A function fðzÞ is typically real in a domain, if ImzImfðzÞ

has the same sign in that domain. These functions are also
called Herglotz. See [13] for more details.

[37] In [21], such CSDRs have been generalized for external
particles carrying spin, in the context of weakly coupled
effective field theories.

[38] https://en.wikipedia.org/wiki/Torus-knot.
[39] https://en.wikipedia.org/wiki/Reidemeister-move.
[40] fðzÞ is typically real if ImfðzÞImz ≥ 0 when Imz ≠ 0. If

ImfðzÞImz ≤ 0, we use −fðzÞ. See [13] for a review of the
relevant mathematics.

[41] M. B. Green and C. Wen, Superstring amplitudes, unitarily,
and Hankel determinants of multiple zeta values, J. High
Energy Phys. 11 (2019) 079.

[42] E. D’Hoker and M. B. Green, Exploring transcendentality in
superstring amplitudes, J. High Energy Phys. 07 (2019) 149.

[43] Z. Bern, D. Kosmopoulos, and A. Zhiboedov, Gravitational
effective field theory islands, low-spin dominance, and the
four-graviton amplitude, J. Phys. A 54, 344002 (2021).

[44] S. Ghosh, P. Raman, and A. Sinha, Celestial insights into the
S-matrix bootstrap, J. High Energy Phys. 08 (2022) 216.

ANINDA SINHA PHYS. REV. D 106, 126019 (2022)

126019-10

https://doi.org/10.1088/1126-6708/2006/10/014
https://doi.org/10.1007/JHEP05(2021)259
https://doi.org/10.1007/JHEP05(2021)255
https://doi.org/10.1007/JHEP05(2021)255
https://doi.org/10.1007/JHEP05(2021)280
https://arXiv.org/abs/2203.06805
https://doi.org/10.1103/PhysRevD.6.2953
https://doi.org/10.1103/PhysRevLett.126.181601
https://doi.org/10.1103/PhysRevLett.126.181601
https://doi.org/10.1103/PhysRevLett.126.211602
https://doi.org/10.1103/PhysRevLett.126.211602
https://doi.org/10.1007/BF01186552
https://doi.org/10.1007/BF02392821
https://doi.org/10.21468/SciPostPhys.11.1.002
https://doi.org/10.1007/JHEP12(2021)203
https://doi.org/10.1007/JHEP12(2021)203
https://doi.org/10.1007/JHEP12(2021)036
https://doi.org/10.1007/BF01217730
https://www.ias.edu/ideas/2011/witten-knots-quantum-theory
https://www.ias.edu/ideas/2011/witten-knots-quantum-theory
https://www.ias.edu/ideas/2011/witten-knots-quantum-theory
https://www.ias.edu/ideas/2011/witten-knots-quantum-theory
https://doi.org/10.1103/PhysRevLett.87.252001
https://doi.org/10.1103/PhysRevLett.87.252001
https://doi.org/10.21468/SciPostPhys.13.3.051
https://arXiv.org/abs/2209.03978
https://arXiv.org/abs/2205.09765
https://doi.org/10.1090/S0002-9947-1928-1501429-1
https://doi.org/10.21468/SciPostPhys.9.5.081
https://arXiv.org/abs/2011.07944
https://doi.org/10.1103/PhysRevLett.122.241604
https://doi.org/10.1103/PhysRevLett.122.241604
https://doi.org/10.1088/0305-4470/22/18/004
https://doi.org/10.1088/0305-4470/22/18/004
https://doi.org/10.1088/0305-4470/22/21/020
https://doi.org/10.1088/0305-4470/22/21/020
https://arXiv.org/abs/0912.4674
https://doi.org/10.15407/ujpe56.7.680
https://en.wikipedia.org/wiki/Torus-knot
https://en.wikipedia.org/wiki/Torus-knot
https://en.wikipedia.org/wiki/Torus-knot
https://en.wikipedia.org/wiki/Reidemeister-move
https://en.wikipedia.org/wiki/Reidemeister-move
https://en.wikipedia.org/wiki/Reidemeister-move
https://doi.org/10.1007/JHEP11(2019)079
https://doi.org/10.1007/JHEP11(2019)079
https://doi.org/10.1007/JHEP07(2019)149
https://doi.org/10.1088/1751-8121/ac0e51
https://doi.org/10.1007/JHEP08(2022)216

