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Matrix models have phase transitions in which distributions of variables change topologically like
the Gross-Witten-Wadia transition. In a recent study, similar splitting-merging behavior of distributions
of dynamical variables was observed in a tensor-vectors system by numerical simulations. In this paper,
we study the system exactly in some large-N limits, in which the distributions are discrete sets of
configurations rather than continuous. We find cascades of first-order phase transitions for fixed tensors,
and first- and second-order phase transitions for random tensors, being characterized by breaking patterns
of replica symmetries. The system is of interest across three different subjects at least: The splitting
dynamics plays essential roles in the emergence of classical spacetimes in a tensor model of quantum
gravity. The splitting dynamics automatically detects the rank of a tensor in the tensor rank decomposition
in data analysis. The system provides a variant of the spherical p-spin model for spin glasses with a new
nontrivial parameter. We discuss some implications of the results from these perspectives. The results are
compared with some numerical simulations to check the large-N convergence and the assumptions made
in the analysis.
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I. INTRODUCTION

The purpose of this paper is to better understand the
dynamics of the dynamical system defined by the partition
function,

ZN;Rðβ; CÞ ¼
Z
I
dϕe−βðC−ϕϕϕÞ2 ; ð1Þ

where β is an inverse temperature, C denotes a real
symmetric tensor of order three, Cabc ¼ Cbac ¼
Cbcaða; b; c ¼ 1; 2;…; NÞ, the integration variables are
ϕi
aða¼1;2;…;N;i¼1;2;…;RÞ, the integration region is

I ¼ RNR, the integration measure is dϕ ¼ Q
N
a¼1

Q
R
i¼1 dϕ

i
a,

and we use a short-hand notation,

ðC−ϕϕϕÞ2¼
�
Cabc−

XR
i¼1

ϕi
aϕ

i
bϕ

i
c

��
Cabc−

XR
i¼1

ϕi
aϕ

i
bϕ

i
c

�
;

ð2Þ

where pairwise repeated lower indices are assumed to be
summed over, as is assumed throughout this paper. On the
other hand summations over the upper indices have to be
always explicitly indicated. Note that, in addition to an
OðNÞ symmetry with respect to the lower indices, the
system (1) is invariant under relabeling the upper index of
ϕi
a (namely, invariant under ϕi

a ↔ ϕj
a). In this paper, we

call it real replica symmetry, distinguishing it from the
replica symmetry which appears later in the replica trick.
One of the motivations to study the system (1) comes

from a tensor model in the Hamiltonian formalism, which
we call canonical tensor model (CTM) [1,2]. Tensor models
were originally introduced as a generalization of the
matrix models, which are successful in describing two-
dimensional quantum gravity, with a hope to extend the
success to higher dimensions [3–6]. However, these tensor
models do not generate macroscopic spacetimes, suffering
from dominance of singular objects like branched polymers
[7,8]. A motivation of considering CTM is to overcome
the issue by introducing a temporal direction into tensor
models, trying to follow the success of the causal dynami-
cal triangulation over the dynamical triangulation in gen-
erating macroscopic spacetimes [9], where the former has
a temporal direction, while the latter does not. Indeed, in
[10], it was explicitly shown by numerical simulations that
a wave function of CTM seems to have a twofold phase
structure, and classical spacetimes emerge in the one which
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we call the classical phase.1 Here the transition between the
two phases can be characterized by splitting-merging
transitions of distributions of the dynamical variables, like
those in the matrix counterparts, such as the Gross-Witten-
Wadia transition [11,12] and the transitions among multicut
large-N solutions [13]. However, the simulations were not
convincing enough to conclude whether the phases are
really different (in some large-N limits), not just separated
by crossovers. The system (1) is a part of this wave
function,2 and plays essential roles in the dynamics of
the above transition. A result of this paper is that, at least in
the large-N limits we consider, the system (1) has sharp
phase transitions characterized by breaking patterns of the
real/genuine replica symmetries. The phases which appear
at large values of β correspond to the classical phase found
in the previous paper.3

Another motivation of studying (1) comes from that
the exponent in (1) can be used as a cost function of the
tensor rank decomposition [14–17], which is an important
technique in data analysis.4 In the present case of a real
symmetric tensor C of order three, a real symmetric tensor
rank decomposition is defined to find ϕi

a ∈ R satisfying

Cabc ¼
XR
i¼1

ϕi
aϕ

i
bϕ

i
c; ð3Þ

which is equivalent to require the cost function to vanish.
The minimum value of Rwhich realizes this decomposition
for a C is called the rank of C. The decomposition (3) is a
sort of an extension of the singular value decomposition of
the matrix to the tensor, but the hardness is largely different
[19]. While a matrix can be decomposed by straightforward
procedures, a practical method for the tensor case is to
optimize ϕi

a so that the cost function ðC − ϕϕϕÞ2 be
minimized or vanish [20]. Here one of the difficult issues
is that we do not have prior knowledge of an appropriate
value of R for a given C: If we take a too large R for the
optimization, the decomposition will be overfitting, and, if
a too small R is taken, we will miss some properties of C.

What was found in [10] and is interesting in the system (1)
is that, when β is taken large enough, the dominant
configurations of ϕi

a are such that they are separated into
two parts, the dominant and minor parts,5

Cabc ¼
XRc

i¼1

ϕi
aϕ

i
bϕ

i
c þ

XR
i¼Rcþ1

ϕi
aϕ

i
bϕ

i
c;

ϕi
a ≁ 0ði ¼ 1; 2;…; RcÞ;

ϕi
a ∼ 0ði ¼ Rc þ 1; Rc þ 2;…; RÞ: ð4Þ

In fact, in the examples considered in [10], the values of
Rc agreed with the ranks of C (or very near values in a
few large system cases). Therefore the system (1) seems to
have an intrinsic dynamics which automatically detects an
appropriate rank for a given C. A purpose of this paper is
to study this interesting property, which was found in the
previous numerical simulation, by an exact method. In the
long run, understanding the system (1) would provide some
solutions to the long-standing issues in the tensor rank
decomposition.
Another interesting link of the system (1) to physics is

spin glasses. It can be regarded as a variant of spherical
p-spin model for spin glasses [21,22], which is defined by
the following Hamiltonian and a constraint,

H ¼ Ca1a2���apϕa1ϕa2 � � �ϕap ;

ϕaϕa ¼ N; ð5Þ

where the tensor Ca1a2���ap is assumed to take random
numbers.6 Thus the system (1) can be regarded as a
multi-real-replica extension of the spherical p-spin model.
Note that we are interested in finite R, while a replica
number is taken to vanish in the replica trick. Considering
the connection to the tensor rank decomposition, it should
be a nontrivial question how (1) behaves in R.
The nontriviality of the R dependence can also be seen in

another way. Note that our system (1) does not have the
constraint in (5), which prohibits ϕi

a to run away to infinity,
assuring the stability of the model. Though the exponent in
(1) is semidefinite in our case, it is a nontrivial question
whether (1) is finite or not, because the exponent contains
flat directions, such as ϕi

a ¼ −ϕj
a, which extends to infinity.

This question about the finiteness was systematically
studied mainly by numerical methods in [23],7 and it
was checked/conjectured that the system is finite only
for R≲ ðN þ 1ÞðN þ 2Þ=2. In this paper, we are free from
this instability, because we consider large-N limits with
finite R.

1The other was called the quantum phase.
2The wave function has an integral expression, which is a

multivariable extension of the integral representation of Airy
functions. Its integrand is complex, but, by taking only the modus
of the integrand, one obtains the system (1). In [10] the wave
function, of complex values, was analyzed by the reweighting
method of the Monte Carlo simulations, in which the system (1)
played the role of a statistical system with a positive weight in the
method.

3In fact, we will find cascades of first-order phase transitions in
this paper, meaning that what was called the classical phase in
[10] could be a collection of phases in general. This, however,
must be taken with caution, since the large-N limits we take in
this paper is different from that in the tensor model, which should
be R ∝ N2 (see the last section).

4See [18] for some developments to data analysis techniques
from random tensor studies.

5Here the upper index of ϕi
a has been relabeled without loss of

generality.
6The simplest realization would be a normal distribution.
7There are also some closely related studies [24–26].
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This paper is organized as follows. In Sec. II, we
introduce a large-N limit with finite R of the system (1)
for fixed C, and derive an exact expression of the free
energy in the limit. In Sec. III, we consider a few
representative examples of C and study the free energy
by explicitly computing minima of the expression obtained
in Sec. II. As β is increased, the system undergoes a cascade
of first-order phase transitions, in which the number of
nonzero ψ i, which appear later, increases one by one,
eventually reaches a phase in which the number agrees with
the tensor rank ofC, and stays there. In Sec. IV, we consider
the case of random C. To incorporate the random C, we
employ the replica trick up to one-step replica symmetry
breaking (1RSB) as in the case of the spherical p-spin
model. When β is small, the system is in the replica
symmetric phase. As β is increased, the system undergoes a
first- or second-order phase transition, depending on a
parameter we introduce, and enters the 1RSB spin-glass
phase. In Sec. V, we perform some numerical simulations
and compare with the exact results.

II. LARGE-N LIMITS WITH FINITE R
AND FIXED C

The strategy of this section is that we dip C of a finite
dimension into a large-N system. More precisely, let us
introduce a parameter n, and assume that C takes nonzero
values only within this subdimension:

Ca1a2a3 ≠ 0; only if ∀ ai ∈ f1; 2;…; ng;
Ca1a2a3 ¼ 0; otherwise: ð6Þ

We assume that n is kept finite in the large-N limit
(However, we will later consider n ∝ N in the large-N
limit for random C). Let us introduce new variables to
separate ϕi

a into two parts:

ψ i
a ¼ ϕi

aða ¼ 1; 2;…; nÞ;
ψ̃ i
a ¼ ϕi

aða ¼ nþ 1; nþ 2;…; NÞ; ð7Þ

for ∀ i ¼ 1; 2;…; R. With these variables, the exponent
βðC − ϕϕϕÞ2 of (1) can be rewritten as

Sψψ̃ ðβ; CÞ ¼ βðC − ψψψÞ2 þ 3β
XR
i;j¼1

ðψ i · ψ jÞ2ψ̃ i · ψ̃ j

þ 3β
XR
i;j¼1

ψ i · ψ jðψ̃ i · ψ̃ jÞ2 þ β
XR
i;j¼1

ðψ̃ i · ψ̃ jÞ3;

ð8Þ

where · denotes the inner product, ψ i · ψ j ¼ ψ i
aψ

j
a, and C

abusively denotes the n-subdimensional part. Sψψ̃ ðβ; CÞ is
invariant under the SOðN − nÞ transformation with respect

to the lower index of ψ̃ i
a, and we can factor out the degrees

of freedom by introducing the following new variable,
which is called overlap in spin glass theory [22],

Q̃ij ¼ ψ̃ i · ψ̃ j; ði; j ¼ 1; 2;…; RÞ: ð9Þ

This constraint can be embedded into the system by
rewriting the partition function (1) as

ZN;Rðβ; CÞ ¼
Z

dψdψ̃dλdQ̃e−SψQ̃ðβ;CÞþi
P

R
i;j¼1

λijðQ̃ij−ψ̃ i·ψ̃ jÞ;

ð10Þ

where we have ignored an irrelevant overall factor, and

SψQ̃ðβ; CÞ ¼ βðC − ψψψÞ2 þ 3β
XR
i;j¼1

ðψ i · ψ jÞ2Q̃ij

þ 3β
XR
i;j¼1

ψ i · ψ jðQ̃ijÞ2 þ β
XR
i;j¼1

ðQ̃ijÞ3: ð11Þ

Integrating over ψ̃ in (10) generates a new term
−ðN − nÞ=2 log det λ in the exponent, and then by assum-
ing large-N and carrying out the λ integration by taking the
saddle point, we obtain

Seff
ψQ̃

ðβ̄; CÞ ¼ ðN − nÞ
�
SψQ̃ðβ̄; CÞ −

1

2
ln det Q̃

�
: ð12Þ

where we have introduced β̄ by β ¼ ðN − nÞβ̄. Therefore,
in the large-N limit, the free energy of the system is
given by

β̄Fðβ̄; CÞ ¼ − lim
N→∞

1

N
logZðβ; CÞ;

¼ min
ψ ;Q̃≥0

�
SψQ̃ðβ̄; CÞ −

1

2
ln det Q̃

�
; ð13Þ

where Q̃ ≥ 0 represents that Q̃ is constrained to be a
positive semidefinite matrix8 due to (9).
In general, when the parameters β̄ and C are gradually

changed, the free energy (13) will undergo various first-
order phase transitions with finite jumps of the minimum in
ψ ; Q̃. As will explicitly be shown in some representative
cases in Sec. III, the splitting between the dominant and
minor parts (4) occurs as the results of the first-order phase
transitions.

8Namely, all the eigenvalues are zero or positive.
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III. SOME REPRESENTATIVE EXAMPLES
FOR FIXED C

In this section, we explicitly compute (13) for someCs as
a function of β̄. The minimization must be performed under
the condition that Q̃ is a positive semidefinite matrix.
A convenient way to implement it is to parametrize Q̃ as

Q̃ij ¼ vi · vj; ð14Þ

where viði ¼ 1; 2;…; RÞ are R-dimensional real vectors
that have nonzero elements only in a triangular part:

via

�≠ 0; only if 1 ≤ a ≤ i

¼ 0; for i < a ≤ R
: ð15Þ

Unless n and R are very large, the minimum (13) can be
obtained by repeating the minimization process many times
enough, starting from random values of ψ and v.

A. n= 1

Though C ¼ C111 cannot even be called a tensor for
n ¼ 1, this simplest case still shows the splitting (4), as we
will see below. For n ¼ 1, the “tensor rank decomposition”
(3) is just a scalar equation,

C ¼
XR
i¼1

ðψ iÞ3; ð16Þ

and, for R > 1, it has a continuously infinite number of
solutions extending to infinity. Considering the abundance
of the solutions, the dominance shown below of the
particular splitted configurations (3) in the system (1) is
rather surprising. This dominance should be a nontrivial
effect of the integration volume.
Two examples with R ¼ 1, 2 each are shown in Fig. 1. In

both cases, there are first-order phase transitions at
β̄ ¼ β̄c ∼ 0.8. In the left example with R ¼ 1, the only
ψ1 makes a jump from zero to a finite value, while, in the
right example with R ¼ 2, only one of the ψ i, say ψ1,
makes a jump, but the other, ψ2, stays zero: The splitting (3)
is realized in the phase at β̄ > β̄c. Note that ψ2,

corresponding to the minor part in (4), is exactly zero in
this large-N limit. One can also check that the above
phenomenon is universal for any R ≥ 2: Only one of ψ i

gets nonzero values and the others stay zero at β̄ > β̄c.
The above transition can be restated as a real replica

symmetry breaking. In the phase at β̄ < β̄c, the real replica
symmetry, namely, the symmetric group SR interchanging
ϕiði ¼ 1; 2;…; RÞ, is unbroken because of ∀ψ i ¼ 0. In
the other phase at β̄ > β̄c, it is spontaneously broken,

SR → SR−1; at β̄ ¼ β̄c; ð17Þ
because one of ψ i gets finite.
The same symmetric structure can also be checked for Q̃.

B. n= 2

The typical ranks9 of the n ¼ 2 real symmetric tensors
are 2 and 3 [27]. Therefore, depending on the choice of C,
we typically find 2 or 3 first-order phase transition points
for R ≥ 3, as β is changed. Figure 2 shows an example with
rankðCÞ ¼ 3 and R ¼ 4. We indeed find three first-order
phase transitions. The number of nonzero vectors of ψ i

increases one by one from zero to three, as the system
undergoes each first-order phase transition when β̄ is
increased. One vector keeps vanishing how large β̄ is
taken, because R − rankðCÞ ¼ 1 in this case. One can
check that the splitting, as in (3), is universal for any R ≥ 4

when β̄ is taken large enough. In this phase, the number
rankðCÞ of ψ i takes nonzero values, while the others are
exactly zero. Thus there are typically the following two
possible patterns of real replica symmetry breaking for
n ¼ 2:

SR → SR−1 → SR−2; for rankðCÞ ¼ 2;

SR → SR−1 → SR−2 → SR−3; for rankðCÞ ¼ 3: ð18Þ

FIG. 1. Left two panels: n ¼ 1; R ¼ 1; C ¼ 1 are taken. The left of them plots the free energy (13) against β̄. There is a first-order
phase transition at β̄ ∼ 0.8. The right of them plots the value of ψ , which has a jump from zero to a finite value. The right two panels are
similar plots for n ¼ 1; R ¼ 2; C ¼ 1. Only one of ψ1, ψ2 gets finite at β̄ > β̄c.

9The space of C (with a normalization) can be classified by the
ranks of C. Typical ranks are the ranks which appear with a finite
measure in the space. In other words, when a C is randomly
chosen, the rank of C will be one of the typical ranks, each
appearing with a nonzero probability.

NAOKI SASAKURA PHYS. REV. D 106, 126016 (2022)

126016-4



It would be instructive to see how the tensor rank
decomposition of C is performed as β̄ is increased. As
shown in Fig. 3, the tensor rank decomposition is improved
at each time the first-order phase transitions occurs.

C. Lie-group symmetric C

For n ≥ 3, C can be taken Lie-group symmetric. As an
illustrative example, let us consider the simplest case of
n ¼ 3 and SOð2Þ-invariantC. More precisely,C is given by

Cabc ¼ const:e−αðm
2
aþm2

bþm2
cÞ
Z

2π

0

dθfafbfc; ð19Þ

where

f1 ¼
1ffiffiffi
2

p ; f2 ¼ cosðθÞ; f3 ¼ sinðθÞ; ð20Þ

ma are the angular frequencies of the functions fa, namely,
m1 ¼ 0; m2 ¼ m3 ¼ 1. The parameter α has been intro-
duced to make smooth the sharp frequency cutoff, at
m ¼ 1 in this case, by choosing α ∼Oð1Þ. The overall
factor const. is a normalization factor for CabcCabc ¼ 1.
It is easy to check that C is invariant under an arbitrary

SOð2Þ rotation between f2 and f3, which corresponds to a
shift of θ.
Figure 4 shows the free energy and so on for this case.

There exist four first-order phase transitions, as β̄ is
increased. At each time a transition occurs, the number
of nonzero ψ i increases by one, and the maximum number
is four, which is the rank of C.
The symmetry breaking patterns of this case are more

interesting than the previous cases. Because of the SOð2Þ
symmetry of C, the system initially has SOð2Þ × SR
symmetry. Since the nonzero ψ i in each phase are all
different from each other, one would suspect that the fate of
the real replica symmetry breaking would be the same as
the previous cases. However, it is easy to check in each
phase that the set of nonzero ψ i are invariant under a
discrete subgroup of SOð2Þ. For example, in the phase
with two nonzero ψ is, say, ψ1, ψ2, they are related by
ψ1 ¼ RotðπÞψ2, where RotðπÞ is the SOð2Þ rotation by
angle π (see Fig. 5). This is similar in the other phases, with
three nonzero ψ is being related by Rotðπ=3Þ and four
nonzero ψ is related by Rotðπ=4Þ. In all, the symmetry
breaking pattern is given by

SOð2Þ × SR → SOð2Þ × SR−1 → Z2 × SR−2 → Z3 × SR−3

→ Z4 × SR−4; ð21Þ

where Zn denotes the cyclic group. As illustrated in Fig. 5,
one can check that nonzero ψ is form discretized S1, and the
lattice spacing becomes finer, as β̄ is increased. Note that,
since there is a finite jumpof configurations at each transition,
any direct connections (subgroup structure, etc.) do not
generally exist between the consecutive breaking patterns.

IV. RANDOM C

In this section we will consider the cases with random
values of C. The motivation is to understand the dynamics
of the system (1) for general values of C, rather than for
some particular values as studied in Sec. III. Following the
successes in the study of spin glasses, the main strategy we
take is to apply the replica trick,

FIG. 2. An example of n ¼ 2, R ¼ 4. C111 ¼ C222 ¼ 1; C122 ¼ −2 is taken for C. From the left to the right panels, the free energy
(13), β̄dβ̄F=dβ̄, and jψ ij ¼

ffiffiffiffiffiffiffiffiffiffiffi
ψ i
aψ

i
a

p
are plotted against β̄, respectively.

FIG. 3. The error of the tensor rank decomposition,
jC − ψψψ j=jCj, is plotted against β̄ for the same example as
in Fig. 2.
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β̄F ¼ −
∂

∂T
lim

N→∞

1

NR
log hZN;Rðβ; CÞTiC

���
T¼0

; ð22Þ

where β̄ ¼ β=N, h·iC denotes the average over the ran-
dom distribution of C, and T is the replica number. As in
(6), we restrict the range of nonzero values of C as
Cabcða; b; c ≤ nÞ, and assume them to be distributed by
the normal distribution:

hOiC ¼ A
Z Yn

a≤b≤c¼1

dCabcOe−αCabcCabc ; ð23Þ

where α is a positive number, and A is a normalization
factor for h1iC ¼ 1.
Let us first rewrite the power T in (22) by introducing T

replicas of ϕi
a:

hZN;Rðβ; CÞTiC ¼ A
Z

dCe−αC
2

ZN;Rðβ; CÞT

¼ A
Z

dC
Z
IT

YT−1
t¼0

YN;R

a;i¼1

dϕit
a e−ST ; ð24Þ

where

ST ¼ αCabcCabc þ β
XT−1
t¼0

�
Cabc −

XR
i¼1

ϕit
aϕ

it
bϕ

it
c

�2

; ð25Þ

and we have introduced an additional upper index
tðt ¼ 0; 1;…; T − 1Þ for ϕ, which starts from zero for later
convenience. With the same spirit as (7), we divide ϕ into
two parts,

ψ it
a ¼ ϕit

a ða ¼ 1; 2;…; nÞ;
ψ̃ it
a ¼ ϕit

a ða ¼ nþ 1; nþ 2;…; NÞ: ð26Þ

After a straightforward computation, we obtain

ST ¼ðαþβTÞ
�
Cabc−

β

αþβT

X
i;t

ψ it
aψ

it
bψ

it
b

�
2

−
β2

αþβT

X
i;i0;t;t0

ðψ it ·ψ i0t0 Þ3þβ
X
i;i0;t

ðψ it ·ψ i0tÞ3

þ3β
X
i;i0;t

ðψ it ·ψ i0tÞ2ðψ̃ it · ψ̃ i0tÞ

þ3β
X
i;i0;t

ðψ it ·ψ i0tÞðψ̃ it · ψ̃ i0tÞ2þβ
X
i;i0;t

ðψ̃ it · ψ̃ i0tÞ3; ð27Þ

where the ranges of sums have been omitted for brevity,
since they are obvious.
The first term of (27) can be integrated over C, and this

generates

#C
2

log

�
αþ βT

α

�
ð28Þ

as an additional term to the exponent, where #C ¼
nðnþ 1Þðnþ 2Þ=6, namely, the number of independent
elements of C. To compute the other terms, let us introduce
the overlaps,

Qiti0t0 ¼ ψ it · ψ i0t0 ;

Q̃iti0t0 ¼ ψ̃ it · ψ̃ i0t0 ; ð29Þ

as in (9). The same procedure as before generates similar
logarithmic terms as in (12),

FIG. 4. An example with n ¼ 3, R ¼ 5 and an SOð2Þ invariant C with α ¼ 0.5 in (19). In the right panel, all the nonzero ψ i have the
same size, and are degenerate in the plot.

FIG. 5. Illustration of the development of the symmetry
patterns in (21). Nonzero ψ is form discretized S1, the lattice
spacing of which becomes finer as β̄ is increased. The dots
illustrate the locations of nonzero ψ is, and the dashed line an
imaginary S1. With increasing β̄, an S1 gradually emerges by the
discrete steps of the first-order phase transitions.
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−
n
2
log detQ −

N − n
2

log det Q̃; ð30Þ

where Q and Q̃ are regarded as RT × RT matrices in the
determinants. By assembling the above expressions, we
obtain

SeffT ðβÞ ¼ #C
2

log

�
1þ β

α
T

�
−

β2

αþ βT

X
i;i0;t;t0

ðQiti0t0 Þ3

þ β
X
i;i0;t

ðQiti0tÞ3 þ 3β
X
i;i0;t

ðQiti0tÞ2ðQ̃iti0tÞ

þ 3β
X
i;i0;t

ðQiti0tÞðQ̃iti0tÞ2 þ β
X
i;i0;t

ðQ̃iti0tÞ3

−
n
2
log detQ −

N − n
2

log det Q̃: ð31Þ

For later use, it is more convenient to perform a rescaling

of variables in (31): Q ¼ ðN=βÞ1=3Q̄; Q̃ ¼ ðN=βÞ1=3 ¯̃Q.
Then we obtain

SeffT ðβÞ ¼ #C
2

log

�
1þ β

α
T

�
þ NRT

6
log β

−
Nβ

αþ βT

X
i;i0;t;t0

ðQ̄iti0t0 Þ3 þ N
X
i;i0;t

ðQ̄iti0tÞ3

þ 3N
X
i;i0;t

ðQ̄iti0tÞ2ð ¯̃Qiti0tÞ þ 3N
X
i;i0;t

ðQ̄iti0tÞð ¯̃Qiti0tÞ2

þ N
X
i;i0;t

ð ¯̃Qiti0tÞ3 − n
2
log det Q̄ −

N − n
2

log det ¯̃Q;

ð32Þ
where we have ignored an unimportant constant shift.
Further computations depend on assumptions made on

replica symmetry breaking. Below we consider only two
possibilities, replica symmetric (RS) and one-step replica
symmetry breaking (1RSB). A reason to consider only
these possibilities is that 1RSB is known to be exact [21] in

the spherical p-spin model. In fact numerical simulations,
which we will show in Sec. V, seem to support this
assumption at least in the large-N limit of this paper.

A. R= 1 with random C

Since R ¼ 1, we can simply write Q̄tt0 in place of Q̄iti0t0 ,
neglecting the real replica index. Under the assumption of
1RSB [21,22], the overlap Q̄ is assumed to have the form

Q̄tt0 ¼ δbt=Mc;bt0=McItmodM;t0 modMðq0; q1Þ
þ q2ð1 − δbt=Mc;bt0=McÞ; ð33Þ

where qi are new variables, b·c is the floor function,
amod b denotes a modulo b, and I is an M ×M matrix
with components,

Itt0 ðq0; q1Þ ¼ q0δtt0 þ q1ð1 − δtt0 Þ: ð34Þ

Then it is straightforward to obtain

1

T

X
t;t0

ðQ̄tt0 Þ3 ¼ ðT −MÞq32 þ ðM − 1Þq31 þ q30;

1

T

X
t

ðQ̄ttÞ3 ¼ q30;

log det Q̄ ¼ logðq0 þ ðM − 1Þq1 þ ðT −MÞq2Þ

þ
�
T
M

− 1

�
logðq0 − q1 þMðq1 − q2ÞÞ

þ
�
T −

T
M

�
logðq0 − q1Þ: ð35Þ

These expressions are also assumed for ¯̃Q, with replace-
ments qi → q̃i;M → M̃.
By putting (35) and the corresponding expressions of ¯̃Q

to (32), and applying the replica trick formula in (22), one
obtains

β̄F1RSB ¼ #C
2N

β

α
þ 1

6
log β −

β

α
ð−Mq32 þ ðM − 1Þq31 þ q30Þ þ q30 þ 3q20q̃0 þ 3q0q̃20 þ q̃30

−
n̄
2

��
1 −

1

M

�
logðq0 − q1Þ þ

1

M
logðq0 − q1 þMðq1 − q2ÞÞ þ

q2
q0 þ ðM − 1Þq1 −Mq2

�

−
1 − n̄
2

��
1 −

1

M̃

�
logðq̃0 − q̃1Þ þ

1

M̃
logðq̃0 − q̃1 þ M̃ðq̃1 − q̃2ÞÞ þ

q̃2
q̃0 þ ðM̃ − 1Þq̃1 − M̃q̃2

�
; ð36Þ

where we have introduced n̄ ¼ n=N.
Here let us comment on the ranges of the parameters

that appear in the above expressions (see [22] for more
details). From the physical point of view, the overlaps of

configurations in the same state will not be less than those
in different states. Therefore

q0 ≥ q1 ≥ q2; q̃0 ≥ q̃1 ≥ q̃2: ð37Þ
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In addition, the computations of hhψa1 ���ψakihψa1 ���ψakiiC
under the 1RSB assumption (and the same for ψ̃) leads to a
probability distribution of the overlap,

hPðqÞiC ¼ M − 1

T − 1
δðq − q1Þ þ

T −M
T − 1

δðq − q2Þ; ð38Þ

and a similar one for q̃i. Then the positivity of this probability
distribution in the T → 0 limit requires

0 ≤ M ≤ 1; 0 ≤ M̃ ≤ 1: ð39Þ

One can check that (37) and (39) assures the arguments of the
logarithms and the denominators in (36) do not become less
than zero.
For simplicity of discussions, in the rest of this paper,

we assume q2; q̃2 ¼ 0, since this is known to be true for
the p-spin spherical model [21]. The consistency of our
analysis of this section and the numerical results of Sec. V
will support this simplification.
When β is small enough, namely, in high temperatures,

the system will be in RS phase. The RS expression of the
free energy can be obtained by putting q1 ¼ q̃1 ¼ 0 (and
q2 ¼ q̃2 ¼ 0) to the 1RSB expression (36):

β̄FRS ¼ #C
2N

β

α
þ 1

6
log β þ

�
1 −

β

α

�
q30 þ 3q20q̃0

þ 3q0q̃20 þ q̃30 −
n̄
2
log q0 −

1 − n̄
2

log q̃0: ð40Þ

Note that M; M̃ have disappeared from the expression,
since they have no roles for q1 ¼ q̃1 ¼ q2 ¼ q̃2 ¼ 0
in (33).
The free energy of the system is obtained by searching

for the stationary points of these expressions (36) and (40)
in terms of the variables, qi; q̃i;M; M̃.

1. R = 1, n̄ = 1 with random C

In this subsection, let us perform concrete analysis on the
case with R ¼ 1; n̄ ¼ 1 and random C by using the
expressions above. Because of n̄ ¼ 1, we can simply
ignore the terms with q̃i. Therefore, from (36) and (40),
we have

β̄FRS
R¼1n̄¼1 ¼

#C
2N

β

α
þ1

6
logβþ

�
1−

β

α

�
q30−

1

2
logq0; ð41Þ

and

β̄F1RSB
R¼1n̄¼1 ¼

#C
2N

β

α
þ 1

6
log β −

β

α
ððM − 1Þq31 þ q30Þ þ q30

−
1

2M
ððM − 1Þ logðq0 − q1Þ

þ logðq0 − q1 þMq1ÞÞ; ð42Þ

where we have put q2 ¼ 0 following the spherical p-spin
model [21].
Let us first consider the RS case (41). By solving

∂β̄FRS
R¼1n̄¼1

∂q0
¼ 0, one obtains

β̄FRS
R¼1n̄¼1 ¼

#C
2N

β

α
þ 1

6
logβþ 1

6
þ 1

6
log6þ 1

6
log

�
1−

β

α

�
:

ð43Þ

Because of the divergence at β ¼ α, the RS phase cannot
exist for all β and there must be a critical point βc < α, by
which the RS phase is bounded.
A comment is in order. The appearance of this diverging

point can be traced to the appearance of a curious indefinite
coefficient 1 − β=α in (41). This looks confusing, because
the starting expression (25) is positive semidefinite.
However, after integrating out C, we obtain (31), which
contains a negative coefficient. One can check that this
expression is still positive semidefinite for T ≥ 1, but after
taking T ¼ 0 of the replica trick, it becomes indefinite.
Therefore the presence of a phase transition is an interplay
between integrating out and the analytic continuation.
We assume that the RS solution is connected to the 1RSB

solution at β ¼ βc < α with the requirement that the free
energy is continuous at this point. The stationary condition
of (42) is given by

∂β̄F1RSB
R¼1n̄¼1

∂q0
¼ ∂β̄F1RSB

R¼1n̄¼1

∂q1
¼ ∂β̄F1RSB

R¼1n̄¼1

∂M
¼ 0: ð44Þ

These equations, however, cannot be fully solved algebrai-
cally, because of the logarithmic terms in the last equation.
However, using Mathematica, the first two equations can
analytically be solved, in which q0, q1 are analytically
expressed by M. Then the last equation can be numerically
solved to obtain M. With this procedure, one can compute
the free energy for each value of α, β.
Figure 6 shows the free energy up to the second deriv-

atives. Here, we have subtracted the first term in (41) and (42)
and have denoted the subtracted free energy by F0, because
this first term behaves in ∼N2 and is much larger than the
other terms. Note that this term is linear in β and therefore
does not appear in the second derivative. To be concrete, we
take α ¼ 1=2without loss of generality. The transition point
can be determined by requiring the continuity of the free
energy, FRS

R¼1n̄¼1 ¼ F1RSB
R¼1n̄¼1, at β ¼ βc, and the result is

βc ∼ 0.407ðlog10 0.407 ∼ −0.39Þ. The system is in the RS
phase for β < βc, and in the 1RSB phase for β > βc. The
transition is second order with a finite jump of the second
derivative of the free energy with respect to β. The reason for
the continuity of the first derivative of the free energy at the
transition point can be attributed to the continuity of q0 and
M ¼ 1, while q1 makes a jump, as shown in Fig. 7.
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2. R = 1, n̄ = 1=2 with random C

In this subsection, we consider a case with R ¼ 1, n̄ < 1,
and random C. To be concrete, we set n̄ ¼ 1=2 as a
representative case of n̄ < 1. The main difference from
the n̄ ¼ 1 case is that we find a first-order phase transition
in place of the second-order one for n̄ ¼ 1.
Let us first reduce the general formof the free energy given

in (36), since it seems enough to assume q2; q̃1; q̃2 ¼ 0 for
the present analysis. Here the assumption q̃1; q̃2 ¼ 0 of RS

for the variable ¯̃Qwould be natural, because only its diagonal
components appear in the interaction terms of (32). By
putting these assumptions and n̄ ¼ 1=2 to (36), we obtain

β̄F1RSB
R¼1n̄¼1=2 ¼

#C
2N

β

α
þ 1

6
log β −

β

α
ððM − 1Þq31 þ q30Þ þ q30

þ 3q20q̃0 þ 3q0q̃20 þ q̃30

−
1

4M
ððM − 1Þ logðq0 − q1Þ

þ logðq0 − q1 þMq1ÞÞ −
1

4
log q̃0: ð45Þ

TheRScase can simply beobtainedbyputtingq1 ¼ 0 to (45):

β̄FRS
R¼1n̄¼1=2 ¼

#C
2N

β

α
þ 1

6
log β þ

�
1 −

β

α

�
q30 þ 3q20q̃0

þ 3q0q̃20 þ q̃30 −
1

4
log q0 −

1

4
log q̃0: ð46Þ

In the RS case, the equations, ∂β̄FRS
R¼1n̄¼1=2=∂q0 ¼

∂β̄FRS
R¼1n̄¼1=2=∂q̃0 ¼ 0, can be solved algebraically for

q0; q̃0, and the free energy can be obtained as a function
of β=α, though the expression is too complicated to
explicitly write down here.
As for the 1RSB case, we have to fully resort to

numerical analysis. To be concrete, let us take α ¼ 1=2
without loss of generality. Then we can find that there
is a phase transition between RS and 1RSB phases at
β ¼ βc ∼ 0.58ðlog10 βc ∼ −0.24Þ, as is shown in Fig. 8. In
the figure, the first terms of (45) and (46) are subtracted
in showing the free energy and its first derivative. The
transition is first order, as can be clearly seen in the plots
(see also Fig. 9).

B. R > 1; n̄= 1 with random C

To analyze the R > 1; n̄ ¼ 1 case we assume the
following form for Q̄:

Q̄iti0t0 ¼ δbt=Mc;bt0=Mcðδii0ItmodM;t0 modMðq0; q1Þ
þ ð1 − δii0 ÞItmodM;t0 modMðq00; q01ÞÞ; ð47Þ

where the matrix I is defined in (34), and we have already
assumed that the q2; q02 terms are not needed as in the
previous cases. Here note that we are assuming that the real
replica symmetry concerning the i, i0 indices of Q̄ii0tt0 is not
broken, while the replica symmetry can be broken in
general concerning t, t0.

FIG. 7. The behavior of the configurations for the same case as in Fig. 6. q0 is continuous, while q1 makes a jump at the transition
point.

FIG. 6. The free energy and its first and second derivatives for R ¼ 1; n̄ ¼ 1, and random C. α ¼ 1=2 is taken without loss of
generality. F0 denotes the free energy with the subtraction of the first term of (41) and (42). There is a second order phase transition with
a finite jump of the second derivative at βc ∼ 0.407ðlog10 βc ∼ −0.39Þ.
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Putting some formula shown in B to (32) and using (22), we obtain the free energy as

β̄F1RSB
R>1;n̄¼1 ¼

#C
2NR

β

α
þ 1

6
logβ−

β

α
ððM − 1Þq31 þ q30Þ þ q30 þ ðR− 1Þ

�
−
β

α
ððM − 1Þq013 þ q00

3Þ þ q00
3

�

−
1

2MR
½logfq0 þ ðR− 1Þq00 þ ðM − 1Þðq1 þ ðR− 1Þq01Þgþ ðM − 1Þ logfq0 þ ðR− 1Þq00 − ðq1 þ ðR− 1Þq01Þg

þ ðR− 1Þ logfq0 − q00 þ ðM − 1Þðq1 − q01Þgþ ðM − 1ÞðR− 1Þ logfq0 − q00 − ðq1 − q01Þg�: ð48Þ

The RS case can be obtained by putting q1 ¼ q01 ¼ 0 as

β̄FRS
R>1;n̄¼1 ¼

#C
2NR

β

α
þ 1

6
log β þ

�
1 −

β

α

�
q30

þ ðR − 1Þ
�
1 −

β

α

�
q00

3

−
1

2R
½logðq0 þ ðR − 1Þq00Þ

þ ðR − 1Þ logðq0 − q00Þ�: ð49Þ

In a similar manner as in the previous sections, one can
numerically analyze the stationary solutions of (48) and
(49). Then what we find is that there are only solutions with
q00 ¼ q01 ¼ 0. Therefore the present case reduces to the case
with R ¼ 1; n̄ ¼ 1 case in Sec. IVA 1, as (48) and (49)
reduce to (42) and (41), respectively.

C. R > 1; n̄ < 1

In this case, we have ¯̃Q in addition. Since only the

diagonal components of ¯̃Qwith respect to tt0 indices couple
with Q̄ in (32), it would be reasonable to assume the

following diagonal form for ¯̃Q:

¯̃Qiti0t0 ¼ δtt0 ðq0δii0 þ ð1 − δii0 Þq00Þ: ð50Þ

Then the interaction terms are given by

3
X
i;i0;t

ðQ̄iti0tÞ2ð ¯̃Qiti0tÞþ3
X
i;i0;t

ðQ̄iti0tÞð ¯̃Qiti0tÞ2þ
X
i;i0;t

ð ¯̃Qiti0tÞ3

¼RTð3ðq20q̃0þðR−1Þq020 q̃00Þþ3ðq0q̃20þðR−1Þq00q̃002Þ
þðq̃30þðR−1Þq̃003ÞÞ; ð51Þ

and the determinant term of ¯̃Q is given by

FIG. 8. The free energy and its first and second derivatives for R ¼ 1; n̄ ¼ 1=2. Without loss of generality, α ¼ 1=2 is taken to be
concrete. A first-order phase transition exists at β ¼ βc ∼ 0.58ðlog10 βc ∼ −0.24Þ. Here F0 denotes the free energy with the subtraction of
the first term.

FIG. 9. The configurations are plotted for the same case as in Fig. 8. q0 and q1 are shown by solid and dashed lines, respectively, in the
left panel. The middle and right panels show q̃0 and M, respectively. The configurations jump at the phase transition point.
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logdet ¯̃Q¼ T logðq̃0þðR− 1Þq̃00Þþ ðR− 1ÞT logðq̃0− q̃00Þ:
ð52Þ

By appropriately including the parameter n̄, the expression
of the free energy can straightforwardly be obtained from
(48), (51), and (52) in the same manner as before. Then we
numerically searched for the stationary solutions. However,
all the solutions have q00 ¼ q01 ¼ q̃00 ¼ 0. This concludes
that the present case also reduces to the R ¼ 1 case.

V. COMPARISONS WITH
NUMERICAL SIMULATIONS

In this section, we perform some numerical simulations,
and compare with the exact results. By this we can check
the exact results obtained based on some assumptions in
the previous sections, and can also check the large-N
convergence explicitly. The latter will be useful for future
study, since this provides us some information on how
much we can rely on numerical simulations in the analysis
of our system.
We apply Hamiltonian Monte Carlo method [28] to the

system (1), accompanied with parallel tempering [29]
across different values of β. We compute βhsi and
β2hs2ic ¼ β2ðhs2i − hsi2Þ with s ¼ βðQ − ϕϕϕÞ2 to com-

pare with β ∂βF
∂β ;−β2 ∂

2βF
∂β2

of the exact results, respectively,

where h·i denotes the statistical average in the Monte Carlo
simulations. We also compute the β dependencies of the
configurations. The error estimates are performed by the
jackknife method.
As for random C, every independent component of C is

generated by the normal distribution with mean zero and
standard deviation 1=

ffiffiffiffi
m

p
, wherem is the multiplicity of the

components, namely, mðCiiiÞ ¼ 1; mðCiijÞ ¼ 3; mðCijkÞ ¼
6 for different i, j, k.10 This distribution corresponds to
taking α ¼ 1=2, which was indeed taken in the plots shown
in the previous sections. In general the details of the results

depend on each particular randomly generated C, but we
find that, when N is large enough, such sample dependence
seems irrelevant at least for the data we will show, except
for one quantity in Sec. V D. We will actually see more or
less good agreement with the exact results, even if we take
one sample, except for the quantity in Sec. V D.
The machine had a Xeon W2295 (3.0 GHz, 18 cores),

128 GB DDR4 memory, and Ubuntu 20 as OS. The
program was written in Cþþ with the use of pthread
for parallelization. The leapfrog numbers were taken
around a hundred. The numbers of the samples of each
run are 104–106. Every run typically took for 3–20 hours11

with the active use of parallelization, and without serious
tunings of the speed of the program.
We consider some representative cases in the following

subsections.

A. n= 2, R= 4, fixed C

This case corresponds to the exact results in Sec. III B.
Figure 10 shows the comparison with the numerical

simulations. The convergence of the free energy (first
derivative) to the exact result is rather slow (the left panel),
and it would be difficult to conclude the presence of
multiple first-order transitions solely from the data. On
the other hand, from the plot of the configurations (the right
panel), one would better be able to conclude there are
jumps, implying first-order phase transitions.

B. n̄= 1; R= 1, random C

This corresponds to the exact results in Sec. IVA 1.
As for the free energy, to kill the first term in (41) and

(42), which is OðN2Þ larger than the other terms, we
compare the second derivative of the free energy with the
numerical results,12 which are shown in the left two panels

FIG. 10. The case with n ¼ 2, R ¼ 4 with fixed C. Comparisons between the exact results of Sec. III B and the numerical simulations
shown by dots with error bars. N ¼ 20 results are shown blue, and N ¼ 60 shown red.

10This rescaling is necessary, because the SOðNÞ invariant
expression has the form, CabcCabc ¼ Ciii

2 þ 3Ciij
2 þ 6Cijk

2 due
to C being a symmetric tensor.

11The longest run was about 50 hours, which was for N ¼ 70,
R ¼ 2.

12In fact, we tried to compare the first derivative of the free
energy with the simulation data by subtracting the first term by
hand. However, the data still seemed to be affected by some
unknown quantities smaller than OðN2Þ but significant, and we
could not perform any reliable comparisons.
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of Fig. 11. We see that the numerical results seem to
converge to the exact result, though the speed of con-
vergence is rather slow. Especially, the errors are very large
in the right region (1RSB) of the transition point, which is
supposed to be glassy.
In the right panel of Fig. 11, we compare q0 and

ðβ=NÞ1=3hψ · ψi [note the change of the normalization
for (32)], and find a very good agreement between them.
In this sense, the situation seems to be the same as in
Sec. VA, namely, the numerical simulations are more
reliable on configurations than on the free energy.

C. n̄= 1=2; R= 1, random C

This corresponds to the exact results in Sec. IVA 2. The
analysis is almost the same as in Sec. V B but with an

additional data for q̃0. The results are plotted in Fig. 12. The
convergence is much slower than the previous case. The
convergence of the second derivative of the free energy is
especially not so good, even raising some doubts about the
exact results, but the convergence of the configurations
seems to support the exact results.

D. R= 2, random C

As discussed in Secs. IV B and IV C, the R > 1 cases
reduce to the R ¼ 1 cases discussed in Secs. IVA 1 and IV
A 2. We took R ¼ 2 and n̄ ¼ 1; 1=2 for numerical simu-
lations, and compared with the exact results. As before,
there are good matches for q0, q1, while the agreement on
the free energies is good in the RS region, but is difficult to
compare because of large errors in the 1RSB region. The

FIG. 12. The case with n̄ ¼ 1=2; R ¼ 1 and random C. The simulation data are colored: N ¼ 30 with blue, N ¼ 50 with back, and
N ¼ 70with red. Left: the second derivative of the free energy. Middle: ðβ=NÞ1=3hψ · ψi compared with q0 (solid) (q1 is shown dashed).
Right: ðβ=NÞ1=3hψ̃ · ψ̃i compared with q̃0.

FIG. 11. The case with n̄ ¼ 1; R ¼ 1 with random C. The exact results of Sec. IVA 1 are shown by solid lines, and the numerical
simulations by dots with error bars.N ¼ 30 results are shown blue, andN ¼ 50 shown red. Left two panels: The second derivative of the
free energy. Right panel: q0 (solid line) and ðβ=NÞ1=3hψ · ψi (dots with error bars).

FIG. 13. Left panel: n̄ ¼ 1; R ¼ 2 with random C. ðβ=NÞ1=3hψ1 · ψ2i is plotted for N ¼ 30 (blue), N ¼ 50 (black), and N ¼ 70 (red,
orange). Twodatasets are plotted to see the sample dependence forN ¼ 70. Right panel: n̄ ¼ 1=2; R ¼ 2with randomC. ðβ=NÞ1=3hψ̃1 · ψ̃2i
is plotted for N ¼ 30 (blue), N ¼ 50 (black), and N ¼ 70 (red).
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reduction to R ¼ 1 is based on that q00 ¼ q01 ¼ q̃00 ¼ 0

obtained in Secs. IVA 1 and IVA 2. As shown in Fig. 13,
hψ1 · ψ2i takes nonzero values in the 1RSB region and are
dependent on samples. We expect that the average of these
values over samples should vanish in the large N limit to
match q00 ¼ q01 ¼ 0, but the number of the data is too small
to derive such a conclusion. On the other hand, as shown in
the right panel of Fig. 13, hψ̃1 · ψ̃2i is small and would be
consistent with zero, in agreement with q̃00 ¼ 0.

VI. SUMMARY AND DISCUSSIONS

In matrix models, there are phase transitions in which
distributions of dynamical variables change topologically,
like in Gross-Witten-Wadia transition [11,12] and in the
transitions among the large-N limit multicut solutions [13].
In a recent study [10], similar splitting-merging behavior
of dynamical variables was observed in a tensor-vectors
system by numerical simulations, but the results were
not convincing enough to characterize it and conclude
whether this is a phase transition or just a crossover. In this
paper, we have studied the system exactly in some large-N
limits, and have found cascades of first-order phase
transitions for fixed tensors, and a second- or first-order
phase transition for random tensors, applying the replica
trick for the random cases. These phases can be distin-
guished by breaking patterns of real replica symmetries for
fixed tensors, and those of replica symmetries for random
tensors, respectively. We have also performed some
numerical simulations to compare with the exact results:
We have found consistent results, which support the
assumptions made in the derivation of the exact results;
We have also found rather slow convergence of numerical
data toward sharp transitions of the exact results, which
implies the necessity of our cautious attitude toward
numerical simulations of our system in future study.
As will be mentioned in the final paragraph, the large-N

limit of this paper is different from that in the tensor model.
However, the results of this paper suggest the following
interesting possibilities. The presence of the sharp phase
transitions implies that what we called the quantum and
classical phases in the previous study [10] of the tensor
model wave function could actually be different phases.
This means that classical spacetimes could emerge through
phase transitions in the tensor model. A new finding of this
paper is that the transition rather consists of multiple first-
order phase transitions. Therefore the classical phase,
where there emerge classical spacetimes, could not be just
a single phase but rather a collection of phases. This aspect
can explicitly be seen in the SOð2Þ-invariant example given
in Sec. III C: We see that the number of discrete points
forming S1 increases one by one as the system undergoes
the phase transitions, as in Fig. 5. It would be straightfor-
ward to check similar matters in more general cases Sn with
SOðnþ 1Þ symmetry [10], and it would also be more

interesting to consider general spacetimes like black holes
in future study, using the general procedure of constructing
tensors corresponding to geometries developed in [10,30].
Here we would like to stress that the phase transitions in

the previous paragraph are all first order and should be
linked solely to the emergence of classical spacetimes,
which should not be mixed with emergence of continuum
physics in them. The latter is a different thing that could be
checked by analyzing fluctuation modes around the emer-
gent classical spacetimes.
Another potential application of our system is to the

tensor rank decomposition [14–17] in data analysis. This is
an important technique to extract information from tensors
of real-life data in data analysis, but an efficient procedure
is yet to be established because of its hardness [19]. An
interesting insight from our model is that the problems
should be common across the tensor rank decomposition
and the spin glasses, since our model can be seen bilaterally
as a cost function of the former and a generalization of the
spherical p-spin model for the latter. In this sense, this
paper can be seen as a single instance of using a technique
developed in spin glass theory for a problem in data
analysis (see also [18]). Though restricted to the large-N
limit with finite R in this paper, the confirmation of the
splitting phenomenon (4) as a result of phase transitions
seems meaningful for the tensor rank decomposition, since
the splitting gives a tensor rank decomposition with an
automatically determined rank for an arbitrarily given
tensor. Though this phenomenon cannot be used immedi-
ately for the actual process of the tensor rank decompo-
sition due to its inefficiency, studying our model and the
phenomenon more deeply could lead to new useful
procedures in the future.
As argued in Sec. I, our system (1) with random C can be

considered to be a variant of the spherical p-spin model
with a new nontrivial parameter R. In this paper’s limit of
large-N with finite R, however, the RS/1RSB analyses have
reduced to the same as R ¼ 1, and this seemed to be
consistent with the numerical results, as shown in Secs. IV
and V. While this suggests the possibility that our system is
just included in the same universality class as the standard
one, we have found large fluctuations of the overlaps
between real replicas in Sec. V D. This fact would suggest
that, for our system to be properly treated in mean field
theory, we would need to consider many numbers of real
replicas by taking large R as well. Such large-N, R limits
could open new possibilities.
In fact the large-N limits with finite R we considered in

this paper have the disadvantage that the distribution of
dynamical variables is a finite set of configurations. If it
were continuous, the dynamics would be more interesting,
like topological transitions as in the corresponding phe-
nomena in matrix models. This disadvantage could be dealt
with by simultaneously taking the large R limit, which
increases the number of overlap variables in correlation
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with N. In fact, there are some suggestions that urge us to
look into this direction:

(i) In [23], it was argued that the system (1) is
convergent only if R≲ ðN þ 1ÞðN þ 2Þ=2. There-
fore it would be interesting to take a large-N limit
with R ¼ N2rwith fixed r and study the dependence
on r. Some interesting phenomena are expected to
occur near r ¼ 1=2.

(ii) In the tensor model, the Hermiticity of the Hamil-
tonian constraint requires R ¼ ðN þ 2ÞðN þ 3Þ=4
[31].13 This urges us to look into the same kind
of limit as above.

(iii) In [24], a different but closely related model was
treated, and it was found that there is a transit
parameter region, N ≲ R≲ N2=2, in which domi-
nant graphs gradually change. This would suggest
that not only the above one but also R ¼ Nr0 with
fixed r0 could provide an interesting large-N limit.

(iv) From the view point of the tensor rank decompo-
sition, Alexander-Hirschowitz theorem [32] tells
that, with some exceptions, the complex symmetric
general rank of order-three symmetric tensors is
given by ⌈ðN þ 1ÞðN þ 2Þ=6⌉, and combining with
the argument in [33], the symmetric real rank of a
generally given real tensor of order three should be
smaller than or equal to 3⌈ðN þ 1ÞðN þ 2Þ=6⌉. This
number curiously agrees well with the number given
in the first item above, and gives a motivation to
study the same large-N limit.

(v) The results in Fig. 13 imply that hψ1 · ψ2i could
vanish in the 1RSB region only after the large-N limit
with fixedR has been taken. Since this vanishing is the
main cause for the reduction of R > 1 to R ¼ 1, we
would expect more interesting dynamics to appear, if
this vanishing is changed in the simultaneous large-N,
R limits proposed above.

It is stimulating that the different perspectives above actually
point to the similar large-N, R limits. We hopewe can report
some progress in this direction in future studies.
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APPENDIX A: RANK OF SOð2Þ INVARIANT C

A fact used in Sec. III C is that the rank of SOð2Þ
invariant C of n ¼ 3 is given by four. This is a special case
of the following general formula:

RankðCSOð2ÞÞ ¼ 3n − 1

2
: ðA1Þ

This statement is equivalent to r ¼ ð3n − 1Þ=2, which is
the minimum number for the following summation expres-
sion of the integral to hold:

Z
2π

0

dθfafbfc ¼
Xr
j¼1

Aj
aA

j
bA

j
c; ðA2Þ

where

ffaja ¼ 1; 2;…; 2Λþ 1g

¼
�

1ffiffiffi
2

p ; cos θ; sin θ; cos 2θ;…; sinðΛθÞ
�
; ðA3Þ

with n ¼ 2Λþ 1.
To prove (A2) let us recall what is called quadrature [34].

Quadrature is an approximation to an integral in terms of a
summation, which however gives exact values if the
integrand is contained in a particular set of functions. In
the present case, we want a quadrature,

Z
2π

0

dθgðθÞ ¼
Xr

j¼1

wjgðθjÞ; ðA4Þ

where gðθÞ is contained in a certain set of periodic
functions of period 2π, θj are quadrature nodes, and wj

are quadrature weights. Let us consider the set of gðθÞ to be
given by

f1; cos θ; sin θ; cos 2θ;…; sinMθg: ðA5Þ

Then it is straightforward to show that the nodes can be
taken as

θj ¼
2πj

M þ 1
; ðj ¼ 0; 1;…;MÞ; ðA6Þ

with weights wj ¼ 2π=ðM þ 1Þ, because

2π

M þ 1

XM
j¼0

ei
2πkj
Mþ1 ¼ δk;0 ¼

Z
2π

0

dθeikθ; ðA7Þ

for integer 0 ≤ k ≤ M. Here the number of nodes,
r ¼ M þ 1, is the least, because M þ 1 independent con-
ditions must be satisfied.
In our present case, g is given by a product of three

functions in (A3). Therefore M ¼ 3Λ, and hence
r ¼ M þ 1 ¼ ð3n − 1Þ=2, which indeed agrees with (A1).
By applying (A4) to (A2), we obtain

Aj
a ¼

�
2π

3Λþ 1

�1
3

faðθjÞ: ðA8Þ

13As for the derivation of this value of R, it would be easier to
see an appendix of [10] for a short summary with the same
normalization as is used in this paper. When the wave function is
absolute squared for probability, the value which matters is given
by 2R ¼ ðN þ 2ÞðN þ 3Þ=2 [25], which curiously reproduces
r ¼ 1=2 as an interesting case.

NAOKI SASAKURA PHYS. REV. D 106, 126016 (2022)

126016-14



APPENDIX B: DETAILS OF THE DERIVATION
OF (48)

In this appendix, we show some details of the derivation
of the free energy (48).
From the expression (47), we find

X
ii0tt0

ðQ̄iti0t0 Þ3 ¼R
X
tt0

ðQ̄1t1t0 Þ3þRðR− 1Þ
X
tt0

ðQ̄1t2t0 Þ3

¼RTðq30þðM− 1Þq31Þ
þRðR− 1ÞTððq00Þ3þðM− 1Þðq01Þ3Þ: ðB1Þ

We also obtain

X
ii0t

ðQ̄iti0tÞ3 ¼ R
X
t

ðQ̄1t1tÞ3 þ RðR − 1Þ
X
t

ðQ̄1t2tÞ3

¼ RTq30 þ RðR − 1ÞTðq00Þ3: ðB2Þ

Computation of detðQ̄Þ is also straightforward but a little
involved. First we note that Q̄ has the form

Q̄iti0t0 ¼ Att0δii0 þ A0
tt0 ð1 − δii0 Þ; ðB3Þ

where

Att0 ¼ δbt=Mc;bt0=McItmodM;t0 modMðq0; q1Þ; ðB4Þ

and similarly for A0 with q00 and q
0
1. Concerning the indices

i, i0, Q̄ in (B3) has the “eigenvalues,” Aþ ðR − 1ÞA0 and
A − A0 with degeneracies 1 and R − 1, respectively. On the
other hand, A has the eigenvalues, q0 þ ðM − 1Þq1 and
q0 − q1 with degeneracies T=M and ðM − 1ÞT=M, respec-
tively. Combining these, we obtain the following list of
eigenvalues of Q̄:

q0þðR−1Þq00þðM−1Þðq1þðR−1Þq01Þ; deg¼T=M;

q0þðR−1Þq00− ðq1þðR−1Þq01Þ; deg¼ðM−1ÞT=M;

q0−q00þðM−1Þðq1−q01Þ; deg¼ðR−1ÞT=M;

q0−q00− ðq1−q01Þ; deg¼ðM−1ÞðR−1ÞT=M: ðB5Þ

This determines the terms coming from det Q̄.
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