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We investigate several quantum phenomena related to quadratic gravity after rewriting the general
fourth-order action in a more convenient form that is second order in derivatives and produces only first-
class constraints in phase space. We find that a Higgs mechanism may occur in the conformally invariant
subset of the general quadratic action if the theory is conformally coupled to a scalar field that acquires a
nonzero vacuum expectation value and spontaneously breaks the conformal symmetry. Then, in the broken
phase, the originally massless spin-2 ghost may absorb both the scalar and vector fields to become massive.
We also perform a Becchi-Rouet-Stora-Tyutin quantization of second-order quadratic gravity in the
covariant operator formalism and discuss conditions under which unitarity of the full interacting quantum
theory may be established.
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I. INTRODUCTION

Einstein’s theory of General Relativity (GR) has
famously passed every experimental test thrown at it,
despite its apparent failure to represent an acceptable
theory of quantum gravity. This failure is primarily due
to the theory’s massive coupling constant, a feature that
renders it inherently power counting nonrenormalizable
after quantization. Naturally, it has long been the dream of
theorists to establish an extension to GR that represents a
predictive quantum theory that reproduces the predictions
of GR in the classical limit, at least to the level of modern
experiments. The most natural way to extend GR is to
simply include second powers of curvature tensors in the
action at the classical level, since this kind of term
inevitably appears anyway as quantum corrections to GR
[1]. The most general of these actions, which contains the
three independent squares of the Riemann tensor, is known
as quadratic gravity (QG) [2].
QG passes the first test of a satisfactory quantum theory

of gravity as it may be quantized in terms of a dimension-
less coupling constant and is indeed renormalizable, as was
shown by Stelle [3] (see also Refs. [4–6] for studies of the
renormalization group in QG). However, despite this
important feature, there are complications that come from

including quadratic powers of curvature tensors; namely,
they generically lead to the presence of additional gravi-
tational degrees of freedom (DOF) as compared to GR.
This is a consequence of the fact that the curvature-squared
terms are necessarily fourth order in derivatives. There are
various ways to deal with the “hidden” DOF in QG, but for
the purposes of this paper, we find it beneficial to expose
them from the start via the introduction of auxiliary fields
that return the original action after being integrated out.
This kind of trick is common practice, but it alone is not
enough to see all the propagating DOF at the level of the
action. After introducing auxiliary fields, we will also
introduce Stückelberg fields (with associated gauge sym-
metries) in the style of Ref. [7], a procedure that is
equivalent to the exchange of second-class for first-class
constraints in the Hamiltonian picture. The auxiliary and
Stückelberg tricks paired together will leave us with an
action where a full separation of the gravitational DOF is
clearly manifest. Construction of this second-order (first-
class) formalism will be the subject of Sec. II.
One of the principal benefits of the second-order

formulation of QG that we will present is that it allows
for a straightforward identification of a Higgs mechanism
in conformal gravity. Conformal gravity is a particular case
of quadratic gravity that is invariant under the usual local
diffeomorphisms as well local conformal (and special
conformal) transformations. This theory was put forth by
Weyl as an alternative to GR shortly after its introduction,
and it remains intriguing to many theorists as it represents a
proper gauge theory of the conformal group [8] and
because it hints toward UV completions of the Standard
Model and gravity when coupled to matter [9–14].
However, our Universe is obviously not conformally
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invariant, so if conformal gravity were to serve as a UV-
complete theory of gravity, it is natural to assume that some
kind of spontaneous symmetry breaking (SSB) mechanism
must exist that leaves the low-energy theory invariant only
under diffeomorphisms. In Sec. III, we will demonstrate
that exactly such a process can occur if the action for
conformal gravity is conformally coupled to a scalar field
that acquires a nonzero vacuum expectation value (VEV).
Using our second-order formulation, it becomes apparent
that below the scale of symmetry breaking the massless
spin-2 ghost propagated by the bare conformal gravity
action can swallow both the scalar and our Stückelberg
vector to become massive in a kind of “double Higgs
mechanism.” The resulting action may then be interpreted
in a unitary gauge that manifests as the sum of the Einstein-
Hilbert (EH) action and a ghostly Fierz-Pauli action
describing massive gravity, even at full nonlinear order.
Another useful feature of the second-order formulation

shown here is that it allows for a straightforward yet
rigorous quantization of QG. In Sec. IV, we will use the
methods of Kugo et al. [7,15,16] and Nakanishi and Ojima
[17] to establish a covariant operator quantization of our
theory under the Becchi-Rouet-Stora-Tyutin (BRST) for-
malism that describes all fields in terms of simple poles in
the asymptotic limit. We apply this approach to the full
general QG action since the results carry over easily to the
particular case of spontaneously broken conformal gravity
as well, with the only difference being that an additional
gravitational scalar state (the scalaron) is present in the
asymptotic spectrum in the QG case. BRST quantization of
QG has been carried out in the past [18–20], though our
treatment will differ in significant ways, principally in our
application of the covariant operator formalism, which,
paired with our second-order formulation, makes the Kugo-
Ojima quartet mechanism [21] and the subsequent identi-
fication of all physical asymptotic states readily apparent.
The biggest hurdle standing in the way of QG being

considered an acceptable theory of quantum gravity is the
ghost problem, i.e., the risk of unitarity violation due to the
presence of a massive spin-2 ghost, which is itself a
quantum realization of the classical Ostrogradsky insta-
bility [22,23]. Many interesting attempts have been made
over the years to address this problem and show unitarity in
QG; notable examples include the classic work of
Boulware et al. [24], the PT -quantization-based approach
of Bender and Mannheim [25,26], Anselmi and Piva’s
[27,28] fakeon prescription where the ghost is quantized as
a “fake” degree of freedom that does not appear in the
asymptotic spectrum of physical states, Salvio and
Strumia’s [29–31] solution based on a generalized quantum
mechanical norm, and the work of Donoghue and Menezes
[32] that relies on the ghost being unstable. In Sec. Vof this
work, we present another take on this issue and argue that
the ghost problem only becomes relevant for QG at
energies nearing the mass of the spin-2 ghost, which is

itself only roughly a few orders of magnitude from the
Planck scale. Using the standard methods of operator
quantum field theory, we will impose kinematical con-
ditions that allow us to identify a subspace of the whole
Fock space of physical states that is unitary, where we
assume for simplicity that the spin-2 ghost is stable. This
notion of “conditional unitarity” is based on the fact that
massive ghosts cannot exist as asymptotic states at energies
below their mass, meaning that the S-matrix for this low-
energy subspace contains no spin-2 ghost states, despite the
fact that the ghosts may be excited virtually.

II. CLASSICAL QUADRATIC GRAVITY AT
SECOND ORDER

A. Second-order formulation from auxiliary fields

The most general action describing quadratic gravity is
given by a sum of the Einstein-Hilbert action and the three
independent squares of the Riemann tensor,1

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
Rþ aRαβγδRαβγδ þ bRαβRαβ þ cR2

�
;

ð1Þ

whereMpl ¼ ð8πGÞ−1 is the reduced Planck mass and a, b,
and c are arbitrary dimensionless constants. This action
may be simplified by eliminating the Riemann square using
the Gauss-Bonnet invariant

G ¼ RαβγδRαβγδ − 4RαβRαβ þ R2; ð2Þ

which is a total derivative, i.e., a boundary term that may be
set to zero at the level of the action [33]. With this, we may
eliminate one arbitrary constant, and after redefining the
other two in terms of the new constants αg and β, we are left
with the following form for our action:

SQG ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
R −

1

α2g

�
RαβRαβ −

1

3
R2 þ βR2

��
:

ð3Þ

This specific paramatrization of the constants has been
chosen so that αg may play the role of a perturbation
parameter when we linearize the action and so that β
parametrizes the non-conformally-invariant part of the
quadratic action. The remaining quadratic part is equivalent
to the action for Weyl’s conformal gravity after dropping
boundary terms, which may be shown using the identity

1We use the metric signature ð−1; 1; 1; 1Þ and the Riemann
tensor sign Rαβγ

δ ¼ −∂αΓδ
βγ þ � � �.
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CαβγδCαβγδ ¼ 2RαβRαβ −
2

3
R2 þ G: ð4Þ

Some reshuffling of the DOF in this action is in order
since, as was demonstrated in Ref. [34], covariant quan-
tization of theories of gravity that are fourth order in
derivatives is more easily carried out after replacing the
fourth-order terms in the action with a classically equiv-
alent second-order action. Accordingly, we introduce an
auxiliary tensor fieldHαβðxÞ and define the rank-4 “metric”
Mαβ;γδ and its inverse M−1αβ;γδ,

Mαβ;γδ ¼ δαβγδ − gαβgγδ

M−1αβ;γδ ¼ δαβγδ −
1

3
gαβgγδ

Mαβ;μνM−1μν;γδ ¼ δγδαβ; ð5Þ

where

δαβγδ ¼ gαðγgδÞβ ≡
1

2
ðgαγgβδ þ gαδgβγÞ ð6Þ

is the rank-4 identity matrix. Then, noting the identity

RαβRαβ −
1

3
R2 ¼ GαβM−1αβ;γδGγδ; ð7Þ

where Gαβ ¼ Rαβ − 1
2
gαβR is the Einstein tensor, we addffiffiffiffiffiffi−gp 1

4
HαβMαβ;γδHγδ to the action (3), which, because of

the equation of motion that follows (Hαβ ¼ 0), does not
change the original action. This fact remains true if we
make the shiftH → H þ cM−1G where c is some constant,
and as a result we can rewrite the Weyl tensor part of the
action by adding a complete square term as

−
c2

4
GM−1Gþ 1

4
ðMH þ cGÞTM−1ðMH þ cGÞ

¼ c
2
GαβHαβ þ 1

4
HαβMαβ;γδHγδ ð8Þ

with c ¼ 2α−1g . We may also pull a similar trick to reduce
the βR2 term to second order by introducing an auxiliary
scalar field χðxÞ and writing

β

α2g
R2 −

1

β

�
1

2
χ −

β

αg
R

�
2

¼ 1

αg
Rχ −

1

4β
χ2; ð9Þ

allowing us to replace the action (3) with the auxiliary
action

Saux ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
Rþ 1

αg
ðGαβHαβ þ RχÞ

þ 1

4
ðHαβHαβ −Hα

αHβ
βÞ − 1

4β
χ2
�

ð10Þ

without changing any of the physics.
This and the original fourth-order action (3) are invariant

under the local diffeomorphisms

g0αβ ¼ gαβ þ αgLξgαβ H0
αβ ¼ Hαβ þ αgLξHαβ

χ0 ¼ χ þ αgLξχ; ð11Þ

where Lξ is the Lie derivative in the direction of the
arbitrary vector field ξαðxÞ. These four symmetries mean
that, in the Hamiltonian picture, Saux generates eight first-
class constraints that allow us to eliminate 16 of the 42
DOF in phase space. It is well known that quadratic gravity
propagates eight independent DOF in configuration space,
namely, a massless spin-2 graviton, a massive spin-2 ghost,
and a massive scalar [33]. This then implies that there are
ten second-class constraints generated by Saux according to
Dirac’s rule: 1=2ð20þ 20þ 2 − 2 � 8 − 10Þ ¼ 8.

B. First-class constraints from Stückelberg fields

The presence of second-class constraints can be incon-
venient for covariant canonical quantization; however, as
demonstrated in Ref. [34], it is straightforward to convert
the second-class constraints to first class using a
Stückelberg procedure. For quadratic gravity, this involves
introducing a vector field AαðxÞ and a scalar field πðxÞ by
applying the replacement

Hαβ → Hαβ − ð∇αAβ þ∇βAαÞ þ
2

m
∇α∇βπ ð12Þ

to (10), which leads to the final form of our action for
second-order quadratic gravity (SOQG),

SSOQG ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
Rþ 1

αg
ðGαβHαβ þ RχÞ

þ 1

4
ðHαβHαβ −Hα

αHβ
βÞ − 1

4β
χ2

þ 1

4
FαβFαβ þ ð∇βHα

β −∇αHβ
βÞ
�
Aα −

1

m
∇απ

�

− Rαβ

�
Aα −

1

m
∇απ

��
Aβ −

1

m
∇βπ

��
; ð13Þ

where we have employed the contracted Bianchi identity
∇αGαβ ¼ 0, m is an arbitrary mass scale to be identified
later, and Fαβ ¼ ∇αAβ −∇βAα as usual. This new form for
our action is still classically equivalent to the original
fourth-order action, a fact which may be confirmed by
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integrating Hαβ and χ from (10) using the equations of
motion (EOM) below:

Hαβ ¼ −
2

αg

�
Rαβ −

1

6
gαβR

�
þ∇αAβ þ∇βAα −

2

m
∇α∇βπ

ð14Þ

χ ¼ 2β

αg
R: ð15Þ

As part of the Stückelberg procedure performed above,
our second-order action has acquired additional gauge
symmetries corresponding to each new field. Aα is asso-
ciated with the vector symmetry

g0αβ ¼ gαβ H0
αβ ¼ Hαβ þ∇αζβ þ∇βζα χ0 ¼ χ

A0
α ¼ Aα þ ζα π0 ¼ π; ð16Þ

while π is associated with the scalar symmetry

g0αβ ¼ gαβ H0
αβ ¼ Hαβ χ0 ¼ χ

A0
α ¼ Aα þ∇ασ π0 ¼ π þmσ; ð17Þ

where ζαðxÞ and σðxÞ are arbitrary vector and scalar fields,
respectively. Needless to say, our action is still diffeo-
morphism invariant after introducing the Stückelberg fields
which transform with Lie derivatives in the same style as
(11). Thus, after the Stückelberg procedure, our action
contains 26 fields and has nine gauge symmetries, meaning
we can count 1=2ð20þ 20þ 2þ 8þ 2 − 2 � 18Þ ¼ 8
DOF with no second-class constraints, as expected.2

III. HIGGS MECHANISM IN CONFORMAL
GRAVITY

A. Spontaneous breaking of conformal symmetry

Before proceeding with a full BRST quantization of the
classical theory presented in the last section, it is interesting
to first look at an enlightening feature of the second-order
formalism presented there, namely, that it allows us to
identify how a kind of Higgs mechanism may occur with
respect to conformal symmetry. We consider a more
symmetric subset of the general theory in the last section
by dropping the Einstein-Hilbert term and setting β ¼ 0 in
the action (3) to arrive at the following action describing
Weyl’s conformal gravity (after again dropping total
derivatives):

SCG ¼ −
1

α2g

Z
d4x

ffiffiffiffiffiffi
−g

p �
RαβRαβ −

1

3
R2

�
: ð18Þ

In addition to this purely gravitational action, we also
consider the following action describing a real matter scalar
ϕðxÞ conformally coupled to gravity.

Sϕ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
∇αϕ∇αϕþ 1

12
ϕ2R

�
ð19Þ

Both of these actions are diffeomorphism invariant and
invariant under the Weyl gauge transformations

g0αβ ¼ eαgωgαβ ϕ0 ¼ e−αgω=2ϕ ð20Þ

where ωðxÞ is an arbitrary scalar.
It is known that conformal gravity (18) propagates six

independent massless DOF, a spin-2 graviton, a spin-2
ghost, and a spin-1 vector [34,37], so we may anticipate
seven total DOF from the sum of (18) and (19) as has been
shown in Ref. [38]. To arrive at a second-order first-class
description of the theory with these DOF exposed, we
follow the procedures outlined in the last section, though
for the case of conformal gravity, it is only necessary to
introduce the auxiliary tensor field Hαβ and vector
Stückelberg field Aα with the associated vector symmetry
as in Ref. [34]. The resulting action is then equivalent to
(13) after dropping the Einstein-Hilbert term and setting
χ ¼ π ¼ 0,

SSOCG ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

αg
GαβHαβ þ 1

4
ðHαβHαβ −Hα

αHβ
βÞ

þ 1

4
FαβFαβ þ Aαð∇βHαβ −∇αHβ

βÞ − RαβAαAβ

�
:

ð21Þ

The complete action of interest is then given by

SSOCGϕ ¼ SSOCG þ Sϕ; ð22Þ

which is invariant under standard diffeomorphisms as in
(11), the Stückelberg symmetry (16), and Weyl symmetry.
Taking all these fields and gauge symmetries into account,
one finds 1=2ð20þ 20þ 8þ 2 − 2 � 18Þ ¼ 7 DOF with
no second-class constraints, as expected.
There are no massive DOF present in the action (22) (a

requirement for manifest conformal symmetry); however,
similarly to the well-known spontaneous symmetry break-
ing that occurs in the Standard Model, force carriers may
acquire a mass if the scalar coupled to them picks up a
nonzero vacuum expectation value. It has recently been
shown in Ref. [39] that an action possessing a Weyl tensor
squared term and a Weyl invariant ϕ4 interaction term leads
to a nonzero Coleman-Weinberg potential that breaks scale

2In Ref. [35], it is suggested that the quadratic action (1) might
only propagate seven independent DOF if the scalar χ cannot be
independently excited. However, the second-order first-class
formalism presented here allows us to easily apply the Dirac-
Bergmann algorithm [36] and count eight DOF in line with
Refs. [2,3].
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invariance spontaneously. Though said action is only
globally scale invariant as opposed to the locally invariant
theory at hand, we may assume that an analogous situation
may occur here. Naturally, the conformal anomaly must be
addressed if the present local symmetry were to be
spontaneously broken by the Coleman-Weinberg potential,
though an explicit demonstration of this effect and an
analysis of its ramifications are beyond the scope of
this work.3

For now, we simply assume that some kind of Standard-
Model-like SSB occurs so that the scalar ϕ acquires a VEV
in analogy to the Higgs boson. We may then reparametrize
it as

ϕ ¼ μ

αg
þ φ; ð23Þ

where μ is a dimensionful constant that parametrizes the
VEV hϕi ¼ μ=αg and φðxÞ represents fluctuations around
that minimum. In this scenario, the scalar part of the action
becomes

Sϕ→
SSB

Sφ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
∇αφ∇αφþ 1

12

�
φ2þ2μ

αg
φþμ2

α2g

�
R

�
;

ð24Þ

where the Weyl gauge symmetry is maintained with the
transformation rule

φ0 ¼ e−αgω=2
�
μ

αg
þ φ

�
−

μ

αg
; ð25Þ

which may be inferred from (20).

B. Double Higgs mechanism

After SSB, we see that an Einstein-Hilbert term [the last
term in (24)] is generated, implying that one of the spin-2
states becomes massive [3]. Since massive spin-2 states
possess five DOF, it is clear that some kind of Higgs
mechanism is in effect. To see this explicitly, we identify
the quadratic part of the action after writing the metric as
perturbations around the flat space Minkowski metric ηαβ,

gαβ → ηαβ þ αghαβ; ð26Þ

where we have assumed that αg is small so that it may serve
as a perturbation parameter. After performing the lineari-
zation, all indices are to be contracted with the background
metric ηαβ, and the quadratic (free) part of the action (22) is
given by the following:

S0 ¼
Z

d4x

�
−hαβEαβγδ

�
μ2

24
hγδ −Hγδ

�

þ 1

4
ðHαβHαβ −Hα

αHβ
βÞ þ 1

4
FαβFαβ

þ Aαð∂βHαβ − ∂
αHβ

βÞ − 1

2
φ□φ

−
μ

6
φðηαβ□ − ∂α∂βÞhαβ

�
: ð27Þ

Here, □ ¼ ∂α∂
α is the d’Alembertian operator, and Eαβγδ is

the flat space Lichnerowicz operator, i.e., the kinetic
operator of linearized General Relativity,

 ffiffiffiffiffiffi−gp
2κ2

R

!����
gαβ→ηαβþκhαβ

¼ −
1

4
hαβEαβγδhγδ þOðκÞ ð28Þ

Eαβγδ ¼ −
1

2
ððδαβγδ − ηαβηγδÞ□þ ηαβ∂γ∂δ

þ ηγδ∂α∂β − 2ηðαðγ∂βÞ∂δÞÞ; ð29Þ

where κ ¼ M−1
pl serves as a dimensionful perturbation

parameter and δαβγδ is defined as in (6), with the
Minkowski metric replacing the general metric.
The EOM that follow from the action (27) are

Eαβγδhγδ þ
1

2
ðHαβ − ηαβHγ

γÞ

−
1

2
ð∂αAβ þ ∂βAαÞ þ ηαβ∂γAγ ¼ 0 ð30Þ

EαβγδðHγδ −m2hγδÞ − mffiffiffi
3

p ðηαβ□ − ∂α∂βÞφ ¼ 0 ð31Þ

ðηαβ□ − ∂α∂βÞAβ − ∂βHα
β þ ∂αHβ

β ¼ 0 ð32Þ

□φ −
mffiffiffi
3

p ðηαβ□ − ∂α∂βÞhαβ ¼ 0; ð33Þ

where we have identified the canonical mass scale
m ¼ μ=ð2 ffiffiffi

3
p Þ. By looking at these EOM, we find the

following linear combination of the original fields that
brings us to a scenario reminiscent of the massive Proca
field parametrization after SSB in standard gauge theory:

Ψαβ ¼
1

m
ðHαβ − ∂αAβ − ∂βAαÞ þ

2ffiffiffi
3

p
m2

∂α∂βφ: ð34Þ

With this definition, one may combine (30) and (31) to find
the EOM for Ψαβ,

EαβγδΨγδ þm2

2
ðΨαβ − ηαβΨγ

γÞ ¼ 0; ð35Þ
3SSB has also been shown to occur in the related locally

invariant model of Georgi-Glashow theory conformally coupled
to Weyl gravity [40,41].
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which is precisely the EOM one finds in the Fierz-Pauli
theory of massive spin-2 fields [42]. Though Ψαβ is gauge
invariant, which is easily confirmed by transforming the
right side of (34), we may still constrain its degrees of
freedom by deriving constraints from the EOM above.
These indicate that our “Proca” field Ψαβ obeys a simple
massive Klein-Gordon EOM and possesses only five
physical DOF:

∂βΨα
β¼0; Ψα

α¼0 ⇒ ð□−m2ÞΨαβ¼0: ð36Þ

Thus, we see from (35) and (36) that a double Higgs
mechanism is in effect; the massless Hαβ has eaten a
massless vector and a massless scalar, Aα and φ, to become
the massive spin-2 field Ψαβ. In this version of the Higgs
mechanism, φ is the familiar would-be Nambu-Goldstone
(NG) scalar while Aα is an artificially introduced NG
vector. Naturally, the total number of DOF is preserved in
this process since before SSB there are 2þ 2þ 2þ 1 ¼ 7
physical DOF, while afterward one finds 2þ 5 ¼ 7. This
double Higgs mechanism can be seen even more explicitly
at the level of the action if we identify the analogous
Stückelberg-invariant redefinition of the massless DOF:

ψαβ ¼ mhαβ −Ψαβ þ
1ffiffiffi
3

p ηαβφ: ð37Þ

This definition paired with (34) has the effect of canon-
icalizing both the massless and massive sectors, i.e.,
diagonalizing the quadratic action4 (27), which becomes

S0 ¼
Z

d4x

�
−
1

2
ðψαβEαβγδψ

γδ − ΨαβEαβγδΨγδÞ

þm2

4
ðΨαβΨαβ − Ψα

αΨβ
βÞ
�
: ð38Þ

Naturally, this action delivers the EOM (35) as well as the
standard GR graviton EOM for ψαβ. We observe that the
NG fields φ and Aα have disappeared from (38) completely
and no physical Higgs field is present. Furthermore, the
part of (38) describing the massive spin-2 field Ψαβ has the
opposite sign for its kinetic term with respect to its massless
counterpart, indicating its well-known role as a ghost.
At this point, we should also address the similar roles

played by the Stückelberg scalar π in the previous section
and the scalar φ in the present conformally invariant theory.
As we will show in detail in the following sections, one
may choose a gauge where π is also eaten by the spin-2
ghost, though this is essentially where the similarities end.
Not only does the symmetry associated with π act differ-
ently than the Weyl symmetry, as seen in (17) and (20),
respectively, but more importantly, the scalar φ is

associated with a spontaneously broken local symmetry
and a Higgs mechanism whereas there is no Higgs
mechanism at work with respect to π and its symmetry
(which remains unbroken).

C. Unitary gauge

There is an additional analogy between the present
theory and standard gauge theory that is worth commenting
on; namely, there exists a “unitary gauge” where the NG
bosons are transformed out of the full interacting action.
This should not come as a surprise, given that we have
already seen that the action (38) is nothing but the quadratic
part of the full nonlinear action in said unitary gauge.
To derive the full action in this gauge, we begin with the

second-order action SSOCGϕ given in (22) and perform a
Stückelberg vector transformation with the parameter ζα ¼
−Aα yielding

H0
αβ ¼ Hαβ −∇αAβ −∇βAα A0

α ¼ Aα − Aα ¼ 0; ð39Þ

in order to remove the vector field from the action. Next,
we perform a Weyl transformation (with Aα already
suppressed) using the parameter ω ¼ 2α−1g lnðαgϕ=μÞ,
which gives

ϕ0 ¼
�

μ

αgϕ

�
ϕ ¼ μ

αg
ð40Þ

and eliminates the scalar field from the action, a possibility
that is not present in conventional gauge theories. The final
unitary gauge action is then given by

SU ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
m2

α2g
Rþ 1

αg
GαβHαβ

þ 1

4
ðHαβHαβ −Hα

αHβ
βÞ
�
; ð41Þ

where we have dropped the primes on all of the fields and
set m ¼ μ=ð2 ffiffiffi

3
p Þ.

Viewing the present theory in this gauge also allows us
to separate the massless and massive degrees of freedom
even at the nonlinear level. To see this, we shift the
general metric in order to Taylor expand the action
according to

gαβ → gαβ þ aHαβ; ð42Þ

where a is an arbitrary constant parametrizing the expan-
sion. For the Einstein-Hilbert portion, we have

SEH½g� ¼
m2

α2g

Z
d4x

ffiffiffiffiffiffi
−g

p
R; ð43Þ4Similar diagonalizing redefinitions of the massless and

massive spin-2 modes in QG may be seen in Refs. [28,43,44].
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SEH½gþ aH� ¼ SEH½g� þ a
Z

d4x
δSEH½g�
δgαβ

Hαβ

þ a2

2

Z
d4xd4y

δ2SEH½g�
δgαβδgγδ

HαβHγδ þOðH3Þ ð44Þ

¼ m2

α2g

Z
d4x

ffiffiffiffiffiffi
−g

p �
R − aGαβHαβ −

a2

2
HαβEαβγδHγδ

�

þOðH3Þ; ð45Þ

where Eαβγδ is the full nonlinear version of the flat space
Lichnerowicz operator5 (29),

Eαβγδ ¼
1ffiffiffiffiffiffi−gp δ2SEH½g�

δgαβδgγδ
ð46Þ

¼ −
1

2

�
ðδαβγδ − gαβgγδÞ∇μ∇μ þ gαβ∇γ∇δ

þ gγδ∇α∇β − 2gðαðγ∇βÞ∇δÞ

þ 2CαðγβδÞ −
2

3

�
δαβγδ −

1

4
gαβgγδ

�
R

�
; ð47Þ

and Cαβγδ is the Weyl tensor.
The auxiliary conformal gravity portion of the action

may be expanded in the same fashion, yielding

SCG½g�¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

αg
GαβHαβþ1

4
ðHαβHαβ−Hα

αHβ
βÞ
�
;

ð48Þ

SCG½gþ aH� ¼ SCG½g� þ a
Z

d4x
δSCG½g�
δgαβ

Hαβ þOðH3Þ

ð49Þ

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

αg
ðGαβHαβ þ aHαβEαβγδHγδÞ

þ 1

4
ðHαβHαβ −Hα

αHβ
βÞ
�
þOðH3Þ: ð50Þ

The sum of these two actions is then given by

SEH þ SCG ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
m2

α2g
Rþ 1

2m2
HαβEαβγδHγδ

þ 1

4
ðHαβHαβ −Hα

αHβ
βÞ
�
þOðH3Þ ð51Þ

after setting a ¼ αg=m2 to cancel the mixed GαβHαβ terms.
We are thus left with a diagonal action that is equivalent to
the full unitary gauge action (41) up to terms OðH3Þ and

contains only a standard EH contribution for the metric
paired with a ghostlike massive spin-2 contribution forHαβ.
Crucially, this diagonalized action has been computed at

the full nonlinear level, which implies that fluctuations
around any background metric have no kinetic mixing with
Hαβ. To see this explicitly, we can expand the metric around
a general background ḡαβ as

gαβ → ḡαβ þ αghαβ; ð52Þ
which after also normalizing by setting hαβ ¼ mψαβ and
Hαβ ¼ m−1Ψαβ yields

SEH þ SCG

¼
Z

d4x
ffiffiffiffiffiffi
−ḡ

p �
m2

α2g
R̄ −

1

2
ðψαβĒαβγδψ

γδ −ΨαβĒαβγδΨγδÞ

þm2

4
ðΨαβΨαβ −Ψα

αΨβ
βÞ
�
þOðαgÞ; ð53Þ

where the bars indicate quantities evaluated on the back-
ground metric. Naturally, this action matches (38) exactly if
we select a flat background metric. We also note that one
may simply take a metric perturbation that depends on the
two independent tensor fields ψαβ and Ψαβ from the start as

gαβ → ḡαβ þ
αg
m

ðψαβ þ ΨαβÞ; ð54Þ

which applied to the action (41) returns (53) exactly after
setting Hαβ ¼ m−1Ψαβ.
The fact that we are able to separate the mixing of the

massless and massive spin-2 fields at both the quadratic and
full nonlinear level implies that one may define an ordinary
“Einstein”metric for theories of quadratic gravity that carries
only the standard two massless graviton degrees of freedom,
as opposed to the original metric that appears in the fourth-
order formulation of the theory that carries additional hidden
DOF. The physical content of the theory in terms of the
diagonalized fields is transparent, and the issue of unitarity
can be treated in a clear way if the theory is expressed in
terms of the Einstein metric. In this way, we may say that the
system is in the “unitary picture.” It is also important to point
out that viewing quadratic gravity in this unitary picture is
only possible in the presence of an explicit mass scale, i.e.,
only after SSB in the case of conformal gravity. However,
there are disadvantages to describing quadratic gravity in this
picture, as it describes a system in which the ghostly massive
spin-2 field is coupled to the ordinary (nonrenormalizable)
Einstein-Hilbert action. As such, it is clear that manifest
power-counting renormalizability is lost; there will be no
propagators that behave like 1=p4 at large momenta.
In contrast to this situation, the h–h propagator in the

original fields does behave like 1=p4 in the UV. This
situation is seen explicitly in Ref. [34], in which quantiza-
tion of conformal gravity is carried out without the
assumption of SSB, i.e., where diagonalization of the5We thank Taichiro Kugo for pointing out this identity.
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fields is not possible. In this nondiagonalized “renormaliz-
able picture,” power-counting renormalizability is manifest
as one may expect, given the fact that the original fourth-
order theory is known to be renormalizable6 [3]. In any
case, we will not discuss the renormalizability issue further,
as it is beyond the scope of the present work, and will
instead focus on a unitaryesque picture in what follows, as
quantization in this picture turns out to be quite
straightforward.

IV. BRST QUANTIZATION

Our next task is to establish a rigorous BRST quantiza-
tion of quadratic gravity, for which we will employ similar
procedures to those in Refs. [7] and [15], where covariant
BRST quantizations of GR and massive spin-2 Fierz-Pauli
theory (in an Rξ-style gauge) have been proposed. Our
starting point will be the second-order first-class action
(13), restated here for convenience,

SSOQG ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
m2

α2g
Rþ 1

αg
ðGαβHαβ þ RχÞ

þ 1

4
ðHαβHαβ −Hα

αHβ
βÞ − 1

4β
χ2

þ 1

4
FαβFαβ þ ð∇βHα

β −∇αHβ
βÞ
�
Aα −

1

m
∇απ

�

− Rαβ

�
Aα −

1

m
∇απ

��
Aβ −

1

m
∇βπ

��
; ð55Þ

where we have identified m ¼ αgMpl=
ffiffiffi
2

p
in line with the

results from the last section. It should be noted that the
more general procedures described in the following sec-
tions may easily be transferred to the (conformal gravityþ
SSB scalar) case as well. In this case, if one makes the Weyl
transformation (40) to absorb the scalar from the start, then
the only difference between the resulting quantum theory
and what we are about to present is an independent
(nonghost) scalar sector related to the χ terms, which
may simply be neglected if one wishes to consider a
manifestly conformal theory at high energies.

A. Gauge fixing

To begin the quantization process, we fix our gauge
freedom using the BRST prescription [46,47].7 We intro-
duce sets of bosonic Nakanishi-Lautrup (NL) fields Ba ¼
fbαðxÞ; BαðxÞ; BðxÞg as well as fermionic ghosts
Ca ¼ fcαðxÞ, CαðxÞ, CðxÞg and antighosts C̄a ¼ fc̄αðxÞ,

C̄αðxÞ, C̄ðxÞg, where the three fields in each of these sets
correspond to the diffeomorphism, Stückelberg vector, and
Stückelberg scalar symmetries, respectively. It is important
to note that the antighosts are independent of the regular
ghosts and not related by Hermitian conjugation. Terms
involving these sets of fields are added to the classical
Lagrangian (21) in order to gauge fix the theory and
establish BRST symmetry. BRST transformations are gen-
erated by the BRST charge operator Q, and their specific
forms are fixed so that the BRST transformation is nilpotent
(Q2 ¼ 0). The associated BRST algebra is graded in terms
of a field’s “ghost number,” with the ghosts and antighosts
assigned ghost numbers of 1 and −1, respectively, while the
classical fields and NL bosons carry a ghost number of zero.
All physically relevant quantities, including the total action,
are then restricted to be of ghost number zero.
Under BRST symmetry, the classical fields ΦA ¼

fgαβ; Hαβ; χ; Aα; πg in (55) transform linearly as

Φ0
A ¼ ΦA þ ϵδΦA; ð56Þ

where ϵ is a constant anticommuting and anti-Hermitian
parameter of the BRST transformation and δΦA is given by
the sum of the infinitesimal gauge transformations, with the
transformation parameters replaced by the associated
(canonically normalized) ghost fields:

δgαβ ¼
αg
m

ð∇αcβ þ∇βcαÞ
δHαβ ¼ mð∇αCβ þ∇βCαÞ

þ αg
m

ð∇γHαβ þHαγ∇β þHβγ∇αÞcγ

δχ ¼ αg
m

cα∇αχ

δAα ¼ mCα þ∇αCþ αg
m

ð∇βAα þ Aβ∇αÞcβ

δπ ¼ mCþ αg
m

cα∇απ: ð57Þ

The new BRST fields also transform under this symmetry
as follows:

δbα ¼ 0 δBα ¼ 0 δB ¼ 0 δcα ¼ αg
m

cβ∂βcα

δCα ¼ αg
m

ðcβ∂βCα þ Cβ
∂βcαÞ δC ¼ αg

m
cα∂αC

δc̄α ¼ ibα δC̄α ¼ iBα δC̄ ¼ iB: ð58Þ

We may proceed by selecting convenient gauge-fixing
conditions Ga ¼ 0 for each symmetry that generate the
corresponding gauge-fixing and Faddeev-Popov ghost
actions via BRST transformation according to

Sgf þ SFP ¼ −i
Z

d4x
ffiffiffiffiffiffi
−g

p
δðC̄aGaÞ: ð59Þ

6The fact that the separation (54) can be performed at the
nonlinear level, even though ψ and Ψ enter this expression only
linearly, implies thatΨ can act as a kind of Pauli-Villars regulator.
This further implies that the original Weyl-squared term may also
be seen as a regulator [45].

7We recommend Refs. [17,21] for thorough treatments of
BRST symmetry’s role in quantizing gauge theories.
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For diffeomorphism invariance, we select the general
condition

GðξÞ
α ¼ gβγ

�
∂γ g̃αβ −

g1
2
∂αg̃βγ

�
þ 1

2
bα; ð60Þ

where

g̃αβ ¼
m
αg

gαβ−
1

m
ðHαβ−gαβχ−∇αAβ−∇βAαÞ−

2

m2
∇α∇βπ

ð61Þ
is analogous to the Einstein metric discussed in Sec. III C in
the sense that it is Stückelberg symmetry invariant and only
transforms under standard diffeomorphisms. In the same
spirit, the Stückelberg vector symmetry is fixed with the
condition

GðζÞ
α ¼ 1

m

�
∇βHα

β −
g2
2
∇αHβ

β þ∇αχ

�

−mAα þ∇απ −
1

2
Bα; ð62Þ

which is diffeomorphism and scalar symmetry invariant.
For the scalar symmetry,8 we select the diffeomorphism and
vector symmetry invariant condition

GðσÞ ¼ ∇αAα −
g3
2
Hα

α − χ −mπ −
B
2
: ð63Þ

The gi that appear in the conditions above are arbitrary
constants that will allow us to investigate a few interesting
gauge choices. The sum of the classical action (55) and the

actions generated by applying (59) to each of the three
conditions above gives us the gauge-fixed total action ST:

ST ¼ SSOQG − i
Z

d4x
ffiffiffiffiffiffi
−g

p
δðc̄αGðξÞ

α þ C̄αGðζÞ
α þ C̄GðσÞÞ

¼ SSOQG þ Sgfξ þ Sgfζ þ Sgfσ þ SFPξ þ SFPζ þ SFPσ:

ð64Þ

B. Free action and propagators

With the full interacting total action established, our next
task is to isolate the free part that is quadratic in the fields.
We perturb the total action (64) around Minkowski space as
in (26) and redefine the bare perturbation in terms of the
massless “Einstein” graviton h̃αβ, which eliminates all of its
mixing with the massive sector as in (37):

h̃αβ ¼ mhαβ −
1

m
ðHαβ − gαβχ − ∂αAβ − ∂βAαÞ −

2

m2
∂α∂βπ:

ð65Þ
It is also convenient to define normalized versions of the
auxiliary fields as well as a new version of the Stückelberg
scalar in order to diagonalize the scalar sector,

H̃αβ ¼
1

m
Hαβ χ̃ ¼

ffiffiffi
3

p

m
χ π̃ ¼ π þ 1

m
χ: ð66Þ

After linearizing (64), applying the redefinitions above, and
dropping all of the OðαgÞ interaction terms, the free part of
total action is given by the following:

S0 ¼
Z

d4x

�
−
1

2
ðh̃αβEαβγδh̃

γδ − H̃αβEαβγδH̃γδÞ þm2

4
ðH̃αβH̃αβ − H̃α

αH̃β
βÞ

þ 1

2
χ̃ð□ −m2

βÞχ̃ þ
1

4
FαβFαβ þmAαð∂βH̃αβ − ∂

αH̃β
βÞ − π̃ðηαβ□ − ∂α∂βÞH̃αβ

þ bα

�
∂βh̃

αβ −
g1
2
∂
αh̃β

β þ 1

2
bα
�
þ Bα

�
∂βH̃αβ −

g2
2
∂
αH̃β

β þ ∂
απ̃ −mAα −

1

2
Bα

�

þ B

�
∂αAα −

g3m
2

H̃α
α −mπ̃ −

1

2
B

�
þ i

�
c̄αðηαβ□þ ð1 − g1Þ∂α∂βÞcβ

þ C̄αðηαβð□ −m2Þ þ ð1 − g2Þ∂α∂βÞCβ þ C̄ðð□ −m2ÞCþmð1 − g3Þ∂αCαÞÞ
�
: ð67Þ

Here, we have identified m2
β ¼ m2=ð6βÞ as the canonical

mass squared of the scalar χ̃. It is interesting to note that in
this parametrization this scalar sector has been completely
separated from the rest of the action. Since χ̃ is also
gauge invariant, it appears as nothing more than a basic
massive scalar field, for which the quantization process is
practically trivial compared to the rest of the fields in
theory.

8We note that C and C̄ would instead be Faddeev–Popov (FP)
ghosts corresponding to Weyl invariance if we were to have
quantized the conformal action (22) using the method outlined
here. In either case, C and C̄ are both propagating, as has also
been observed in the unbroken version of second-order conformal
gravity [34] and in the conformal theory without a Weyl-squared
term [48], which should be contrasted with the discussions
reviewed in Ref. [49].
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Moving forward, we note two specific choices of gauge-
fixing parameters that are worth considering. The first is
given by

g1 ¼ 1 g2 ¼ 2 g3 ¼ 0; ð68Þ

which essentially corresponds to the unitary gauge pre-
sented in the last section. With this choice of parameters,
one may make a further redefinition of H̃αβ in terms of the
gauge-invariant tensor field

Uαβ ¼ H̃αβ −
1

m
ð∂αAβ þ ∂βAαÞ

−
1

m2
ð∂αBβ þ ∂βBα − 2∂α∂βπ̃Þ; ð69Þ

which eliminates the Stückelberg fields from the classical
part of the action and removes the massive spin-2 field Uαβ

from the gauge conditions, leaving an independent massive
spin-2 Fierz-Pauli action behind as in (41), with the
resulting EOM and constraints as in (36). The gauge choice
(68) is enlightening in the sense that it allows one to see
how the Stückelberg fields may be eaten by H̃αβ, similarly
to the SSB situation with the Stückelberg scalar π now
filling the role of the scalar φ. However, this gauge is not
the most convenient for the upcoming calculations as the

propagators become more complicated, making oscillator
decomposition less straightforward.
The second interesting gauge choice, which is analogous

to the Feynman gauge in standard gauge theory, remedies
this issue, and we will thus employ it for the remainder of
this work:

g1 ¼ 1 g2 ¼ 1 g3 ¼ 1: ð70Þ

This choice of parameters yields a theory with only simple-
pole propagators, which we may see explicitly by looking
at the full propagator matrix Ω−1

ABðpÞ. This matrix is the
inverse of the Hessian matrix where ΦA stands for the
complete set of fields, including the NL bosons, ghosts, and
antighosts. It is given by

ΩABðpÞ ¼ i
Z

d4x
δ2S0

δΦAðxÞδΦBðyÞ
e−ipðx−yÞ ð71Þ

Ω−1
ABðpÞ ¼ −ih0jTΦAΦBj0i

¼

0
BB@

Ω−1
boson 0

0

 
0 Ω−1

ghost

Ω−1†
ghost 0

!
1
CCA

AB

; ð72Þ

ð73Þ
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ð74Þ

where we have defined the shorthands

Fαβγδ ¼ 2δαβγδ− ηαβηγδ Gαβγδ ¼ 2δαβγδ−
2

3
ηαβηγδ: ð75Þ

The utility of the Feynman gauge (70) is now clear; all of
the individual propagators above contain only simple
poles9 while maintaining nice behavior in the UV, mirror-
ing what is expected from the covariant quantization of
standard gauge theory [21], General Relativity [15], and
massive gravity [7] when similar gauges are employed.

C. Asymptotic fields

We may proceed with the quantization process by
appealing to the Lehmann-Symanzik-Zimmermann
(LSZ) formalism [50] in order to establish asymptotic
solutions to the equations of motion of our system. In said
formalism, one treats the fields in a theory ΦðxÞ as
Heisenberg fields, i.e., as quantum fields with time-inde-
pendent state vectors, and makes the assumption that at
times t ¼ x0 → �∞ the ΦðxÞ behave as a free fields that
satisfy the free equations of motion10 [17]:

ΦðxÞ →
�
ΦinðxÞ; x0 → −∞
ΦoutðxÞ; x0 → þ∞

: ð76Þ

The formalism dictates that each asymptotic field may be
decomposed as a sum of products of oscillators and plane
wave functions as

ΦasðxÞ ¼
X
p

ðΦ̂ asðpÞfpðx;mÞ þ ˆ̂Φ asðpÞgpðx;mÞ þ ðH:c:ÞÞ;

ð77Þ
where p stands for the three-dimensional spatial part of the
four-momentum pα. Here, the plane wave functions
fpðx;mÞ and gpðx;mÞ are solutions to the first- and
second-order d’Alembert equations in the following sense:

ð□ −m2Þfpðx;mÞ ¼ 0 ð□ −m2Þgpðx;mÞ ¼ fpðx;mÞ:
ð78Þ

The operator Φ̂asðpÞ in (77) represents the fundamental
simple-pole oscillator associated with the Heisenberg field
ΦðxÞ, where the superscript “as” stands for “in” or “out”
depending on which limit is taken. These fundamental
oscillators are products of annihilation (creation) operators
and polarization tensors, which are nontrivial when ΦðxÞ is
a field carrying space-time indices. The dipole oscillators
(indicated with the double hat) are not independent DOF
but rather functions of the fundamental oscillators that must
be solved for using the EOM. They are only nonzero if the
associated field’s propagator contains a dipole, which is not
the case for the present theory in the gauge defined by
(60)–(63), (70).
The EOM obtained from the total action (67) for the

bosons are found to be

Eαβγδhγδ þ ∂ðαbβÞ −
1

2
ηαβ∂γbγ ¼ 0 ð79Þ

EαβγδHγδ þm2

2
ðHαβ − ηαβHγ

γÞ −mð∂ðαAβÞ − ηαβ∂γAγÞ

− ðηαβ□ − ∂α∂βÞπ − ∂ðαBβÞ þ
1

2
ηαβ∂γBγ −

m
2
ηαβB ¼ 0

ð80Þ

ð□ −m2
βÞχ ¼ 0 ð81Þ

ðηαβ□ − ∂α∂βÞAβ −mð∂βHα
β − ∂αHβ

βÞ þmBα þ ∂αB ¼ 0

ð82Þ

ðηαβ□ − ∂α∂βÞHαβ þ ∂αBα þmB ¼ 0 ð83Þ

∂βhαβ −
1

2
∂αhββ þ bα ¼ 0 ð84Þ

∂βHα
β −

1

2
∂αHβ

β −mAα þ ∂απ − Bα ¼ 0 ð85Þ

Hα
α −

2

m
ð∂αAα − BÞ þ 2π ¼ 0; ð86Þ

while the EOM for the ghosts are given by

□cα ¼ 0 □c̄α ¼ 0 ð87Þ

ð□ −m2ÞCα ¼ 0 ð□ −m2ÞC̄α ¼ 0 ð88Þ

ð□ −m2ÞC ¼ 0 ð□ −m2ÞC̄ ¼ 0: ð89Þ

Note that here we have dropped all of the tilde designations
from the fields for easier presentation, though one should

9The fakeon prescription may thus also be applied to all the
unphysical field propagators if the theory is regarded as a fakeon
theory [27,28].

10Strictly speaking, the limit x0 → �∞ should be a weak limit.
We also ignore effects such as wave function renormalization
here since they will not affect the essence of the work that
follows.
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keep in mind that we are only considering the canonical
diagonal versions of our original fields as defined in
(65), (66).

Weknowfromthepð−2nÞ natureof thepropagators (72) that
all of our fields contain only simple poles (n ¼ 1), indicating
that they decompose in terms of simple oscillators as

hαβðxÞ ¼ ĥαβðpÞfpðx; 0Þ þ ðH:c:Þ HαβðxÞ ¼ ĤαβðpÞfpðx;mÞ þ ðH:c:Þ
χðxÞ ¼ χ̂ðpÞfpðx;mβÞ þ ðH:c:Þ AαðxÞ ¼ ÂαðpÞfpðx;mÞ þ ðH:c:Þ
πðxÞ ¼ π̂ðpÞfpðx;mÞ þ ðH:c:Þ bαðxÞ ¼ b̂αðpÞfpðx; 0Þ þ ðH:c:Þ

BαðxÞ ¼ B̂αðpÞfpðx;mÞ þ ðH:c:Þ BðxÞ ¼ B̂ðpÞfpðx;mÞ þ ðH:c:Þ
cαðxÞ ¼ ĉαðpÞfpðx;mÞ þ ðH:c:Þ c̄αðxÞ ¼ ˆ̄cαðpÞfpðx;mÞ þ ðH:c:Þ
CαðxÞ ¼ ĈαðpÞfpðx;mÞ þ ðH:c:Þ C̄αðxÞ ¼ ˆ̄CαðpÞfpðx;mÞ þ ðH:c:Þ
CðxÞ ¼ ĈðpÞfpðx;mÞ þ ðH:c:Þ C̄ðxÞ ¼ ˆ̄CðpÞfpðx;mÞ þ ðH:c:Þ ð90Þ

where we have suppressed the sum over p as well as the
“as” designations to avoid clutter.
Using (78), we see that all of the simple Klein-Gordon

EOM are satisfied by simply plugging in the decomposi-
tions (90), while the more complicated EOM enforce the
following additional conditions on the spin-2 oscillators:

pβĥαβðpÞ ¼
1

2
pαĥβ

βðpÞ þ ib̂αðpÞ ð91Þ

pβĤαβðpÞ ¼ im

�
pαpβ

m2
− ηαβ

�
ÂβðpÞ − 2pαπ̂ðpÞ

− iB̂αðpÞ −
1

m
pαB̂ðpÞ ð92Þ

Ĥα
αðpÞ ¼ 2

m
ðipαÂαðpÞ − B̂ðpÞÞ − 2π̂ðpÞ: ð93Þ

In the continuum limit, (anti)commutators between each
of the fundamental oscillators are given by the pole
coefficient of the associated propagator entries in (72)
for the massless and massive fields, respectively. The
nonzero (anti)commutators are found to be

½ĥαβðpÞ; ĥ†γδðqÞ� ¼ ð2δαβγδ − ηαβηγδÞδ3ðp − qÞ ð94Þ

½ĤαβðpÞ; Ĥ†
γδðqÞ� ¼

�
−2δαβγδ þ

2

3
ηαβηγδ

�
δ3ðp − qÞ ð95Þ

½χ̂ðpÞ; χ̂†ðqÞ� ¼ δ3ðp − qÞ ð96Þ

½ÂαðpÞ; Â†
βðqÞ� ¼ −ηαβδ3ðp − qÞ ð97Þ

½π̂ðpÞ; π̂†ðqÞ� ¼ −
1

3
δ3ðp − qÞ ð98Þ

½ĥαβðpÞ; b̂†γðqÞ� ¼ ½ĤαβðpÞ; B̂†
γðqÞ�

¼ ðipαηβγ þ ipβηαγÞδ3ðp − qÞ ð99Þ

½ĤαβðpÞ; π̂†ðqÞ� ¼ −
1

3
ηαβδ

3ðp − qÞ ð100Þ

½ÂαðpÞ; B̂†
βðqÞ� ¼ mηαβδ

3ðp − qÞ ð101Þ

½ÂαðpÞ; B̂†ðqÞ� ¼ ipαδ
3ðp − qÞ ð102Þ

½π̂ðpÞ; B̂†ðqÞ� ¼ mδ3ðp − qÞ ð103Þ

fĉαðpÞ; ˆ̄c†βðqÞg ¼ fĈαðpÞ; ˆ̄C†
βðqÞg ¼ iηαβδ3ðp − qÞ ð104Þ

fĈðpÞ; ˆ̄CðqÞg ¼ iδ3ðp − qÞ: ð105Þ

With these relations in hand, all that remains is to appeal to
the Kugo-Ojima quartet mechanism in order to identify
which states are truly physical and which are unphysical
remnants of the gauge freedom present in the original
theory.

D. Kugo-Ojima quartet mechanism

In covariant BRST quantization, one may classify all of
the quantum states in a theory into two distinct groups:
BRST singlets, which are identified as physical states, and
BRST quartets of unphysical states whose total contribu-
tion to any scattering amplitude always sums to zero. These
quartets consist of pairs of “parent” states jπi and “daugh-
ter” states jδi that are related by BRST transformation as

jδgþ1i ¼ Qjπgi ≠ 0; ð106Þ

where the subscripts indicate FP ghost number. The precise
way in which this cancellation of unphysical states occurs
is known as the Kugo-Ojima quartet mechanism [51–53],
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the proof of which relies on showing that the following
relationship between inner products of parents and daugh-
ters holds:

hπ−1iδ1 ¼ hπ−1jQjπ0i ¼ hδ0iπ0 ≠ 0: ð107Þ

Demonstrating this equality explicitly is enough to guar-
antee that only physical transverse states will contribute to
scattering amplitudes in a given theory. To show this for
SOQG, we must simply reparametrize the states defined by
the oscillators in the previous section in terms of BRST
singlets and quartet participants.

1. Massless states

We begin with the massless spin-2 sector. For conven-
ience, and without loss of generality, we restrict ourselves
to a Lorentz frame defined by motion along the z axis as
defined by

pα ¼ fE; 0; 0; Eg; ð108Þ

recalling that all (anti)commutators derived in this frame
are also valid in general [15]. In this basis, we may use the
transverse oscillator equation (91) to eliminate four of
the ten components of ĥαβ. From the remaining six
independent components, we can identify that the two
operators

âh;þ ¼ 1

2
ðĥ11 − ĥ22Þ âh;× ¼ ĥ12 ð109Þ

are BRST singlets using the transformation rules11 (57),
(58) combined with the redefintions (65) and decomposi-
tions (90):

½Q; âh;λ� ¼ 0; where λ ¼ fþ;×g: ð110Þ

The operators (109) have nonvanishing commutation
relations only with themselves,

½âh;λðpÞ; â†h;λ0 ðqÞ� ¼ δλλ0δ
3ðp − qÞ; ð111Þ

and represent the physical transverse states contained in the
massless graviton, which may be seen by rewriting the its
simple-pole oscillator as

ĥαβðpÞ ¼ εþαβðpÞâh;þðpÞ þ ε×αβðpÞâh;×ðpÞ
þ ðH:c:Þ þ � � � ; ð112Þ

where ελαβ are transverse-traceless polarization tensors that,
in the frame defined by (108), may be written as the “plus”
and “cross” forms familiar from General Relativity,

ðεþαβÞ¼

0
BBBB@
0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0

1
CCCCA ðε×αβÞ¼

0
BBBB@
0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

1
CCCCA: ð113Þ

The “� � �” in (112) represent contributions from the
remaining four longitudinal components of ĥαβ, which
may be reparametrized in terms of the vector oscillator

ðγ̂αÞ ¼
i
2E

0
BBBBB@

−ĥ00
2ĥ13
2ĥ23

ĥ33

1
CCCCCA: ð114Þ

These components are not BRST invariant and represent
the jπ0i part of the quartets, while the roles of jδ0i, jδ1i, and
jπ−1i are filled by b̂α, ĉα, and ˆ̄cα respectively,

½Q; γ̂α�¼ iĉα ½Q; b̂α�¼ 0 fQ; ĉαg¼ 0 fQ; ˆ̄cαg¼ b̂α:

ð115Þ

The commutation relations between these quartet partic-
ipants are given by

½γ̂αðpÞ; b̂†βðqÞ� ¼ −ηαβδ3ðp − qÞ
fĉαðpÞ; ˆ̄c†βðqÞg ¼ iηαβδ3ðp − qÞ; ð116Þ

indicating that the quartet mechanism functions as expected
in the massless sector, as confirmed by the relation

h0jb̂αðpÞγ̂†βðqÞj0i ¼ −ih0j ˆ̄cαðpÞĉ†βðqÞj0i ¼ −ηαβδ3ðp − qÞ:
ð117Þ

2. Massive states

Identification of the quartets is also straightforward in the
massive sector. Here, it is more convenient to select the
center-of-mass frame defined by

pα ¼ fm; 0; 0; 0g; ð118Þ

which after employing the transverse and traceless con-
straints (92), (93) allows us to define the five operators

11It is more convenient to express the BRST transformations of
operators in terms of their (anti)commutators with the BRST
charge operator Q as we have done here. These two pictures are
related by δX ¼ ½iQ; X�∓ where ∓ stands for commutator or
anticommutator as appropriate.

SPONTANEOUS CONFORMAL SYMMETRY BREAKING AND … PHYS. REV. D 106, 126015 (2022)

126015-13



âH;þ ¼ 1

2
ðĤ11 − Ĥ22Þ âH;× ¼ Ĥ12

âH;1 ¼ Ĥ13 âH;2 ¼ Ĥ23

âH;3 ¼
1

2
ffiffiffi
3

p ðĤ11 þ Ĥ22 − 2Ĥ33Þ; ð119Þ

in terms of the five independent components of Ĥαβ. Their
commutation relations unavoidably comewith a minus sign
as compared to (111), indicating their ghostlike nature:

½âH;ρðpÞ; â†H;ρ0 ðqÞ� ¼ −δρρ0δ3ðp − qÞ: ð120Þ

Similarly to the massless case, Eq. (119) represents the
BRST singlet components of Ĥαβ,

½Q; âH;ρ� ¼ 0 where ρ ¼ fþ;×; 1; 2; 3g: ð121Þ

These physical operators fit into the original oscillator as

ĤαβðpÞ ¼
X
ρ

ðεραβðpÞâH;ρðpÞÞ þ ðH:c:Þ; ð122Þ

where there are naturally three physical longitudinal polar-
izations present in addition to the two transverse-traceless
polarizations present in the massless case (113):

ðε1αβÞ ¼

0
BBBB@

0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

1
CCCCA

ðε2αβÞ ¼

0
BBBB@

0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

1
CCCCA

ðε3αβÞ ¼
1ffiffiffi
3

p

0
BBBB@

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −2

1
CCCCA: ð123Þ

All of the independent components of Ĥαβ are accounted
for in (122), meaning that the remaining five components of
our original classical fields may be assigned to the quartet
participants

ðΓ̂αÞ ¼ −
1

m

0
BBBB@

Â0 þ iπ̂

Â1

Â2

Â3

1
CCCCA Γ̂ ¼ −

1

m
π̂: ð124Þ

These jπ0i operators and the other massive quartet partners
transform in the expected fashions:

½Q; Γ̂α�¼ iĈα ½Q; B̂α� ¼ 0 fQ;Ĉαg¼ 0 fQ; ˆ̄Cαg¼ B̂α

ð125Þ

½Q; Γ̂�¼ iĈ ½Q; B̂�¼ 0 fQ;Ĉg¼ 0 fQ; ˆ̄Cg¼ B̂:

ð126Þ

Their relevant nonvanishing commutation relations are
found to be

½Γ̂αðpÞ; B̂†
βðqÞ� ¼ −ηαβδ3ðp − qÞ

fĈαðpÞ; ˆ̄C†
βðqÞg ¼ iηαβδ3ðp − qÞ ð127Þ

½Γ̂ðpÞ; B̂†ðqÞ� ¼ −δ3ðp − qÞ
fĈðpÞ; ˆ̄C†ðqÞg ¼ iδ3ðp − qÞ; ð128Þ

which allows for another five realizations of the quartet
mechanism in the massive sector,

h0jB̂αðpÞΓ̂†
βðqÞj0i ¼ −ih0j ˆ̄CαðpÞĈ†

βðqÞj0i ¼ −ηαβδ3ðp − qÞ
ð129Þ

h0jB̂ðpÞΓ̂†ðqÞj0i ¼ −ih0j ˆ̄CðpÞĈ†ðqÞj0i ¼ −δ3ðp − qÞ:
ð130Þ

Finally, as it is BRST invariant, χ̂ represents an additional
distinct physical state that does not participate in any of the
quartets. It is also healthy (nonghostlike) from a unitarity
perspective, as is clear from its only nonvanishing com-
mutation relation:

½Q; χ̂� ¼ 0 ½χ̂ðpÞ; χ̂†ðqÞ� ¼ δ3ðp − qÞ: ð131Þ

Thus, using BRST quantization and the quartet mechanism,
we have identified the eight physical states present in
quantum quadratic gravity. As expected, there are a total of
three healthy states corresponding to the massless spin-2
âh;λ and massive spin-0 χ̂ operators and five ghostlike
massive spin-2 states in âH;ρ.

E. Physical Hamiltonian operator

With our physical states well defined, we may ignore all
of the unphysical quartet components and construct the
physical (gauge-fixed) Hamiltonian operator H for our
theory by solving the Heisenberg equation

½H;ϕðxÞ� ¼ −i∂0ϕðxÞ; ð132Þ
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where ϕðxÞ ¼ fhαβðxÞ; HαβðxÞ; χðxÞg. After inserting the
decompositions (90), the right side of this equation is easily
determined using the relation

i∂0fpðx;mÞ ¼ p0fpðx;mÞ; ð133Þ

allowing us to infer the precise form of the Hamiltonian
operator by looking at the Heisenberg equation for each
ϕðxÞ:

H ¼
Z

d3p
X
λ;ρ

ðEhâ
†
h;λðpÞâh;λðpÞ

− EHâ
†
H;ρðpÞâH;ρðpÞ þ Eχ χ̂

†ðpÞχ̂ðpÞÞ: ð134Þ

This Hamiltonian is normal ordered with respect to the
vacuum as defined by

âh;λðpÞj0i ¼ âH;ρðpÞj0i ¼ χ̂ðpÞj0i ¼ 0; ð135Þ

and it commutes with the state operators according to the
relations

½H; â†h;λðpÞ� ¼ Ehâ
†
h;λðpÞ

½H; â†H;ρðpÞ� ¼ EHâ
†
H;ρðpÞ ½H; χ̂ðpÞ� ¼ Eχ χ̂ðpÞ: ð136Þ

This makes it clear that each type of operator corresponds
to a standard independent one-particle eigenstate with the
eigenvalues p0.

V. CONDITIONAL UNITARITY IN
PERTURBATIVE QUADRATIC GRAVITY

To demonstrate some notion of unitarity in the theory
presented here, we follow the definitions of Kugo and
Ojima [15]. This approach is again based on the LSZ
formalism, which rests on the crucial assumptions that the
Fock spaces spanned by the in and out states are both
complete,

V in ¼ Vout ¼ V; ð137Þ

and that there exists an S-matrix operator S that is
pseudounitary (S†S ¼ SS† ¼ 1) with elements defined by

Sβα ¼ hβ; outjα; ini ¼ hβ; injSjα; ini: ð138Þ

If V is a positive-definite metric space, we may define
unitarity in terms of the relation

1 ¼ hα; injα; ini ¼ hα; injS†Sjα; ini
¼
X
n

hα; injS†jn; ini hn; injSjα; ini

¼
X
n

jhn; injSjα; inij2; ð139Þ

where we have inserted the completeness relation 1 ¼P
n jn; inihn; inj between S† and S. A quantum theoretical

probability interpretation follows from (139), as it defines
jhn; injSjα; inij2 as the probability for the state transition
α → n to occur.
Generally speaking, in covariantly quantized gauge

theories, the Fock space of physical states possesses a
positive-definite metric even though V as a whole is an
indefinite-metric space. According to Kugo and Ojima
[15], this physical subspace Vphysð¼ KerQÞ is defined by

Qjphysi ¼ 0 ∀ jphysi ∈ Vphys: ð140Þ

Crucially, we have also have that Vphys ¼ SVphys ¼ S†Vphys
since Vphys is invariant under time evolution as a result ofQ
being a conserved charge. Furthermore, the quartet mecha-
nism described in the previous section ensures that the
zero-norm subspace V0 (¼ ImQ) of Vphys is a BRST
coboundary. With this, the unitarity of S on the quotient
space Hphys ¼ Vphys=V0 follows, provided that Hphys is a
positive-definite metric space. Establishing unitarity in this
context is equivalent to the statement that the quantum
probability interpretation (139) holds.
The theory at hand represents a more complicated case,

since in contrast to traditional gauge theories the minus sign
in (120) indicates thatHphys is a not positive-definite metric
space. However, since this massive spin-2 ghost state is the
only source of negative norm, we may define a positive-
definite subspace by projecting the ghost states out from
Hphys kinematically. This is achieved by defining a basis for
Hphys that is spanned by the eigenstates jpT; si of the total
4-momentum Pμ

T , where s stands for other quantum
numbers such as spin (or helicity). In this basis, we define
the subspace H<

phys as the space spanned by the eigenstates
jpT; si where

−p2
T ¼ −ημνp

μ
Tp

ν
T < m2; ð141Þ

so that H<
phys contains no spin-2 ghost states. It is also

important to note that H<
phys is Lorentz invariant simply

because the whole Hphys ¼ Vphys=V0 space is Lorentz
invariant. This all implies that the S-matrix is unitary on
the subspace H<

phys, a feature that we will call conditional
unitarity. It should be noted that in the context of
perturbation theory one must replace the kinematic con-
dition (141) by

p2
T þm2 ≳Oðm2Þ ð142Þ

because the spin-2 ghost propagator ∼ðp2
T þm2 − iϵÞ−1

should be sufficiently suppressed in order for perturbation
theory to be valid.12 We remark that the notion of
metastability such as that discussed in Ref. [44] does not
influence this perturbative conditional unitarity because
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metastability is a nonperturbative effect and hence cannot
be seen in perturbation theory.
So far, we have assumed that the spin-2 ghost is stable;

however, if it can decay as in Ref. [54], the spin-2 ghost
states should be excluded from the asymptotic states
anyway since in this case the quotient spaceHphys becomes
a positive-definite metric space without the need to impose
any conditions that define an H<

phys subspace [55]. One
might then conclude that the unitarity of S must follow;
however, this conclusion is premature. An important
consequence of the unitarity of S is the optical theorem,
which states that the imaginary part of a forward scattering
amplitude is given by the total cross section, where the
associated Feynman diagrams are computed using the
cutting rules defined by Cutkosky [56] and expanded upon
by Veltman [55] to include unstable particles. Using a
super-renormalizable scalar theory, Veltman has shown that
only internal lines (propagators) of stable particles should
be cut in order to satisfy unitarity while keeping the notions
of renormalizability and causality intact. Veltman’s treat-
ment of unstable particles has been extended to the case of a
complex pole mass of the propagator of an unstable particle
in the context of perturbative gauge theories [57]; however,
the proof of this extension is given for ordinary healthy
particles, and it does not straightforwardly apply to the
spin-2 ghost because the conditions imposed on ghostly
propagators are different. In particular, it is assumed that
the propagator of an unstable particle has a pole in the left
upper-half of the complex p2 plane in line with the
conventional iϵ prescription. However, this condition
cannot hold for the spin-2 ghost propagator, a fact which
has been demonstrated in the context of perturbation theory
in Ref. [54].13

In Ref. [54], an attempt is made to show that the above-
mentioned proof nevertheless holds for the spin-2 ghost
with an exponentially suppressed violation of causality,
though one should note that the proofs of Refs. [54,55,57]
have been demonstrated only in scalar field theories. Our
BRST-symmetry-based covariant quantization of QG, in
which the massless graviton can be uniquely separated
from the massive spin-2 ghost, will make a more rigorous
treatment of the unitarity problem of quadratic gravity
possible, though we will not go into further details here,
leaving a thorough study of the issue in the covariant
operator formalism for future work.

VI. CONCLUSION

In this paper, we have investigated several interesting
phenomena related to quantum theories of quadratic

gravity. To see these phenomena more transparently, we
have rewritten the general fourth-order theory in an
equivalent second-order form by introducing auxiliary
fields, which, paired with additional Stückelberg fields
that render the phase-space constraints fully first class,
make the propagating DOF apparent at the level of the
action. In this second-order formalism, we have seen that a
Higgs mechanism can occur in the conformally invariant
subset of general quadratic gravity if the gravitational
action is conformally coupled to a scalar field. If this
scalar acquires a VEV and the conformal symmetry is
spontaneously broken, the originally massless spin-2 ghost
may eat the scalar as well as the Stückelberg vector, which
in turn allows for the spontaneously broken theory to be
interpreted in a unitary gauge. In this picture, the system
describes massive (ghostly) spin-2 Fierz-Pauli theory
coupled to the familiar Einstein-Hilbert action if the
VEV of the scalar is assumed to be on the order of the
Planck mass. We have also demonstrated that this separa-
tion of massless and massive spin-2 modes may be
performed on arbitrary backgrounds and even at the full
nonlinear level.
The second-order formulation presented here also makes

it possible for quadratic gravity to be straightforwardly
quantized under the covariant operator formalism of Kugo
and collaborators [7,15,16] and Nakanishi and Ojima [17],
which, after appealing to the Kugo-Ojima quartet mecha-
nism [53], allows for an easy identification of the physi-
cally propagating DOF in the quantum theory. In the
Feynman-style gauge employed here, all asymptotic fields
may described in terms of simple-pole wave functions, and
we find that the physical Fock space is spanned by quantum
states corresponding to a healthy massive scalar (the
scalaron), a healthy massless spin-2 field (the traditional
graviton), and a massive spin-2 ghost. This structure of the
asymptotic spectrum appears as one should expect, while
the explicit identification of an indefinite inner product
metric on the physical spin-2 subspace of states (which is
identical in either the spontaneously broken conformal or
general quadratic case) allows for a new take on the ghost
problem in quadratic quantum gravity.
In this work, we do not attempt to provide a complete

rigorous solution to the ghost problem; rather, we demon-
strate the notion of conditional unitarity by restricting the
full spin-2 space of states with a simple kinematical
condition that singles out a positive definite subspace.
Put simply, we find that QG is a unitary theory at energies
below the ghost mass≲Mpl. There is much more that can
be said about this topic, and so, in the interest of
completeness, we have also included a brief Appendix
that contains more discussion on the ghost problem,
conditional unitarity, and its relationship to the classical
Ostrogradsky instability. Finally, it is worth mentioning
once again that one may potentially make even stronger
statements about unitarity in QG if the ghost is treated as an

12At these energies, application of Salvio’s generalized norm
scheme [31] or of the fakeon prescription [28] will make no
important difference.

13Similar situations present themselves in the Lee-Wick and
Fakeon models [27,58].
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unstable particle, as in the interesting recent work of
Donoghue and Menezes [54]. An in-depth operator-based
application of these ideas is certainly warranted, though we
will leave this task to future work since this is a subtle and
complicated topic with implications for many other areas of
quantum field theory (QFT) that requires specific attention.
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APPENDIX: OSTROGRADSKY INSTABILITY
AND QUANTIZATION

In this Appendix, we recapitulate the Ostrogradsky
instability [22] and the associated problems of quantization
by considering a concrete mechanical example. To under-
stand the problem, it is important to discuss the problem at
the classical level and the quantum level separately. It can
quickly become confusing if one mixes up the problems of
the two levels, as there are many (theoretical) phenomena in
QFT that have no correspondence in classical theory.
We begin by considering a “coordinate” in three spatial

dimensions, xðtÞ, and assume its motion is described by the
action

SOst ¼
Z

dt
�
1

2
ð_xðtÞÞ2 − 1

2ω2
ðẍðtÞÞ2 − VðxðtÞÞ

�
; ðA1Þ

which serves as a basic toy model of fourth-order quadratic
gravity with the crucial feature being that, as it is a higher-
derivative theory, the Ostrogradsky instability must be
present. The simple action (A1) belongs to a class of the
Pais-Uhlenbeck model [63], and its scalar field theory
analogy has been considered in Ref. [44] at the classical level.
Though the Ostrogradsky instability can be discussed in

terms of the fourth-order action (A1), it is possible to
transform the action into an equivalent form that allows us
to discuss the instability in a more transparent and concrete
manner, similarly to our treatment of fourth-order quadratic
gravity in the main text. To this end, we introduce an
auxiliary coordinate x2ðtÞ and consider the action

Saux ¼
Z

dt

�
1

2
ð_xÞ2 − ffiffiffiffi

m
p

ẍ · x2 þ
mω2

2
ðx2Þ2 − VðxÞ

�
:

ðA2Þ

Inserting the equation of motion x2 ¼ ð1= ffiffiffiffi
m

p
ω2Þẍ into

(A1), we see that (A2) is equivalent to (A1). Further, we
may redefine x as

x ¼ ffiffiffiffi
m

p ðx1 − x2Þ ðA3Þ

and insert this into (A2) to obtain the equivalent diagon-
alized action

SU ¼
Z

dt

�
m
2
ð _x1Þ2 −

m
2
ð _x2Þ2 þ

mω2

2
ðx2Þ2

− Vð ffiffiffiffi
m

p ðx1 − x2ÞÞ
�
; ðA4Þ

where we have neglected total derivatives. This action
with V ¼ 0 describes a system that consists of one free
particle with the coordinate x1 and one harmonic oscillator
with the coordinate x2, where the sign of the kinetic and
mass terms for x2 is opposite to that of a “healthy”
coordinate. At this point, the analogy to the case of
quadratic gravity is apparent: x1 corresponds to the
massless graviton, while x2 corresponds to the massive
ghost spin-2 field. This second-order formalism is our
starting point for investigating the ghost issue to which the
conventional canonical Hamiltonian formalism can be
applied. As we will see below, the real problem associated
with the Ostrogradsky instability is not the runaway
instability of the system; rather, it is that the classical
system is pathological in the strict sense even if the
runaway instability is avoided.

1. Classical level

The classical equations of motion derived from (A4) are
given by

m
d2x1
dt2

¼ −∇1V m
d2x2
dt2

¼ −mω2x2 þ∇2V: ðA5Þ

We see that, due to the wrong sign for the kinetic term for
x2, the force ∇2V has the wrong sign as compared to the
force −∇1V, which is the origin of the Ostrogradsky
instability. To see this more explicitly, let us assume that
VðxÞ ¼ Vðjx1 − x2jÞ per the diagonalizing definition (A3).
Accordingly, we find

−∇1V ¼ ∇2V ¼ x2 − x1
jx1 − x2j

V 0; ðA6Þ

where V 0 stands for dV=djx1 − x2j. We see from (A5) that if
the force −∇1V acting on x1 is a restoring force then the
force ∇2V acting on x2 must be an antirestoring force. If
this antirestoring force is stronger than the other restoring
force originating from the mass term −mω2x2, then the
ghost particle will run away. However, we can also see that
if mω2jx2j > j∇2Vj is satisfied for jx2j > R, where R is a
certain finite constant, then the runaway of x2 can be
avoided. It is also important to note that the exact form of
the potential shown here is not such a crucial feature; it is
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just one of a few examples that show there are in fact many
ways to avoid the runaway instability [44,64,65].
The behavior just described is made even more apparent

in the Hamiltonian formalism. The conventional definition
of the canonical momenta yields p1 ¼ m_x1 and
p2 ¼ −m_x2, from which we obtain the classical
Hamiltonian

H ¼ 1

2m
ðp1Þ2 −

1

2m
ðp2Þ2

−
mω2

2
ðx2Þ2 þ Vðjx1 − x2jÞ: ðA7Þ

We can see that the total momentum p1 þ p2 is conserved
for ω ¼ 0 because the potential is translationally invariant;
however, the kinetic energy of the ghost particle is negative,
even though its motion can be stable as we have seen above.
The total energy is also conserved, but due the negative
kinetic energy of the ghost particle, strange situations
can occur.
Suppose, for instance, that the ghost particle sits at rest at

the origin at t ¼ 0, i.e., x2 ¼ f0; 0; 0g and _x2 ¼ f0; 0; 0g,
and that the healthy particle runs parallel to the x axis
toward the ghost particle with some impact parameter x1 ¼
f−a; b; 0g and _x1 ¼ fv; 0; 0g. We may also assume that the
potential is a gravitylike 1=r potential, i.e.,
Vðjx1 − x2jÞ ¼ Gjx1 − x2j−1. The trajectory of the particles
can be uniquely determined, and the initial energy of the
healthy particle is Ein ≃ ð1=2Þmv2 if a is large enough that
the gravitational energy can be neglected, leaving Ein as the
approximate total energy. For t > 0, the healthy particle
approaches the ghost particle and scatters as a free particle,
while the ghost particle leaves the origin and becomes a
harmonic oscillator. After this scattering, the energy of the
healthy particle, Eout, can become larger than the total
energy because the energy of the ghost particle is negative
and the total energy is conserved. This is precisely the
famous Ostrogradsky “instability.” We emphasize once
again that, even in the presence of the ghost particle, the
motion can be stable (no runaway) and deterministic, so
that Eout is fixed at a finite value for a given interaction,
despite the fact that Eout can be larger than Ein. Therefore,
in the strict sense, the classical system is pathological even
if the motion is stable.

2. Quantum level

Given the classical Hamiltonian (A7), it is straightfor-
ward to describe the corresponding quantum system in the
Schrödinger picture using

i
∂Ψðx1; x2; tÞ

∂t
¼ HΨðx1; x2; tÞ; ðA8Þ

where Ψðx1; x2; tÞ is the wave function and

H ¼ −
1

2m
ð∇1Þ2 þ

1

2m
ð∇2Þ2 −

mω2

2
ðx2Þ2 þ Vðjx1 − x2jÞ

ðA9Þ

is the Hamilton operator for the quantum system. Although
we do not prove it here, it is natural to assume that the
quantum system in the Schrödinger picture approaches the
classical system that we have described above in the
classical limit. We emphasize that, due to the nature of
quantum mechanics, there is a tiny though nonzero prob-
ability that the energy of the outgoing healthy particle, Eout
in the scattering process described above, assumes an
arbitrarily large value even if the quantum system has no
runaway instability. Consequently, quantization in the
Schrödinder picture fails to define a perfect quantum
system, reflecting the pathology of the classical system
in this picture.
We next consider the quantization of the system in the

Heisenberg picture where, because of the wrong sign of the
kinetic term of the ghost particle, it is possible to define a
quantum system that has no classical correspondence. To
this end, we first consider the free case V ¼ 0 and denote
the momentum eigenstate of the healthy particle carrying
the momentum p1 by jp1i. For the harmonic oscillator
(ghost state), we have the EOM ẍas2 þ ω2xas2 ¼ 0 with the
solution

xas2;jðtÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2mω

p ðâje−iωt þ â†je
iωtÞ; ðA10Þ

where j ¼ 1, 2, 3 stands for the three spatial components of
x2. From the canonical equal-time commutation relations
½x2;jðtÞ; p2;kðt0Þ�jt¼t0 ¼ iδjk, where p2 ¼ −m_x2, we find

½âj; â†k� ¼ −δjk; ðA11Þ

which has the wrong sign compared to the healthy
harmonic oscillator. With this, we can write the
Hamiltonian operator Ĥ0 for the free system as

Ĥ0 ¼ −
ω

2

X
j¼1;2;3

ðâjâ†j þ â†j âjÞ

¼ ω
X

j¼1;2;3

�
−â†j âj þ

1

2

�

¼ ω
X

j¼1;2;3

�
−âjâ

†
j −

1

2

�
: ðA12Þ

So far, we have encountered no ambiguities; however,
some may arise due to the fact that there are two
possibilities to define the vacuum (ground state):

â†j0i− ¼ 0 or âj0iþ ¼ 0: ðA13Þ
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The second of these is the conventional definition for the
healthy harmonic oscillator where it is the positivity of
energy that dictates this choice. However, in the ghost case,
this is not mandatory because it is not necessary to satisfy
positivity of the energy since the ghost’s kinetic energy is
negative already at the classical level. Excited states can
also be defined in the standard fashion as

jni− ¼ 1ffiffiffiffiffi
n!

p ðâÞnj0i− or jniþ ¼ 1ffiffiffiffiffi
n!

p ðâ†Þnj0iþ; ðA14Þ

which, paired with the commutation relations (A11) and the
normalization conditions h0j0i− ¼ þh0j0iþ ¼ 1, leads to
the products

hn0jni− ¼ δnn0 þhn0jniþ ¼ ð−1Þnδnn0 : ðA15Þ

It is therefore the second choice for the definition of the
vacuum in (A13) that forces us to deal with an indefinite
metric. The difference between vacuum definition also
appears in the energy eigenvalues

Ĥ0jni− ¼ −nωjni− Ĥ0jniþ ¼ nωjni−; ðA16Þ

where we see that the quantization based on jni− corre-
sponds to that in the Schrödinger picture because the
energy eigenvalues of the ghost are negative and no
indefinite metric appears. Quantization based on the
jniþ, on the other hand, does not share this classical
correspondence, as the overall minus does not appear with
the energy eigenvalues but rather in the commutation
relations, i.e., with the indefinite metric.
Despite this lack of classical correspondence, we argue

that the second choice for the vacuum, jniþ, is in fact the
correct one. Consider the propagator

�h0jTx̂asj ðtÞx̂ask ðt0Þjni� ¼ θðt − t0Þ�h0jx̂asj ðtÞx̂ask ðt0Þjni�
þ θðt0 − tÞ�h0jx̂asj ðtÞx̂ask ðt0Þjni�;

ðA17Þ

which using the identity

θðtÞ ¼ i
2π

Z
dE

e−iEt

Eþ iϵ
ðA18Þ

may be written as

�h0jTx̂asj ðtÞx̂ask ðt0Þjni� ¼ −δjk
i

2πm

Z
dE

e−iEðt−t0Þ

E2 − ω2 � iϵ
:

ðA19Þ

The same propagator computed for the healthy particle
takes the standard form and lacks the overall minus sign
above, but there is an additional crucial difference between

the two propagators, namely, that they share the same pole
structure for the j0iþ vacuum while the pole structure is
opposite for the j0i−. It is opposite in the sense that for
positive energy (E ¼ ω) the pole is located on the lower
(upper) half complex plane for j0iþ (j0i−), while for
negative energy it is located on the upper (lower) half
complex plane for j0iþ (j0i−).14 Though ϵ is an infinitesi-
mal parameter, it plays a very important roll in QFT; it is
essential that all of the propagators in a renormalized
Feynman diagram have the same iϵ prescription in order to
prove both the absolute convergence of the integration over
the internal momenta with the Minkowski metric and the
existence of the ϵ → 0þ limit [66] (see also Refs. [67,68]).
Therefore, if healthy and ghost propagators are both present
in a Feynman diagram, we have to obey the prescription for
the healthy propagators (as suggested by Stelle [3] and see
also the work by Salvio [2]), which means that the correct
choice of the vacuum is j0iþ.
There is another reason that j0iþ is preferred. As we have

seen, the energy eigenvalue of the ghost at the free level is
positive, and if we assume the existence of asymptotic
states, this energy eigenvalue is the eigenvalue of the full
Hamiltonian operator Ĥ in the Heisenberg picture.
Additionally, since the S-matrix operator commutes with
the full Hamiltonian operator, the asymptotic state jniþ
(which is an Ĥ eigenstate) remains after S is applied. Thus,
as an Ĥ eigenstate with the same eigenvalue, Sjniþ is also
an Ĥ eigenstate. This feature is crucial for ensuring the
conservation of energy, where neither in nor out states have
a negative energy.

3. Conditional unitarity for the quantum PU oscillator

In the Heisenberg picture based on the vacuum j0iþ, the
Ostrogradsky instability appears as a violation of unitarity
because of the indefinite metric structure (A15); since the
norm is not positive definite, the probability interpretation
of quantum theory fails. However, this does not mean that it
is impossible to give any statement about the probability of
a quantum process. It is, in fact, possible to give an exact
statement if a certain condition is satisfied.
Before we address this statement in more detail, let us

look at the classical system once again. We have seen that
the classical motion can be stable if the restoring force
acting on the ghost particle at the free level, −mω2x2, is
stronger than the force from the potential Vðjx1 − x2jÞ.
Indeed, if VðrÞ approaches zero as r → ∞, such a situation
can easily be realized. Nevertheless, the negative energy of
the ghost leads to an apparent violation of energy con-
servation in the energy budget of the healthy particle.
However, if ω is large, the healthy particle can excite the
ghost harmonic oscillator only slightly in scattering

14This fact should be regarded as a violation of causality for the
j0i− vacuum because the negative energy state propagates
forward in time.
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processes, implying an approximately elastic collision
where approximate energy conservation with respect to
the healthy particle can be realized.
With this observation in mind, we come back to the

quantum system with the vacuum j0iþ. In this system, the
energy of the ghost harmonic oscillator is quantized and
positive, and there is an energy gap between the vacuum
and the first excited state ω. If ω is large or if the energy of
the incoming healthy particle is smaller than ω, the ghost
remains at the ground state. Of course, since this is a
quantum process, the ghost can be virtually excited, but this
has no influence on unitarity because only scalar products
between on-shell states matter for unitarity. Thus, under the
condition Ein < ω, we can, in fact, make exact statements
about the probability in a scattering processes of this
system since j0iþ and all healthy states have positive
norms, and the on-shell states cannot contain excited ghost
states. In this way, the unitarity of the theory is exactly
satisfied, provided that the scattering operator S is a
pseudounitarity operator (S†S ¼ 1) on the full space
(including ghost states).
We note that the conclusion above is nonperturbative and

may be extended to quadratic gravity, provided that we
know about the stable classical solutions of its EOM (which

have been partially analyzed in Ref. [44]). On the other
hand, in perturbation theory, the interactions are already
assumed to be weak so that calculations at each order make
sense. Therefore, within the framework of perturbation
theory, where we assume the existence of the asymptotic
fields, unitarity is exactly satisfied at each order if the
kinematical constraint is satisfied, a notion referred to as
“conditional unitarity” in the main text. Additionally, if the
excited ghost states are unstable, the kinematic condition
may even be relaxed [54]; however, a proper analysis of this
fact in the present formalism is beyond the scope of
this paper.
Finally, we recall that the choice of the vacuum j0iþ is

dictated not just by a desire to show unitarity but also by the
proof of renormalization, a notion that has no classical
correspondence. Similarly, in the j0iþ quantization, the
appearance of an indefinite metric (negative norm) also has
no classical correspondence. The Ostrogradsky instability
manifests itself in the violation of unitarity, which is itself a
consequence of the indefinite metric; however, as we have
seen in the preceding mechanical example, the theory can
be a perfect unitary theory for energies below the threshold
of the ghost excitation even though the classical system is
pathological in the strict sense.
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