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We systematically study the top-down model of loop quantum black holes (LQBHs), recently derived by
Alesci, Bahrami, andPranzetti (ABP). Starting from the full theory of loop quantumgravity,ABP constructed
a model with respect to coherent states peaked around spherically symmetric geometry, in which both
holonomyand inversevolume corrections are taken into account, and shown that the classical singularity used
to appear inside the Schwarzschild black hole is replaced by a regular transition surface. To understand the
structure of the model, we first derive several well-known LQBH solutions by taking proper limits. These
include the Böhmer-Vandersloot and Ashtekar-Olmedo-Singh models, which were all obtained by the so-
called bottom-up polymerizationswithin the framework of theminisuperspace quantizations. Then,we study
the ABP model, and find that the inverse volume corrections become important only when the radius of the
two-sphere is of the Planck size. For macroscopic black holes, the minimal radius obtained at the transition
surface is always much larger than the Planck scale, and hence these corrections are always subleading. The
transition surface divides the whole spacetime into two regions, and in one of them the spacetime is
asymptotically Schwarzschild-like, while in the other region, the asymptotical behavior sensitively depends
on the ratio of two spin numbers involved in the model, and can be divided into three different classes. In one
class, the spacetime in the 2-planes orthogonal to the two spheres is asymptotically flat, and in the second one
it is not even conformally flat, while in the third one it can be asymptotically conformally flat by properly
choosing the free parameters of themodel. In the latter, it is asymptotically de Sitter. However, in any of these
three classes, sharply in contrast to the models obtained by the bottom-up approach, the spacetime is already
geodesically complete, and no additional extensions are needed in both sides of the transition surface. In
particular, identical multiple black hole and white hole structures do not exist.

DOI: 10.1103/PhysRevD.106.126013

I. INTRODUCTION

The resolution of general relativity (GR) singularities is a
well-established result in loop quantum gravity (LQG) [1],
and is ultimately due to the presence of a minimum area
implied by the quantum nature of the gravitational field.
The studies of the cosmological singularity carried out in
the last decades represent the first applications of LQG to

cosmology [2,3] in a well established research area now
called loop quantum cosmology (LQC) [4], which is
already at the stage of predicting observable consequences
[5–7]. LQC is built on first performing a classical sym-
metry reduction and then importing from the full theory a
quantum structure adapted to the reduced system, namely
the polymer quantization [8].
The LQC success in identifying the resolution of the big

bang singularity naturally shifted the effort to study black
hole interiors [9,10] with LQC techniques: classical sym-
metry reduction and polymer quantization of the resulting
minisuperspace. However, in both contexts the quantiza-
tion procedure leaves several ambiguities: LQC needs to
import from the full theory the area gap, and part of the
quantum degrees of freedom are lost once the classical
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symmetry reduction is performed. In fact, in LQG the
quantum states of the gravitational field are spinnetwork
states labeled by spins (SU(2) quantum numbers, the
eigenvalues of the geometrical operators, such as the area
and volume operators, etc.) and graphs on 3-dimensional
manifolds with vertices locating the quanta space and
realizing arbitrary quantum spaces. On the other hand, in
LQC dealing with classically homogenous models the
Hilbert space can’t accommodate graphs and the polymer
quantization employed is not sensible to the SU(2) repre-
sentations. These ambiguities have been fixed [11] in the
cosmological setting with the evolution from the μ0 to the μ̄
scheme [12], while for black holes, although there are many
proposals [13–55], their LQC treatment is still evolving. In
both schemes the origin of the ambiguities is rooted in the
fact that there is no fixed prescription to obtain the LQC
Hilbert space from the LQG one and the fundamental
property of LQG, namely the existence of space quanta, can
only be imported. Now if the introduction of a minimum
volume as external input is enough to solve the singularity,
details of the evolution deeply depend on the amount of
structure imported ad hoc from the full theory.
Recently, a new technique (quantum reduced loop

gravity—QRLG) aimed to disentangle those ambiguities
was proposed by Alesci, Bahrami, and Pranzetti (ABP), the
so-called top-down approach [56]. QRLG is based on the
tentative of reverting the reduction-quantization process to
implement a quantum symmetry reduction. Performing
gauge fixing to adapt the full quantization to the symmetry
compatible coordinates, QRLG allows to study the homo-
geneous spacetimes as coherent states of the full theory
retaining all the quantum degrees of freedom of LQG. In this
sense, QRLG does not need an external area gap or an
ad-hoc Hilbert space, because it just uses the full LQG
Hilbert space. QRLG program has been successfully applied
to cosmology [57] and a direct link toLQChas been unveiled
[58]. However, the inclusion of new degrees of freedom
also opens the possibility for new scenarios as the replace-
ment of the big bounce scenario [59] with the emergent
bouncing one [60]. The application of QRLG to the interior
of a black hole [61,62] has been recently performed and
showed a completely new possibility. The black hole
singularity is replaced by a bounce followed by an expanding
Universe that could be asymptotically de Sitter [63].
In this paper, we shall study the ABP model in detail and

confirm several major conclusions obtained in [62,63], and
meanwhile clarify some silent points. In particular, the
article is organized as follows. In Sec. II, we provide a brief
review of the ABP model [61–63], by paying particular
attention to its semi-classical limit conditions, which are
essential in order to understand the physical implications of
the model. In Sec. III, we first consider its classical limit,
whereby the physical interpretation of quantities of the
ABP model become clear, and then obtain the Böhmer-
Vandersloot (BV) [13] and Ashtekar-Olmedo-Singh (AOS)

models [30,31] by taking proper limits and replacements. In
doing so, we look for the possible relation among these
models. Although formally we can obtain all these models,
they all fall to the case where the semiclassical limit
conditions of the ABP model are not satisfied. As a result,
these models cannot be embedded properly into the ABP
model. However, we do find that such derivation is helpful
in understanding the structure of the ABPmodel. In Sec. IV,
we study the ABP model without the inverse volume
corrections in detail, by first showing that such corrections
become important only when the curvature becomes the
order of the Planck scale. The subsequent detailed analysis
shows that the minimal radius of the two-sphere obtained at
the transition surface is always much larger than the Planck
scale for macroscopic black holes. As a result, the inverse
volume corrections should be always subleading for such
black holes. In Sec. V, we confirm this by focusing only on
the cases with γ ¼ 0.274 obtained by the considerations of
black hole entropy [64], and jx and j given by Eq. (2.21)
below, obtained by demanding that the spatial manifold
triangulation remain consistent on both sides of the black
hole horizons [63]. Our main results are summarized in
Sec. VI, while in Appendix, we provide some properties of
the Struve functions.
In this paper, we shall use lp, mp, τp to denote,

respectively, the Planck length, mass, and time. In all
the numerical plots, we shall use them as the units. For
example, when plotting a figure with m ¼ 1 we always
mean m=mp ¼ 1, and so on.

II. EFFECTIVE HAMILTONIAN OF INTERNAL
SPHERICAL BLACK HOLE SPACETIMES

Spherically symmetric spacetimes inside black holes can
be written in the form

ds2 ¼ −NðτÞ2dτ2 þ ΛðτÞ2dx2 þ RðτÞ2dΩ2; ð2:1Þ

where NðτÞ is the lapse function and dΩ2 ≡ dθ2 þ
sin2 θdϕ2. Clearly, the above metric is invariant under
the following transformations

τ ¼ ξðτ0Þ; x ¼ a0x0 þ b0; ð2:2Þ

where ξðτ0Þ is an arbitrary function of τ0 and a0 and b0 are
arbitrary constants.

A. Classical spherical spacetimes
and canonical variables

It should be noted that, instead of using the canonic
variables (Λ, R) and their momentum conjugates (PΛ; PR),
one often uses (pb; b; pc; c) [30], which can be obtained by
comparing the gravitational connection Ai

aτidxa and the
spatial triads Ea

i τ
i
∂a, given in [30,63], and yield
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pc ¼ R2; pb ¼ L0RΛ; b ¼ −
γG
R

PΛ;

c ¼ −
γGL0

R

�
PR −

ΛPΛ

R

�
; ð2:3Þ

where L0 is a constant, and related to L0 introduced in [63]
by L0 ¼ 2L0. Note that in writing down the above
expressions we assumed pc > 0. With the choice of the
lapse function [30,31]

Ncl ¼ γb−1sgnðpcÞjpcj1=2 ¼ −
R2

GPΛ
; ð2:4Þ

we find that the metric (2.1) takes the form

ds2 ¼ −
γ2pcðTÞ
b2ðTÞ dT2 þ p2

bðTÞ
L2
0pcðTÞ

dx2 þ pcðTÞdΩ2; ð2:5Þ

where1

T ≡ τ

2Gm
þ logð2GmÞ: ð2:6Þ

Then, the corresponding classical Hamiltonian is given by

Hcl½Ncl�≡ NclHc

¼ −
1

2Gγ

�
2cpc þ

�
bþ γ2

b

�
pb

�

¼ L0R2

GPΛ

�
GPΛPR

R
−
GP2

ΛΛ
2R2

þ Λ
2G

�
: ð2:7Þ

B. Quantum black holes in QRLG

Within the framework of QRLG, starting from a partial
gauge fixing of the full LQG Hilbert space, ABP [61–63]
studied the interior of a Schwarzschild black hole, and
derived an effective Hamiltonian by including the inverse
volume and coherent state subleading corrections, which
differs crucially from the ones introduced previously in the
minisuperspace models. In particular, by fixing the quan-
tum parameters associated with the structure of coherent
states through geometrical considerations, the authors
found that the postbounce interior geometry sensitively
depends on the value of the Barbero-Immirzi parameter γ,
and that the value γ ≃ 0.274, deduced from the SU(2) black
hole entropy calculations in LQG [64,65], gives rise to an
asymptotically de Sitter geometry in the interior region.2

Introducing the following parameters

A≡ 2lp
2

�
lp

2γ2

β2
−
4γ2

δx
þ 4ð3 − νÞγ2

δ

�
;

B≡ lp
2

�
lp

2γ2

β2
−
8γ2

δx
þ 8ð3ν − 1Þγ2

δ

�
;

C≡ 2lp
2

�
lp

2γ2

α2
þ 12γ2

δx
−
4ð1þ νÞγ2

δ

�
; ð2:8Þ

and the functions

X ≡ αγG
�
PΛ

R2

�
; Y ≡ βγG

�
PR

RΛ
−
PΛ

R2

�
;

Z≡ 8γ2 cos

�
α

R

�
sin2

�
α

2R

�
; ð2:9Þ

we find that the effective Hamiltonian of the ABP model
can be cast in the form

HIVþCS
int ¼ −

L0R2Λ
2α2γ2G

CðτÞ; ð2:10Þ

where

CðτÞ≡ α

β
sin½Y�

��
1þ A

R2

�
πh0½X� þ 2

�
1þ B

R2

�
sin½X�

�

þ Z þ
�
1þ C

R2

�
π sin½X�h0½X�; ð2:11Þ

and L0 denotes the length of the fiducial cell with
x ∈ ½−L0;L0�, and lp is the Planck length with

lp ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏG=c3

p
, while G and c are the Newton’s constant

and the speed of light, respectively. The super indices “IV”
and “CS” stand for, respectively, the inverse volume and
coherent state, while the dimensionless parameters δ; δx
and ν are the spread parameters, characterizing the coherent
state corrections. The terms proportional to the constants A,
B andC characterize the inverse volume corrections and are
subdominant [63]. The function h0½X� denotes the zeroth-
order Struve function and its series expansion reads [67]

h0½z� ¼
2

π

�
z −

z3

12 · 32
þ z5

12 · 32 · 52
− � � �

�
: ð2:12Þ

In Fig. 1, we plot out the Struve function h0 together with
h−1, as the latter will appear in the dynamical equations. In
general, the νth order Struve functions are defined by
Eq. (A1) in Appendix, in which some of their properties are
also given. For more details, we refer readers to [67].
In terms of the spin numbers j and jx, the parameters α

and β are given by

1It should be noted that the parameter m used in [13,30,31]
corresponds to Gm introduced in this paper.

2Note that, instead of using the SU(2) black hole entropy as
done in [64,65], if one uses the U(1) black hole entropy
arguments, the parameter γ was found to be γ ≃ 0.2375 [66].
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α≡ 2π
ffiffiffiffiffiffiffi
γjx

p
lp; β≡ 4

ffiffiffiffiffiffiffiffi
8πγ

jx

s
jlp; ð2:13Þ

where jx denotes the averaged spin number of all plaquettes
that tessellate the 2-sphere S2 spanned by ðθ;ϕÞ, while j is
the averaged spin number associated with the links dual to
the plaquettes in both (θ, x) and (ϕ; x) planes. It must be
noted that this effective Hamiltonian is valid only in the
semiclassical limits [63]

j; jx ≫ 1: ð2:14Þ
To understand further the geometrical meaning of j and jx,
we introduce the coordinate lengths along x; θ;ϕ directions
by ϵx, ϵθ, ϵϕ, respectively. Due to the spherical symmetry, we
have ϵθ ¼ ϵϕ ≡ ϵ. Then, we introduce two new quantitiesN
and N x, in terms of which ϵ and ϵx can be written as

ϵ≡ 2π

N
; ϵx ≡ L0

N x
; ð2:15Þ

whereN 2=2 is the total number of the plaquettes on S2, and
N x denotes the total number of plaquettes in the x direction
for a given fiducial length L0. The effective Hamiltonian
(2.10) was obtained under the assumption

N ;N x ≫ 1 or ϵ; ϵx ≪ 1: ð2:16Þ

To find the relations between (N ;N x) and (j; jx), we can
calculate the area of a given S2 and the volume of a given
spatial three-surface spanned by x; θ;ϕ, which are given,
respectively, by

AðRÞ ¼ 4πR2 ¼ 8πγl2
p

X
p∈S2

j̃px ≃ 8πγl2
p

�
N 2

2
jx

�
; ð2:17Þ

VðΣÞ ¼ 8πL0ΛR2 ≃ 4ð8πγl2
pÞ3=2j

ffiffiffiffi
jx

p
N xN 2; ð2:18Þ

where j̃px is the spin number associated with the link dual to
the given plaquettes p on S2. In the limitN ≫ 1, the sum of
j̃px in Eq. (2.17) was approximated by the average spin jx of a
single cell times the total number of the plaquettes in S2. In
the last step of Eq. (2.18), the average spin number j is
associated with the links dual to the plaquettes in both (x, θ)-
and (x;ϕ)-planes. Therefore, we find

N ¼ Rffiffiffiffiffiffiffiffi
γl2

p

q �
1ffiffiffiffi
jx

p
�
; N x ¼

L0Λ

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8πγl2

p

q � ffiffiffiffi
jx

p
j

�
: ð2:19Þ

Inserting Eq. (2.19) into Eq. (2.15), we obtain

ϵ ¼ α

R
; ϵx ¼

β

Λ
; ð2:20Þ

where α and β are defined by Eq. (2.13).
It should be noted that the understanding of the geo-

metrical meaning of N ;N x; j, and jx is important for our
following discussions, especially when we consider some
specific models within the framework of QRLG. As to be
seen below, both of the semiclassical limit conditions (2.14)
and (2.16) must be fulfilled, in order to have the effective
Hamiltonian (2.10) valid. These also provide the keys for
us to understand the semiclassical structures of black holes
in the framework of LQG.
We further note that, by demanding that the spatial

manifold triangulation remain consistent on both sides of
the black hole horizons, ABP found [63]

j ¼ γjx; ð2:21Þ

for which we have

η≡ α

β
¼

ffiffiffiffiffiffi
2π

p

8γ
; ð2:22Þ

as can be seen from Eq. (2.13). Then, in the effective
Hamiltonian (2.10) five new parameters

ðγ; j; ν; δ; δxÞ or ðγ; α; ν; δ; δxÞ;

are present in addition toG, c, ℏ, where (ν; δ; δx) are related
to the inverse volume corrections. One of the purposes of

FIG. 1. The Struve functions h0½X� and h−1½X�.
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this paper is to understand their effects on the local and
global properties of the spacetimes.
It should be noted that the two spin numbers j and jx

used in this paper, which are consistent with those used in
[63], are different from the ones (ĵ; ĵ0) introduced in [62].3

In particular, we have

ĵ ¼
ffiffiffiffiffiffi
8π

p
j; ĵ0 ¼

π

2
jx: ð2:23Þ

To write down the corresponding dynamic equations for
the effective Hamiltonian (2.10), using the gauge freedom
(2.2), ABP chose the lapse function NðτÞ as

NðτÞ ¼ −
2αγ

mGW
; ð2:24Þ

where m is a mass parameter, and W is defined as

W ¼ πh0½X� þ 2 sin½X�: ð2:25Þ

Taking ℏ → 0, it reduces to

Nc ≡ lim
ℏ→0

N ¼ −
R2

2mG2PΛ
; ð2:26Þ

which corresponds to the classical limit, and m represents
the mass of the Schwarzschild black hole. Taking Eq. (2.6)
into account, we find that

N2
cdτ2 ¼ N2

cldT
2; Ncl ¼ 2GmNc; ð2:27Þ

where Ncl and Nc are given, respectively, by Eqs. (2.4)
and (2.26).
Then, the smeared effective Hamiltonian of Eq. (2.10)

with the choice of the lapse function (2.24) is given by

HIVþCS
int ½N�≡ NðτÞHIVþCS

int ¼ L0R2Λ
αγmG2W

CðτÞ: ð2:28Þ

Hence, the corresponding dynamical equations can be cast
in the form

−2Gm
z
l
R0 ¼ R cos½Y�

W
D; ð2:29Þ

−2Gm
z
l
PΛ

0 ¼ RPR cos½Y�
ΛW

D; ð2:30Þ

−2Gm
z
l
Λ0

Λ
¼ −

cos½Y�
W

Dþ 1

W2

�
πh−1½X�

�
2

�
1þ C

R2

�
sin2½X� − Z

�
þ cos½X�

��
1þ C

R2

�
π2h20½X� − 2Z

�

þ 2παðA − BÞ
βR2

sin½Y�ðsin½X�h−1½X� − cos½X�h0½X�Þ
�
; ð2:31Þ

− 2Gm
z
l
P0
R ¼ RPR − 2ΛPΛ

RW
cos½Y�Dþ 2πΛPΛ

RW
sin½X�h−1½X�

�
1þ C

R2

�

þ 2πΛ
RW

h0½X�
��

C
αγG

�
sin½X� þ PΛ cos½X�

�
1þ C

R2

��

þ 2Λ sin½Y�
RW

�
απ

β
PΛh−1½X�

�
1þ A

R2

�
þ A
βγG

πh0½X� þ
2B
βγG

sin½X� þ 2α

β
PΛ cos½X�

�
1þ B

R2

��

−
4γΛ
GW

�
sin

�
α

R

�
− sin

�
2α

R

��
; ð2:32Þ

where

DðXÞ≡
�
1þ A

R2

�
πh0½X� þ 2

�
1þ B

R2

�
sin½X�;

ð2:33Þ
and a prime denotes the ordinary derivative with respect to
z, with z≡ expð−τ=lÞ, where l is a constant and has the

length dimension. The function h−1½X�ð≡dh0½X�=dXÞ de-
notes the Struve function of order −1. In Appendix, we
present some basic properties of these functions, and for
other properties of them, we refer readers to [67].

III. SOME KNOWN LOOP QUANTUM
BLACK HOLES AS PARTICULAR LIMITS

OF THE ABP MODEL

To understand the quantum reduced loop black hole
(QRLBH) spacetimes with both of the holonomy and
inverse volume corrections, in this section let us first

3Note that, instead of using (j; j0) as those adopted in [62],
here we use the symbols with hats, in order to distinguish them
from the ones used in this paper.
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consider some limits of the parameters involved, and derive
several well-known spacetimes. In doing so, we can gain a
better understanding of the QRLBH spacetimes and their
relation with other models.

A. Classical limit

The classical limit is obtained by taking ℏ → 0, that is,
by setting lp ¼ 0, which leads to

A ¼ B ¼ C ¼ 0;

D ≃W ≃ 4X; Z ≃
2γ2α2

R2
: ð3:1Þ

Then, Eqs. (2.29)–(2.32) reduce respectively to

−2Gm
z
l
R0 ¼ R; ð3:2Þ

−2Gm
z
l
P0
Λ ¼ RPR

Λ
; ð3:3Þ

−2Gm
z
l
Λ0

Λ
¼ −

G2P2
Λ þ R2

2G2P2
Λ

; ð3:4Þ

−2Gm
z
l
P0
R ¼ 3PR −

2ΛPΛ

R
þ ΛR
G2PΛ

; ð3:5Þ

while the effective Hamiltonian (2.10) reduces to (2.7) with
L0 ¼ 2L0. Then, from the Hamiltonian constraint Hc ¼ 0,
we find the following two useful expressions

RPR

Λ
¼ G2P2

Λ − R2

2G2PΛ
; ð3:6Þ

ΛPΛ

R
¼ 2PR þ RΛ

G2PΛ
: ð3:7Þ

Inserting them into Eqs. (3.3) and (3.5), respectively, we
obtain two new equations for P0

Λ and P0
R, and together with

the other two, they can be cast in the forms

−2Gm
z
l
R0 ¼ R; ð3:8Þ

−2Gm
z
l
P0
Λ ¼ G2P2

Λ − R2

2G2PΛ
; ð3:9Þ

−2Gm
z
l
Λ0

Λ
¼ −

G2P2
Λ þ R2

2G2P2
Λ

; ð3:10Þ

−2Gm
z
l
P0
R ¼ −

G2PΛPR þ ΛR
G2PΛ

: ð3:11Þ

Now, the above equations can be solved in sequence, that is,
we first solve Eq. (3.8) to find RðzÞ, and then substituting it

into Eq. (3.9), we can find PΛðzÞ. Once RðzÞ and PΛðzÞ are
given, we can substitute them into Eq. (3.10) to find ΛðzÞ.
Then, we can find PRðzÞ either by integrating Eq. (3.11)
explicitly or by using the Hamiltonian constraintHc ¼ 0. In
the first approach, we shall have four integration constants,
but only three of them are independent, as the Hamiltonian
constraintHc ¼ 0must be satisfied, which will relate one of
the four constants to the other three. Therefore, a simpler way
is to solveHc ¼ 0 directly to find PR, once R; PΛ and Λ are
found from Eqs. (3.8)–(3.10). However, to illustratewhat we
mentioned above, let us first integrate the above four
equations directly to get

R ¼ c0e
τ

2Gm; ð3:12Þ

PΛ ¼ ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1G2e

τ
2Gm − c02e

τ
Gm

p
G

;

Λ ¼ c2e−
τ

4Gm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1G2 − c20e

τ
2Gm

q
; ð3:13Þ

PR ¼ c3e−
τ

2Gm � c0c2
G

; ð3:14Þ

where cn’s are the four integration constants. As noticed
above, only three of them are independent. In fact, substitut-
ing the above expressions into the Hamiltonian constraint
Hc ¼ 0 we find that

c1c2G ¼ ∓2c0c3: ð3:15Þ

On the other hand, from Eq. (2.24), we find

N ¼ −
R2

2mG2PΛ
¼ � c20e

τ
Gm

2Gm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1G2e

τ
2Gm − c20e

τ
Gm

p : ð3:16Þ

Thus, we finally obtain

ds2c ¼ −N2dτ2 þ Λ2dx2 þ R2dΩ2

¼ −
dR2

G2c1
c0R

− 1
þ c20c

2
2

�
G2c1
c0R

− 1

�
dx2 þ R2dΩ2:

ð3:17Þ
Clearly, using the gauge residual (2.2), we can always absorb
the factor c20c

2
2 into x by setting a0 ≡ ðc0c2Þ−1. Then, the

metric essentially depends only on one independent combi-
nation, G2c1=c0, of the parameters, which is related to the
mass of the black hole via the relation

m≡ c1G
2c0

: ð3:18Þ

It should be noted that the integration constants cn’s can
be also determined by the boundary conditions
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R ¼ 2Gm; Λ ¼ 0; PΛ ¼ 0; ðτ ¼ 0Þ; ð3:19Þ

and the Hamiltonian constraint at the horizon τ ¼ 0, which
will be elaborated in more detail below, when we try to
solve the field equations (2.29)–(2.32) numerically for the
general case. In the current case, it can be shown that the
above conditions together with the Hamiltonian constraint
lead to

c0 ¼ 2Gm; c1¼
c20
G2

; c2 ¼
1

c0
; c3¼∓ 1

2G
; ð3:20Þ

so the classical metric finally takes its standard form

ds2c ¼
�
1 −

2Gm
R

�
−1
dR2

−
�
1 −

2Gm
R

�
dx2 þ R2dΩ2: ð3:21Þ

B. Böhmer-Vandersloot limit

Following the so-called μ̄ scheme in LQC [12], Böhmer-
Vandersloot (BV) [13] considered the case in which the
physical area of the closed loop is equal to the minimum
area gap predicted by LQG

Δ ¼ 2
ffiffiffi
3

p
πγl2

p: ð3:22Þ

For example, the holonomy loop in the (x, θ)-plane leads to

Axθ ¼ δbδcpb; ð3:23Þ

while the one in the (θ;ϕ)-plane leads to

Aθϕ ¼ δ2bpc; ð3:24Þ

where the new variable b, c and their moment conjugates
pb, pc are related to the ABP variables through Eq. (2.3),
which can be written in the form

pb ¼ L0ΛR; b ¼ −α−1RX;

pc ¼ R2; c ¼ −β−1L0ΛY; ð3:25Þ

where X and Y are defined in Eq. (2.9). Then, setting

Axθ ¼ Δ ¼ Aθϕ; ð3:26Þ

will lead to

δb ¼
ffiffiffiffiffi
Δ
pc

s
; δc ¼

ffiffiffiffiffiffiffiffiffi
Δpc

p
pb

: ð3:27Þ

Making the replacements

b →
sinðδbbÞ

δb
; c →

sinðδccÞ
δc

; ð3:28Þ

in the classical lapse functionNcl (2.4) and HamiltonianHcl
(2.7), we obtain

NBV ¼ γδb
ffiffiffiffiffi
pc

p
sinðδbbÞ

; ð3:29Þ

Heff
BV½N� ¼ −

1

2γG

�
2
sinðδccÞ

δc
pc

þ
�
sinðδbbÞ

δb
þ γ2δb
sinðδbbÞ

�
pb

�
: ð3:30Þ

It is remarkable to note that the above effective
Hamiltonian can be obtained from the ABP Hamiltonian
without the inverse volume corrections presented in the
last subsection. In fact, making the following approxima-
tion

h0½X� →
2

π
sin½X�; cos½ϵ�sin2

�
ϵ

2

�
→

ϵ2

4
; ð3:31Þ

where ϵ is defined in Eq. (2.20), we find that4

A ¼ B ¼ C ¼ 0;

W ≃ 4 sin½X�; D ≃ 4 sin½X�;
D
W

≃ 1; Z ≃ 2γ2
�
α

R

�
2

;

h−1 ≃
2

π
cos½X�: ð3:32Þ

Then, substituting the above into the effective Hamiltonian
(2.10), we shall obtain precisely the BV Hamiltonian
(3.30) with

δb ¼
α

R
¼ αffiffiffiffiffi

pc
p ; δc ¼

β

ΛL0

¼ β
ffiffiffiffiffi
pc

p
pb

: ð3:33Þ

Comparing them with those given by Eq. (3.27), we find
that

αðBVÞ ¼ βðBVÞ ¼
ffiffiffiffi
Δ

p
; ð3:34Þ

4It should be noted that Eq. (2.8) tells that physically the
conditions A ¼ B ¼ C ¼ 0 imply that: (a) the parameters α and β
defined in terms of the spin numbers j and jx [cf. Eq. (2.13)] must
satisfy the condition α; β ≫ lp; and (b) the spread dimensionless
parameters δx and δ appearing in the quantum reduced coherent
states [63] must satisfy the condition δ; δx ≫ γ2. Both conditions
are consistent with the semiclassical approximation of the
effective Hamiltonian [63]. Further considerations of these
conditions are presented in Sec. IV given below.
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which immediately leads to

jðBVÞ ¼
ffiffiffiffiffiffiffiffiffiffi
3

128π

r
≃ 0.0864 ≃ 0.313jðBVÞx > γjðBVÞx ;

jðBVÞx ¼
ffiffiffi
3

p

2π
≃ 0.275: ð3:35Þ

Therefore, the BV Hamiltonian is precisely the limit of the
effective ABP Hamiltonian,5 provided that:

(i) the inverse volume corrections vanish, A ¼ B ¼
C ¼ 0;

(ii) the Struve functions h0½X� and h−1½X� are replaced
respectively by ð2=πÞ sin½X� and ð2=πÞ cos½X�; and

(iii) the spin parameters jx and j are chosen as those
given by Eq. (3.35).

It is clear that the last condition is in sharp conflict with the
semiclassical limit requirement of Eq. (2.14).
In addition, as T → −∞, BV found the following

asymptotic behaviors

b ≃ b̄; pb ≃ p̄be−ᾱT;

c ≃ c̄e−ᾱT; pc ≃ p̄c; ð3:36Þ

where b̄; p̄b; c̄; p̄c and ᾱ > 0 are constants, given by
[cf. Eqs. (64)–(69) in [13]]

2 sinðδ̄bb̄Þ − sinðδ̄bb̄Þ2 ¼
Δγ2

p̄c
; ð3:37Þ

ᾱ ¼ − cosðδ̄bb̄Þ þ cotðδ̄bb̄Þ; ð3:38Þ

sinðδ̄bb̄Þ −
�
δ̄bb̄þ π

2

�
½cosðδ̄bb̄Þ − cotðδ̄bb̄Þ� − 2 ¼ 0;

ð3:39Þ

with

δ̄b ¼
ffiffiffiffi
Δ

p
ffiffiffiffiffi
p̄c

p ; δ̄c ¼
ffiffiffiffiffiffiffiffiffi
Δp̄c

p
p̄b

; δ̄cc̄ ¼ −
π

2
: ð3:40Þ

Then, from Eqs. (3.27) and (3.29) we find that asymptoti-
cally

NBV ≃ N̄ ≡ γ
ffiffiffiffi
Δ

p

sinðδ̄bb̄Þ
: ð3:41Þ

Hence, the spacetime is asymptotically described by the
metric

ds2 ¼ −N2
BVdT

2 þ p2
b

L2
0pc

dx2 þ pcdΩ2

≃
�
t̄0
t̄

�
2

ð−dt̄2 þ dx̄2Þ þ p̄cdΩ2; ð3:42Þ

where

dt̄ ¼ eᾱTdT; x̄ ¼ p̄b

N̄L0

ffiffiffiffiffi
p̄c

p x; t̄0 ≡ N̄
ᾱ
: ð3:43Þ

Loop quantum black holes do not satisfy the classical
Einstein’s equations. However, in order to study the loop
quantum gravitational effects (with respect to GR), we
introduce the effective energy-momentum tensor Teff

μν by
Teff
μν ≡ Gμν,

6 which takes the form

Teff
μν ≃ ρuμuν þ px̄x̄μx̄ν þ p⊥ðθμθν þ ϕμϕνÞ; ð3:44Þ

in the current case, where uμ ¼ ðt̄0=t̄Þδt̄μ, x̄μ ¼ ðt̄0=t̄Þδx̄μ,
θμ ¼ ffiffiffiffiffi

pc
p

δθμ, ϕμ ¼ ffiffiffiffiffi
pc

p
sin θδϕμ , and

ρ ≃
1

p̄c
; px̄ ≃ −

1

p̄c
; p⊥ ≃ −

1

t̄20
: ð3:45Þ

From the above it is clear that the spacetime corresponds to
a spacetime with a homogeneous and isotropic perfect fluid
only when t̄0 ¼

ffiffiffiffiffi
p̄c

p
. When t̄0 ≠

ffiffiffiffiffi
p̄c

p
, the radial pressure

is different from the tangential one, despite the fact that
they are all constants. The latter (with t̄0 ≠

ffiffiffiffiffi
p̄c

p
) can be

interpreted as the charged Nariai solution [68]. In addition,
we also have

R ≃ 2

�
1

p̄c
þ 1

t̄20

�
;

RμνRμν ≃ 2

�
1

p̄2
c
þ 1

t̄40

�
;

RμναβRμναβ ≃ 4

�
1

p̄2
c
þ 1

t̄40

�
;

CμναβCμναβ ≃
4ðp̄c þ t̄20Þ2

3t̄40p̄
2
c

: ð3:46Þ

It is remarkable to note that, even when t̄0 ¼
ffiffiffiffiffi
p̄c

p
, the

spacetime is still not conformally flat. So, it must not be
the de Sitter space. In fact, as noticed by BV [13], it is the
Nariai space [69,70].
On the other hand, from Eqs. (3.37)–(3.39), BV found

the following solutions

5In the BV limit, NðτÞ → NBV
2Gm because dτ ¼ 2GmdT. Thus, we

have HIVþCS
int ½N� → Heff

BV½N�
2Gm .

6It should be noted that the Einstein field equations usually
read as Gμν ¼ ð8πG=c4ÞTμν, while in this paper we drop
the factor 8πG=c4, as this will not affect our analysis and
conclusions.
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b̄ ≃ 0.156; p̄c ≃ 0.182l2
p; ᾱ ≃ 0.670;

c̄
p̄b

≃ −2.290m2
p; N̄ ≃ 0.689lp; ð3:47Þ

from which we find that

t̄0 ¼
N̄
ᾱ
≈ 1.029lp ≠

ffiffiffiffiffi
p̄c

p ð≈0.427lpÞ: ð3:48Þ

Therefore, the solution is asymptotically approaching to the
charged Nariai solution [68], instead of the Nariai solu-
tion [69].
It should be noted that in the above calculations, BV took

γ ≈ 0.2375 in the expression Δ ¼ 2
ffiffiffi
3

p
πγl2

p. Instead, if we
take γ ≈ 0.274 [63] we find

N̄ ≈ 0.854lp; p̄c ≈ 0.279l2
p; ðγ ≈ 0.274Þ;

t̄0 ≡ N̄
α
≈ 1.275lp ≠

ffiffiffiffiffi
p̄c

p ð≈0.529lpÞ; ð3:49Þ

that is, even in this case the spacetime is still not
asymptotically Nariai, but the charged Nariai [68].

C. Ashtekar-Olmedo-Singh limit

From the analysis of the BV limit, it becomes clear that
from the general ABP model, the AOS limit [30,31] can be
obtained by the replacements

h0½X� →
2

π
sin½X�; h−1½x� →

2

π
cos½X�;

cos½ϵ�sin2½ϵ
2
� → ϵ2

4
; ð3:50Þ

so that

W ≃ 4 sin½X�; D ≃ 4 sin½X�;
D
W

≃ 1; Z ≃ 2γ2
�
α

R

�
2

: ð3:51Þ

In addition, we must also set

A ¼ B ¼ C ¼ 0;

δb; δc ¼ Constant: ð3:52Þ

Then, the resultant lapse function and effective
Hamiltonian will be precisely given by the same form as
Eqs. (3.29) and (3.30) but with different δb, δc. With the
above in mind, AOS found the following solutions [31]

sin ðδccÞ ¼
2a0e2T

a20 þ e4T
;

cos ðδbbÞ ¼ b0
bþeb0T − b−
bþeb0T þ b−

;

pb ¼ −
GmL0e−b0T

2b20
ðbþeb0T þ b−ÞA;

pc ¼ 4ðGmÞ2ða20 þ e4TÞe−2T; ð3:53Þ

where m is an integration constant, related to the mass
parameter as noticed previously, and

A≡ ½2ðb20 þ 1Þeb0T − b2− − b2þe2b0T �1=2;

a0 ≡ γδcL0

8Gm
; b0 ≡ ð1þ γ2δ2bÞ1=2;

b� ≡ b0 � 1; ð3:54Þ

with

δbb ∈ ð0; πÞ; δcc ∈ ð0; πÞ;
pb ≤ 0; pc ≥ 0; −∞ < T < 0: ð3:55Þ

In terms of pb and pc, the metric takes the form

ds2 ¼ −N2
AOSdT

2 þ p2
b

jpcjL2
0

dx2 þ jpcjdΩ2; ð3:56Þ

where7

NAOS ¼
γδbsgnðpcÞjpcj1=2

sin ðδbbÞ
¼ 2Gm

A
e−Tðbþeb0T þ b−Þða20 þ e4TÞ1=2: ð3:57Þ

From Eq. (3.53), it can be seen that the transition surface
is located at ∂pcðT Þ=∂T ¼ 0, which yields

T ¼ 1

2
ln

�
γδcL0

8Gm

�
< 0: ð3:58Þ

There exist two horizons, located respectively at

TBH ¼ 0; TWH ¼ −
2

b0
ln

�
b0 þ 1

b0 − 1

�
; ð3:59Þ

at which we haveAðTÞ ¼ 0, where T ¼ TBH is the location
of the black hole horizon, while T ¼ TWH is the location
of the white hole horizon. In the region T < T < 0, the
2-spheres are all trapped, while in the one TWH < T < T ,
they are all antitrapped. Therefore, the region T < T < 0

7In the AOS limit, NðτÞ → NAOS
2Gm because dτ ¼ 2GmdT. Thus,

we have HIVþCS
int ½N� → Heff

AOS½N�
2Gm .
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behaves like the internal of a black hole, while the one
TWH < T < T behaves like the internal of a white hole.
The extension across the black hole horizon can be

obtained by the following replacements [30,31]

b → ib; pb → ipb;

c → c; pc → pc: ð3:60Þ

Then, AOS found that the corresponding Penrose diagram
consists of infinite diamonds along the vertical direction,
alternating between black holes and white holes, but the
spacetime singularity used appearing at pc ¼ 0 now is
replaced by a non-zero minimal surface with

pmin
c ¼ pcðT Þ > 0; ð3:61Þ

where T is given by Eq. (3.58).
To completely fix the values of δb and δc, AOS required

that on the transition surface T , the physical areas of Axθ
and Aθϕ be equal to the area gap Δ [30,31]

2πδcδbjpbðT Þj ¼ Δ; ð3:62Þ

4πδ2bpcðT Þ ¼ Δ: ð3:63Þ

It is interesting to note that, substituting Eq. (3.33) into
the above equations, we find that

2παβ ¼ Δ; 4πα2 ¼ Δ; ð3:64Þ

which are all independent of pb and pc and given by

α ¼ 1

2
β ¼

ffiffiffiffiffiffi
Δ
4π

r
¼

ffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffi
2

p
γ

q
lp: ð3:65Þ

Comparing it with Eq. (2.13) we find that

jðAOSÞ ¼ 1

4π3=2
<

1

2
; jðAOSÞx ¼ 1ffiffiffi

2
p

π2
<

1

2
;

jðAOSÞ ¼
ffiffiffi
π

8

r
jðAOSÞx ≃ 0.6265jðAOSÞx > γjðAOSÞx ; ð3:66Þ

from which we find that such given j and jx do not satisfy
the semiclassical limit conditions (2.14) either. Therefore,
the AOS model cannot be realized in the framework of
QRLG either, although it can be obtained formally by the
approximations (3.51) and (3.52) from the ABP model.

IV. QUANTUM REDUCED LOOP BLACK HOLES
WITHOUT INVERSE VOLUME CORRECTIONS

Setting the three constants A, B and C to zero, the
effective Hamiltonian (2.10) reduces to the one given in
[62], but with the replacement of the constants α and β by

α≡ ffiffiffiffiffiffiffiffi
8πγ

p
lp

ffiffiffiffi
ĵ0

q
; β ¼

ffiffiffiffiffiffiffiffi
8πγ

p
lpĵffiffiffiffi
ĵ0

p ; ð4:1Þ

where now ĵ0 and ĵ denote the quantum numbers asso-
ciated respectively with the longitudinal and angular links
of the coherent states, as mentioned in Sec. II. The relations
between (j; jx) and (ĵ; ĵ0) are given explicitly by Eq. (2.23).
Without causing any confusion, in the rest of this section
we shall drop the hats from (ĵ; ĵ0):

ðĵ; ĵ0Þ → ðj; j0Þ;

unless some specific statements are given.
It is interesting to note that dropping the terms that are

proportional to the constants A, B, and C defined in
Eq. (2.8) is physically equivalent to assuming that

A
R2

;
B
R2

;
C
R2

≪ 1; ð4:2Þ

as can be seen from the effective Hamiltonian given by
Eq. (2.10). Before proceeding further, let us first pause here
for a while and consider the above limits. In particular, from
Eqs. (2.13) and (2.21), we find α ∼ β ∼

ffiffi
j

p
lp, where “∼”

means “being the same order.” On the other hand, intro-
ducing the spread parameters δi via the relations [63]

δr ¼
π2l2

PR
2

α4ðsin θÞ2 δx; δθ ¼
π2l2

PR
2

α2β2ðsin θÞ2 δ;

δφ ¼ π2l2
PR

2

α2β2
δ

ν
; ð4:3Þ

we find that the terms appearing in the expressions of A, B,
and C behave, respectively, as

l2
p

�
l2
pγ

2

β2

�
∼
l2
pγ

2

j
; l2

p

�
γ2

δx

�
∼

γ2π2R2

j2sin2ðθÞδr
;

l2
p

�ð3 − νÞγ2
δ

�
∼

π2γ2R2

j2sin2ðθÞδθ
−
π2γ2R2

j2δφ
: ð4:4Þ

Thus, the conditions (4.2) imply

ðiÞ lp

R
≪ 1; ðiiÞ jδi ≫ 1; ði ¼ r; θ;φÞ: ð4:5Þ

Condition (ii) is required by the effective Hamiltonian
approach [63], while condition (i) tells us that the effects of
the inverse volume corrections are negligible when the
geometric radius of the two-spheres (with τ; x ¼ Constant)
is much large than the Planck length.
With the above in mind, let us now turn to consider the

effective Hamiltonian given by Eq. (2.10) with

A ¼ B ¼ C ¼ 0: ð4:6Þ
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It was shown [62] that the classical singularity of the
Schwarzschild black hole now is replaced by a quantum
bounce at R ¼ Rmin > 0, at which all the physical quan-
tities, such as the Ricci scalar R, Ricci squared RμνRμν,
Kretschmann scalar RμναβRμναβ, and Weyl squared
CμναβCμναβ, remain finite. In addition, at the black hole
horizons, the quantum effects become negligible for macro-
scopic black holes.
A remarkable feature of this class of spacetimes is that

the spacetime on the other side of the bounce is not
asymptotically a white hole, as normally expected from
the minisuperspace considerations [41]. Instead, depending
on the values of η, defined by

η≡ α

β
¼ j0

j
; ð4:7Þ

the spacetime has three different asymptotical limits,
as τ → −∞.
In this section, we shall provide a more detailed study

over the whole parameter space. To this goal, let us consider
the three cases η ¼ 1, η < 1, and η > 1, separately.

A. η = 1

In this case from Eq. (4.7) we find that j ¼ j0. Then, as
τ → −∞, we have

X ≃ −π; Y ≃ −π; W ≃ −πh0½π�;
PΛ

R2
≃ −

π

αγG
;

PR

RΛ
≃ −

2π

αγG
: ð4:8Þ

Hence, the metric coefficients have the following asymp-
totical behavior [62]8

NðτÞ ≃ −
2γ

ffiffiffiffiffiffiffiffi
8πγ

p
lp

ffiffiffiffi
j0

p
mGð−πh0½π�Þ

≃ 0.886

ffiffi
j

p
lp

mG
;

ΛðτÞ ≃ 31.49

�
mGffiffi
j

p
lp

�
1=3

;

RðτÞ ≃ 0.0504

�
j2l4

p

mG

�
1=3

exp

�
−

τ

2mG

�
: ð4:9Þ

Thus, the metric takes the following asymptotical form

ds2 ≃ −dτ̄2 þ dx̄2 þ R2dΩ2; ð4:10Þ

which has a topology R2 × S2, and the (τ̄; x̄)-plane is flat,
where τ̄≡ −Nðτ → −∞Þτ and x̄≡ Λðτ → −∞Þx. Then,

the low half plane −∞ < τ < 0 and −∞ < x < ∞ is
mapped to the upper half plane 0 < τ̄ < ∞ and
−∞ < x̄ < ∞, and the corresponding Penrose diagram is
given by Fig. 2.
It should be noted that the spacetime is not vacuum as

τ → −∞, despite the fact that the (τ̄; x̄)-plane is asymp-
totically flat. This can be seen clearly by writing the metric
(4.10) in terms of the timelike coordinate R

ds2 ≃ −
�
R0

R

�
2

dR2 þ dx̄2 þ R2dΩ2; ð4:11Þ

where R0 ≡ 2
ffiffi
j

p
lp. For the metric (4.11), we find that the

corresponding effective energy-momentum tensor can still
be cast in the form of Eq. (3.44), but with uμ ¼ ðR0=RÞδRμ ,
x̄μ ¼ δx̄μ, θμ ¼ Rδθμ, ϕμ ¼ R sin θδϕμ , and

ρ ≃
1

R2
þ 1

R2
0

;

px̄ ≃ −
1

R2
−

3

R2
0

;

p⊥ ≃ −
1

R2
0

: ð4:12Þ

The commonly used three energy conditions are the
weak, dominant, and strong energy conditions [71].
For Teff

μν given by Eq. (3.44), they can be expressed
respectively as

FIG. 2. The Penrose diagram for the loop quantum spacetimes
without the inverse volume corrections in the case η ¼ 1. The
curved lines denoted by τb are the transition surfaces (throats),
and the straight lines AD and CB are the locations of the black
hole horizons. The dashed lines AB and CD are the locations of
the classical singularities of the Schwarzschild black and white
holes, which now are all free of singularities.

8We found that the numerical factor, 31.49, of Λ weakly
depends on the mass parameter m. For example, it is respectively
31.55,31.77,32.63 for m=mp ¼ 106; 105; 104. On the other hand,
the numerical factors of NðτÞ and RðτÞ are very insensitive to m.
In particular, they are the same up to the third digital for
m=mp ¼ 1012; 106; 105; 104.
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(i) the weak energy condition (WEC):

ρ ≥ 0; ρþ px̄ ≥ 0; ρþ p⊥ ≥ 0; ð4:13Þ

(ii) the dominant energy condition (DEC):

ρ≥ 0; −ρ≤px̄ ≤ ρ; −ρ≤p⊥ ≤ ρ; ð4:14Þ

(iii) the strong energy condition (SEC):

ρþ px̄ ≥ 0; ρþ p⊥ ≥ 0;

ρþ px̄ þ 2p⊥ ≥ 0: ð4:15Þ

Clearly, Eq. (4.12) does not satisfy any of these conditions,
but the energy density and the two principal pressures do
approach constant values that are inversely proportional to
R2
0 ∝ l2

p, that is, the spacetime curvature approaches to the
Planck scale. On the other hand, we also find

R ≃
2

R2
þ 6

R2
0

;

RμνRμν ≃ 2

�
1

R4
þ 4

R2R2
0

þ 6

R4
0

�
;

RμναβRμναβ ≃ 4

�
1

R4
þ 2

R2R2
0

þ 3

R4
0

�
;

CμναβCμναβ ≃
4

3R4
: ð4:16Þ

It is interesting to note that the last expression of the
above equation shows that asymptotically the spacetime is
conformally flat, while the Ricci, Ricci squared, and
Kretschmann scalars are approaching to their Planck
values.
To study this class of solutions in more details, we need

first to specify the initial conditions, which are often
imposed near the black hole horizons [13,30,31,62], as
normally it is expected that the quantum effects for
macroscopic black holes should be negligible [41], and
the spacetime can be well described by the Schwarzschild
black hole spacetime. So, near the horizon, say,
τ ¼ τi ≃ τH, we can take the initial values of (Λ; PΛ)
and (R;PR) as their corresponding relativistic values,
(Λc; PΛc

) and (Rc; PRc
). However, there is a caveat with

the above prescription of the initial conditions, that is,
before carrying out the integrations of the effective

Hamiltonian equations, we do not know if the correspond-
ing model indeed has negligible quantum gravitational
effects near the black hole horizons even for macroscopic
black holes. Therefore, a consistent way to choose the
initial conditions should be: First choose the initial con-
ditions for any three of the four variables, ðR;Λ; PR; PΛÞ,
and then obtain the initial condition for the fourth variable
through the Hamiltonian constraint HIVþCS

int ¼ 0. The
choice of the initial conditions for the first three variables
clearly are arbitrary, which form the complete phase space
D of the initial conditions of the theory. However, in order
to study quantum effects, one can choose them as their
corresponding relativistic values.
For the ABPmodel, we shall choose these three variables

as ðR;Λ; PΛÞ, so that

ΛðτiÞ ¼ ΛcðτiÞ; PΛðτiÞ ¼ PΛc
ðτiÞ;

RðτiÞ ¼ RcðτiÞ; ð4:17Þ

while PRðτiÞ is obtained from the effective Hamiltonian
constraint

HIVþCS
int ðτiÞ ¼ 0; or CðτiÞ ¼ 0; ð4:18Þ

where CðτÞ is defined by Eq. (2.11). This reduced param-
eter space will be referred to as D̂. It is clear that this
reduced space is much smaller than the whole phase space
D. However, for our current purpose, this is enough. With
such chosen initial conditions, the Hamiltonian equations
will uniquely determine the evolutions of the four variables
(Λ; PΛ) and (R;PR) at any other time τ. Once these four
variables are known, from Eq. (2.24) we can find the lapse
function NðτÞ.
With the above prescription, we can see that the initial

values of the four variables will depend not only on the
choice of the initial moment τi but also on the values of j0; j
and m. In particular, if the quantum effects are not
negligible at the moment τi, it is expected that such
obtained PRðτiÞ should be significantly different from its
corresponding relativistic value PRc

ðτiÞ.
To see this clearly, in Tables I–III we show such

differences. In particular, in Table I we show the depend-
ence of PRðτiÞ on the choice of the initial time τi for
m ¼ 1012mp, j ¼ j0 ¼ 10. From this table we can see that
ΔPRðτiÞ≡ PRðτiÞ − PRc

ðτiÞ ≃ 0 for τi=τp ≲ −0.1. As
τi → 0, the difference becomes larger.

TABLE I. The initial values PRðτiÞ obtained from the effective Hamiltonian constraint (4.18) and the choice of the
initial values of the other three variables given by Eq. (4.17), and its corresponding relativistic values PRc

ðτiÞ, for
different choices of τi. Results are calculated with m ¼ 1012mp, j ¼ j0 ¼ 10.

τi=τp −0.01 −0.02 −0.05 −0.1 −1 −10 −100 −103 −104

PRc
0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

PR 0.506 0.500 0.501 0.500 0.500 0.500 0.500 0.500 0.500
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In Table II, we show the dependence of PRðτiÞ on the
choices of j with m ¼ 1012mp and τi ¼ −10.0τp.
Physically, the larger the parameter j is, the closer to the
relativistic value of PR should be. However, due to the
accuracy of the numerical computations, it is difficult to
obtain precisely the values of PR from the effective
Hamiltonian constraint (4.18). So, in Table II we only
consider the initial values of PRðτiÞ for j≲ 1012.
In Table III, we show the dependence of PRðτiÞ on the

choices of m with j ¼ 10 and τi ¼ −10.0τp, from which it
can be seen that the deviations becomes larger for
m≲ 103mp. It should be also noted that for very large
masses, the initial time τi must be chosen very negative.
Otherwise, the term eτ=ðGmÞ, appearing in the effective
Hamiltonian constraint [cf. Eqs. (3.12)–(3.14)], becomes
extremely small, and numerical errors can be introduced. So,
in Table III for the choice of τi ¼ −10τp, we only consider
the cases where m is up to 1014mp, although physically the
larger m is, the closer PRðτiÞ is to its relativistic values.
In Fig. 3, we plot the four functions ðR;Λ; PR; PΛÞ, and

their classical correspondences for m ¼ 1012mp,
j ¼ j0 ¼ 10, τi ¼ −10τp. With such initial conditions,
we find that the location of throat (transition surface) is
around τmin ≃ −3.9108 × 1013τp, at which RðτÞ reaches its
minimum value, Rmin ≃ 7779.35lp. It is interesting to note
that near the throat the four functions all change dramati-
cally, especially ΛðτÞ, which behaves like a step function.
In addition, even at the transition surface, we find that the
conditions of Eq. (2.16) are well satisfied.
To closely monitor the numerical errors, we also plot out

the effective Hamiltonian (CðτÞ ≃ 0) in Fig. 4 together with
the lapse function NðτÞ, from which we can see that in the
region near the throat the numerical errors indeed become
large. But out of this region, the numerical errors soon
become negligible. From Figs. 3 and 4 we also find that our
numerical solutions match well with their asymptotic
behaviors given by Eq. (4.9), as τ → −∞.

To consider thequantumeffects near thehorizons, inFig. 5
we plot out the relative differences between functions
ðR;Λ; PR; PΛ; NÞ and their classical value. To monitor the
numerical errors, we also plot out the effective Hamiltonian
constraint CðτÞ ≃ 0. From these plots, we can see clearly that
the quantum effects indeed become negligible near the
horizons.9

On the other hand, when themass of the black hole is near
the Planck scale, such effects are not negligible even near the
horizon. To show this, in Figs. 6–8 we plot various physical
variables for m ¼ 103mp, j ¼ j0 ¼ 10, for which we find
that the location of throat is around τmin ≃ −1.148 × 104τp,
at which RðτÞ reaches its minimum value, Rmin ≃ 7.76lp.
From these figures it is clear that now the quantum effects
become large near the horizons, and cannot be negligible.
It should be noted that for such small black hole, the
semiclassical limit conditions (4.9) are not well satisfied at
the throat, and as a result, the corresponding effective
Hamiltonian may no longer describe the real quantum
dynamics well. For more details, we refer readers to [62,63].

B. η≳ 1

In this case, we find

X ≃ η0; Y ≃
η0
η
;

W ≃ πh0½η0� þ 2 sin½η0�;
PΛ

R2
≃

η0
αγG

;
PR

RΛ
≃

2η0
αγG

; ð4:19Þ

TABLE II. The initial values PRðτiÞ obtained from the effective Hamiltonian constraint (4.18) and the choice of
the initial values of the other three variables given by Eq. (4.17), and its corresponding relativistic values PRc

ðτiÞ, for
different choices of j with j0 ¼ j (or η ¼ 1). Results are calculated with m ¼ 1012mp, τi ¼ −10τp.

j 10 103 105 107 108 109 1010 1011 1012

PRc
0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

PR 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.501

TABLE III. The initial values PRðτiÞ obtained from the effective Hamiltonian constraint (4.18) and the choice of
the initial values of the other three variables given by Eq. (4.17), and its corresponding relativistic values PRc

ðτiÞ, for
different choices of m. Results are calculated with j ¼ 10, τi ¼ −10τp.

m=mp 10 102 103 105 1010 1012 1014

PRc
0.176 0.474 0.497 0.500 0.500 0.500 0.500

PR 0.051 0.474 0.497 0.500 0.500 0.500 0.500

9Note that at the horizon NðτÞ diverges. So, in the region very
near the horizon NðτÞ becomes extremely large, and the accurate
numerical calculations become difficult, so it is unclearwhether the
sudden growth of ΔN=Nc, as shown in Fig. 5 is due to numerical
errors or not. In fact, similar growths can be also noticed from the
plots of ΔΛ=Λc and ΔPΛ=PΛc

. Such sudden growths happen also
in the cases η > 1 and η < 1, as to be seen below.
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FIG. 3. Plots of the physical variables ðR;Λ; PR; PΛÞ and their classical correspondences ðRc;Λc; PRc
; PΛc

Þ. Particular attention are
paid to the region near the throat τ ¼ −3.91 × 1013. Graphs are plotted with m ¼ 1012mp, j ¼ j0 ¼ 10.
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as τ → −∞. Then, the metric coefficients have the follow-
ing asymptotical behavior,

NðτÞ ≃ N0 ¼ −
2γ

ffiffiffiffiffiffiffiffi
8πγ

p
lp

ffiffiffiffi
j0

p
;

mGðπh0½η0� þ 2 sin½η0�Þ
;

ΛðτÞ ≃ Λ0 exp

�
F ðηÞ
2mG

τ

�
;

RðτÞ ≃ R0 exp

�cosðη0η Þ
2mG

τ

�
; ð4:20Þ

where Λ0 and R0 are constants, and

F ðηÞ ¼ 1

Dðη0Þ2
½2πh−1ðη0Þ sin2ðη0Þ þ π2 cosðη0Þh20ðη0Þ�

− cos

�
η0
η

�
; ð4:21Þ

where Dðη0Þ is defined by Eq. (2.33) but now with
A ¼ B ¼ 0, and the constant η0 is implicitly determined by

η sin

�
η0
η

�
þ π

Dðη0Þ
sinðη0Þh0ðη0Þ ¼ 0: ð4:22Þ

In [62], it was shown that F ðηÞ < 0 and η0 < −π when
η > 1, so that both R and Λ grow exponentially as
τ → −∞. Setting

a≡ jF ðηÞj
2mG

> 0; d≡ j cosðη0η Þj
2mG

> 0; ð4:23Þ

we find that

Λ ¼ Λ0e−aτ; R ¼ R0e−dτ: ð4:24Þ

Then, the metric takes the following asymptotical form

ds2 ≃ −
�
N̂0

R

�
2

dR2 þ R
2a
d dx̄2 þ R2dΩ2; ð4:25Þ

where N̂0 ≡ N0=d, but now with x̄≡ ðΛ0=R
a=d
0 Þx. Similar

to the last case, the corresponding spacetime is not vacuum,
and the effective energy-momentum tensor takes the
same form as that given by Eq. (3.44), but now with
uμ ¼ ðN̂0=RÞδRμ , x̄μ ¼ Ra=dδx̄μ, and

FIG. 4. Plots of CðτÞ and the lapse function NðτÞ for m ¼ 1012mp, j ¼ j0 ¼ 10.
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ρ ≃
2aþ d

dN̂2
0

þ 1

R2
;

px̄ ≃ −
3

N̂2
0

−
1

R2
;

p⊥ ≃ −
a2 þ adþ d2

d2N̂2
0

; ð4:26Þ

from which we find that

ρþ px̄ ≃
2ða − dÞ
dN̂2

0

þO
�

1

R2

�
;

ρþ p⊥ ≃ −
aða − dÞ
d2N̂2

0

þO
�
1

R2

�
: ð4:27Þ

Therefore, in this case none of the three energy conditions
is satisfied either, provided that a ≠ d. When a ¼ d, the
spacetime is asymptotically de Sitter, as shown below. In
particular, we find that

FIG. 5. Plots of the relative differences of the functions ðR;Λ; PR; PΛ; NÞ and CðτÞ near the black hole horizon with the same choice of
the parameters m and j, as those specified in Figs. 3 and 4, that is, m ¼ 1012mp, j ¼ j0 ¼ 10.
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FIG. 6. Plots of the physical variables ðR;Λ; PR; PΛÞ and their classical correspondences ðRc;Λc; PRc
; PΛc

Þ. Particular attention is
paid to the region near the throat τmin ¼ −1.148 × 104. Graphs are plotted with m ¼ 103mp, j ¼ j0 ¼ 10.
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R ≃ 2

�
a2 þ 2adþ 3d2

d2N̂2
0

þ 1

R2

�
;

RμνRμν ≃ 2
a4 þ 2a3dþ 5a2d2 þ 4ad3 þ 6d4

d4N̂4
0

þ 4ðaþ 2dÞ
dN̂2

0R
2

þ 2

R4
;

RμναβRμναβ ≃ 4
a4 þ 2a2d2 þ 3d4

d4N̂4
0

þ 8

N̂2
0R

2
þ 4

R4
;

CμναβCμναβ ≃
4ðaR2ða − dÞ þ d2N̂2

0Þ2
3d4N̂4

0R
4

: ð4:28Þ

Therefore, different from the last case, asymptotically the
spacetime is conformally flat only when a ¼ d. Otherwise,
we have CμναβCμναβ ≃ 4a2ða − dÞ2=ð3d4N̂4

0Þ þOð1=R2Þ.
On the other hand, introducing the quantity t̄ via the

relation

t̄ ¼ −
dN̂0

aRa=d
0

�
R0

R

�
a=d ≡ −t̄0

�
R0

R

�
a=d

; ð4:29Þ

we find that the metric (4.25) takes the form

ds2 ≃ R2a=d
0

�
t̄0
t̄

�
2

ð−dt̄2 þ dx̄2Þ þ R2dΩ2: ð4:30Þ

When a ¼ d, Eq. (4.30) reduces to

ds2 ≃ R2
0

�
t̄0
t̄

�
2

ð−dt̄2 þ dx̄2 þ dΩ2Þ; ða ¼ dÞ; ð4:31Þ

which is the same as the de Sitter spacetime for
R ≫ RΛ, where RΛ is the de Sitter radius. In fact,
when R ≫ RΛ we have that the de Sitter spacetime is
given by

ds2Λ ¼ −
�
1 −

�
R
RΛ

�
2
�
dx̄2 þ

�
1 −

�
R
RΛ

�
2
�

−1
dR2

þ R2dΩ2

≃
�
RΛ

t̄

�
2

ð−dt̄2 þ dx̄2 þ dΩ2Þ; ð4:32Þ

but now with the rescaling x̄ → x̄=RΛ and

FIG. 7. Plots of the lapse function NðτÞ and CðτÞ for m ¼ 103mp and j ¼ j0 ¼ 10.
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t̄≡ −
RΛ

R
: ð4:33Þ

Note that the angular sectors of the two metrics (4.30)
and (4.32) are different in terms of t̄. In particular, in the
metric (4.30) we have R2 ∝ ð−t̄Þ−2d=a, while in the de Sitter
spacetime we have R2 ∝ ð−t̄Þ−2. Therefore, they are equal
only when a ¼ d. However, the sectors of the ðt̄; x̄Þ-planes
are quite similar even when a ≠ d. As a result, in both cases
the surfaces t̄ ¼ 0 represent spacelike hypersurfaces and
form the boundaries of the spacetimes. Then, the corre-
sponding Penrose diagram in the current case is given
by Fig. 9.

When a ¼ d, since F ðηÞ < 0 and cosðη0η Þ < 0, from
Eq. (4.23) we find

F ðηÞ ¼ cos

�
η0
η

�
: ð4:34Þ

On the other hand, η and η0 must satisfy Eq. (4.22), too. So,
these two equations uniquely determine η and η0. For η0≲
−π, we find that Eqs. (4.22) and (4.34) have the solution,

ðη; η0Þ ≈ ð1.142;−3.329Þ; ð4:35Þ

for which, from Eqs. (2.13) and (2.22) we find that

FIG. 8. Plots of the relative differences of the functions ðR;Λ; PR; PΛÞ, the lapse function NðτÞ and CðτÞ near the black hole horizon
(τ ¼ 0) with m ¼ 103mp and j ¼ j0 ¼ 10, the same choice as those specified in Figs. 6 and 7.

UNDERSTANDING QUANTUM BLACK HOLES FROM QUANTUM … PHYS. REV. D 106, 126013 (2022)

126013-19



γ ¼
ffiffiffiffiffiffi
2π

p

8η
≃ 0.274: ð4:36Þ

It is remarkable to note that this value is precisely the
one found from the analysis of black hole entropy [64].
It should be also noted that Eqs. (4.22) and (4.34) have multi-
valued solutions, as these two equations are involved with
periodic functions. In this paper, we consider only the case
η0 ≲ −π [62].
In Figs. 10–12, we plot various physical quantities for

m ¼ 1012mp, j0 ¼ 11.42, j ¼ 10, so that η≡ j0=j ¼
1.142. This corresponds to the case studied in [63], which
will be analyzed in more detail in the next section with
ABC ≠ 0. Then, we find that the transition surface is
located at τmin=τp ≃ −3.896 × 1013, at which we have
RðτminÞ ≃ 8059.95. Note that with these choices of m, j
and jx, the semiclassical limit conditions (2.14) and (2.16)
are well satisfied. Then, from Figs. 10 and 11 we find that
the asymptotical behavior of the metric coefficients given
by Eq. (4.17) is well justified, while Fig. 12 shows that the
quantum effects near the black hole horizon (τ ≃ 0) are
negligible even for m=mp ¼ 1012. For the cases with solar
massm=mp ≳ 1038, it is expected that such effects are even
smaller.
It should be noted that the specific values of the factors

N0, R0 andΛ0 appearing in Eq. (4.17) depend on the choice
of m, although the asymptotic behavior of N, R, and Λ all
take the form of Eq. (4.17). As a result, the corresponding
Penrose diagram is the same and given by Fig. 9 for any
given η > 1. In Table IV we present their values for several
choices of m.

We also study the effects of η, and find that the quality
behaviors of the spacetimes are quite similar to the above
even when η ¼ 2, as long as the semiclassical limit
conditions (2.14) and (2.16) are satisfied and m is not
too small (m=mp ≳ 106).

C. η≲ 1

When η≲ 1, the metric coefficients take the same
asymptotical forms as those given by Eqs. (4.17)–(4.22),
but now with F ðηÞ > 0 and η0 > −π [62]. Therefore, now
Λ decreases exponentially as τ → −∞, while R still keeps
increasing exponentially, i.e.,

N ≃ −
2γ

ffiffiffiffiffiffiffiffi
8πγ

p
lp

ffiffiffiffi
j0

p
;

mGðπh0½η0� þ 2 sin½η0�Þ
;

Λ ¼ Λ0eaτ; R ¼ R0e−dτ: ð4:37Þ

Then, the metric takes the following asymptotical form

ds2 ≃ −
�
N̂0

R

�
2

dR2 þ dx̄2

R2a=d þ R2dΩ2: ð4:38Þ

The corresponding effective energy-momentum tensor also
takes the same form as that given by Eq. (3.44), but now
with uμ ¼ ðN̂0=RÞδRμ , x̄μ ¼ R−a=bδx̄μ, and

ρ ≃
d − 2a

dN̂2
0

−
1

R2
;

px̄ ≃ −
3

N̂2
0

−
1

R2
;

p⊥ ≃ −
a2 − adþ d2

d2N̂2
0

; ð4:39Þ

from which we can see that none of the three energy
conditions are satisfied for any given a and d. In particular,
when a ¼ d we have ρ ≃ px̄=3 ≃ p⊥ < 0. In addition, we
also have

R ≃ 2

�
a2 − 2adþ 3d2

d2N̂2
0

þ 1

R2

�
;

RμνRμν ≃ 2
a4 − 2a3dþ 5a2d2 − 4ad3 þ 6d4

d4N̂4
0

−
4ða − 2dÞ
dN̂2

0R
2

þ 2

R4
;

RμναβRμναβ ≃ 4

�
a4 þ 2a2d2 þ 3d4

d4N̂4
0

þ 2

N̂2
0R

2
þ 1

R4

�
;

CμναβCμναβ ≃
4ðaR2ðaþ dÞ þ d2N̂2

0Þ2
3d4N̂4

0R
4

; ð4:40Þ

FIG. 9. The Penrose diagram for the loop quantum spacetimes
without the inverse volume corrections in the case η > 1 (As to be
shown below, the corresponding Penrose diagram for the case
η < 1 is also given by this figure). The curved lines denoted by τb
are the transition surfaces (throats), and the straight lines AD and
BC are the locations of the black hole horizons, while the straight
lines AB and CD are the spacelike infinities, which correspond to
t̄ ¼ 0 and form the future/past boundaries. The whole spacetime
is free of singularities.
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FIG. 10. Plots of the physical variables ðR;Λ; PR; PΛÞ and their classical correspondences ðRc;Λc; PRc
; PΛc

Þ. Particular attention is
paid to the region near the throat τmin ¼ −3.896 × 1013, at which RðτÞ ¼ 8059.95. Graphs are plotted with m ¼ 1012mp, j0 ¼ 11.42,
j ¼ 10, η ¼ 1.142.
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which can be obtained from Eq. (4.16) by the replacement
a → −a, as expected.
To consider the corresponding Penrose diagram, we first

write the metric (4.38) in the form

ds2 ≃ −R−2a=d
0

�
t̄0
t̄

�
2

ð−dt̄2 þ dx̄2Þ þ R2dΩ2; ð4:41Þ

where

t̄ ¼ t̄0

�
R
R0

�
a=d

; x̄≡ ðΛ0R
a=d
0 Þx;

R ¼ R0

�
t̄
t̄0

�
d=a

; t̄0 ≡ dN̂0R
a=d
0

a
: ð4:42Þ

Comparing Eq. (4.41) with Eq. (4.30), we find that the
(t̄; x̄)-planes in both spacetimes have the same structure,
and the only difference is to replace a by −a. Thus, the
corresponding Penrose diagram is also given by Fig. 9. It is
interesting to note that now the spacetime is not asymp-
totically de Sitter, even when a ¼ d. In fact, now it is even
not asymptotically conformally flat as can be seen from
Eq. (4.40). In addition, in the current case none of the three
energy conditions are satisfied.

In Figs. 13–15, we plot various physical quantities for
m=mp ¼ 1012, j0 ¼ 9.5, j ¼ 10 so that η≡j0=j¼0.95< 1.
In this case, the transition surface is located at τmin ¼
−3.918 × 1013, at which we find RðτminÞ ¼ 7676.1. Then,
it can be shown that both of the conditions (2.14) and (2.16)
are satisfied. Therefore, the corresponding semiclassical
description of the quantum black holes is well justified. In
particular, from Figs. 13 and 14 we find that the asymptotic
behavior of the metric coefficients are well approximated by
Eq. (4.37), while Fig. 15 shows that near the horizon (τ ≃ 0)
the quantum geometric effects become negligible, possibly
except the region very near to the horizon [cf. Fig. 15].
It is interesting to note that the asymptotic behavior in the

current case is very sensitive to the choice of η. In
particular, we find that when η ¼ 0.5 the asymptotic
behavior of the spacetime is already quite different from
the one described by Eq. (4.37), although the semiclassical
conditions (2.14) and (2.16) are still well justified.

V. MAIN PROPERTIES OF THE QUANTUM
REDUCED LOOP BLACK HOLES WITH THE

INVERSE VOLUME CORRECTIONS

As shown in [63], the inverse volume corrections,
represented by terms proportional to the constants A, B

FIG. 11. Plots of CðτÞ and the lapse function NðτÞ for m ¼ 1012mp, j0 ¼ 11.42, j ¼ 10, η ¼ 1.142.
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and C in the effective Hamiltonian given by Eqs. (2.10) and
(2.11), are subleading. This can be also seen clearly from
the analysis given in the beginning of the last section.
Therefore, the inverse volume corrections should not
change the main properties of the solutions with η ¼ 1,
η > 1, η < 1, respectively. However, demanding that the
spatial manifold triangulation remain consistent on both
sides of the black hole horizons, ABP found [63]

j ¼ γjx; ð5:1Þ

which immediately leads to

η≡ α

β
¼

ffiffiffiffiffiffi
2π

p

8γ
; ð5:2Þ

as can be seen from Eq. (2.13). On the other hand, the
considerations of black hole entropy inLQGshowed that [64]

γ ≃ 0.274; ð5:3Þ

which is precisely the solution obtained by requiringa ¼ d in
Sec. IV. B for the case η > 1, in order to have the spacetimeon
the other side of the transition surface to be de Sitter, where a
and b are the constants defined in Eq. (4.23). This “surprising

FIG. 12. Plots of the relative differences of the functions ðR;Λ; PR; PΛ; NðτÞÞ and CðτÞ near the black hole horizon with the same
choice of the parameters m and j, as those specified in Figs. 10 and 11, that is, m ¼ 1012mp, j0 ¼ 11.42, j ¼ 10, η ¼ 1.142.
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coincidence”was first noted in [63]with a different approach,
but in this paper we obtained it simply by requiring that the
transition surface connect two regions, one is asymptotically
the Schwarzschild and the other is de Sitter. Therefore,
following [63] in this section we consider only the case
γ ≃ 0.274,10 for which we have η ≃ 1.142.
Once γ and η are fixed, the five-parameter solutions of

ABP are uniquely determined, after the inverse value
correction parameters ν, δ and δx are given. In the
following, we adopt the values given by ABP [63],

ν ¼ 1.802; δ ¼ 1.458
β2

þOðβ−6Þ;

δx ¼
0.729
β2

þOðβ−6Þ: ð5:4Þ

In Figs. 16–18, we plot out the functions ðX; Y;W;
PΛ
R2 ;

PR
RΛÞ, for different m. From these figures we find

X ≃ −ι ≈ −3.329; Y ≃ −
ι

η
≈ −2.915;

W ≃ −ðπh0½ι� þ 2 sin½ι�Þ ≈ −1.001;
PΛ

R2
≃ −

ι

αγG
≈ −0.012;

PR

RΛ
≃ −

2ι

αγG
≈ −0.023; ð5:5Þ

as τ → −∞, where ι≡ −η0 ≃ 3.329 [63]. With the above
expressions, we find that the asymptotical behavior ofNðτÞ,
RðτÞ and ΛðτÞ is precisely given by Eq. (4.20), with the
dependence of the three constants N0, R0, and Λ0 being
given by Table IV.
As shown in Sec. IV. B for the case η > 1, the inverse

volume corrections become important only when the geo-
metric radius R is in the order of the Planck scale, R ≃ lp.
However, for macroscopic black holes, the radius of the
transition surface Rmin is always much larger than lp. For
example, when m=mp ¼ 1012, Rmin=lp ≃ 8059.95 ≫ 1
[cf. Fig. 10]. Therefore, for macroscopic black holes the
inverse volume corrections can be safely neglected. This is

true not only for the case η ¼ 1.142, but also true for all the
cases considered in Sec. IV for macroscopic black holes.
Therefore, in this section we shall not repeat our analyses
carried out in that section.

VI. CONCLUDING REMARKS

In this paper, we systematically study quantum black
holes in the framework of QRLG, proposed recently by
ABP [61–63]. Starting from the full theory of LQG, ABP
derived the effective Hamiltonian with respect to coherent
states peaked around spherically symmetric geometry, by
including both the holonomy and inverse volume correc-
tions. Then, they showed that the classical singularity used
to appear inside the Schwarzschild black hole is replaced
by a regular transition surface with a finite and nonzero
radius.
To understand such obtained effective Hamiltonian

well and shed light on the relations to models obtained
by the bottom-up approach, in Sec. II. A we first con-
sider its classical limit, and obtained the desired
Schwarzschild black hole solution, whereby the physical
and geometric interpretation of the quantities used in the
effective Hamiltonian are made clear. Then, in Secs. III. B
and III. C by taking proper limits we rederive respectively
the BV [13] and AOS [30,31,40] solutions, all obtained by
the bottom-up approach. In doing so, we can see clearly the
relation between models obtained by the two different
approaches, top-down and bottom-up.
In particular, the BV effective Hamiltonian was origi-

nally obtained from the classical Hamiltonian (2.7) with the
polymerization,

b →
sinðδbbÞ

δb
; c →

sinðδccÞ
δc

: ð6:1Þ

However, instead of taking the parameters δb and δc
as constants, following the μ̄-scheme first proposed in
LQC [12],11 BV took them as

TABLE IV. The dependence of the constants N0, R0, Λ0 of Eq. (4.17) on m with η ≈ 1.142, γ ≈ 0.274, jx ¼ 105.
The corresponding transition times τmin and radii Rmin are also given.

m
mp

τmin
τp

Rmin
lp N0 R0 Λ0

1012 −3.260 × 1013 193114 5.706 × 10−10 0.0226 0.00725
1010 −2.646 × 1011 41605.1 5.706 × 10−8 0.0968 0.0311
106 −1.418 × 107 1929.73 5.706 × 10−4 1.787 0.631

10It should be noted that a second solution in [63] was also
found with γ ≃ 0.227. However, we find that this solution does
not satisfy the Hamiltonian constraint HIVþCS

int ≃ 0, so it must be
discarded.

11This is known to be the only possible choice in LQC, and
results in physics that is independent from underlying fiducial
structures used during quantization, and meanwhile yields a
consistent infrared behavior for all matter obeying the weak
energy condition [72].
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FIG. 13. Plots of the physical variables ðR;Λ; PR; PΛÞ and their classical correspondences ðRc;Λc; PRc
; PΛc

Þ. Particular attention is
paid to the region near the throat τmin ¼ −3.918 × 1013, at which RðτminÞ ¼ 7676.1. Graphs are plotted with m ¼ 1012mp, j0 ¼ 9.5,
j ¼ 10, η ¼ 0.95.
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δðBVÞb ¼
ffiffiffiffiffi
Δ
pc

s
; δðBVÞc ¼

ffiffiffiffiffiffiffiffiffi
Δpc

p
pb

: ð6:2Þ

In Sec. III.B, we show explicitly that the BV effective
Hamiltonian can be obtained from the ABP Hamiltonian by
taking the following replacement and limit,

ðiÞ h0½X� →
2

π
sin½X�; h−1½X� →

2

π
cos½X�; ð6:3Þ

ðiiÞ A
R2

;
B
R2

;
C
R2

≪ 1: ð6:4Þ

It should be noted that with the choice of Eq. (6.2), the
corresponding values of jx and j are given by Eq. (3.35),
from which we can see that they all violate the semi-
classical limit (2.14), with which the ABP effective
Hamiltonian (2.10) was derived. As a result, the BV model
cannot be physically realized in the framework of QRLG,
although formally they can be obtained from the ABP
effective Hamiltonian by the above replacement and limit.
On the other hand, in addition to the replacement and

limit given respectively by Eqs. (6.3) and (6.4), if we
further assume that

δðAOSÞb ; δðAOSÞc ¼ Constants; ð6:5Þ

and are determined by Eqs. (3.62) and (3.63), the ABP
effective Hamiltonian (2.10) reduces precisely to the AOS
one [30,31,40]. However, as shown explicitly by Eq. (3.66),
such choices are also out of the semiclassical limit (3.35).
Therefore, the AOS model cannot be realized in the
framework of QRLG either.
It must be noted that the above conclusions do not imply

that the BVand AOS models are unphysical, but rather than
the fact that they must be realized in a different top-down
approach.
With the above in mind, in Sec. IV we study the ABP

effective Hamiltonian without the inverse volume correc-
tions, represented by the A, B, C terms in Eq. (2.10) in
detail, by first confirming the main conclusions obtained in
[62] and then clarifying some silent points. In particular, we
find that the spacetime on the other side of the transition
surface (throat) indeed sensitively depends on the ratio
η≡ α=β, where α and β are defined by Eq. (2.13) in terms
of ðjx; jÞ, or Eq. (4.1) in terms of ðĵ0; ĵÞ, where the
parameters ðjx; jÞ were introduced in [63], while ðĵ0; ĵÞ
were used in [62], and related one to the other through
Eq. (2.23). As noticed previously, in Sec. IV we drop the
hats from ðĵ0; ĵÞ → ðj0; jÞ, for the sake of simplicity.
When η ¼ 1, the spacetime on the other side of the

transition surface is conformally flat, and the non-vanishing
curvatures are all of the order of the Planck scale, as can be
seen from Eq. (4.16). Then, the corresponding Penrose
diagram is given by Fig. 2. At this point, we find that it is

FIG. 14. Plots of CðτÞ and the lapse function NðτÞ for m ¼ 1012mp, j0 ¼ 9.5, j ¼ 10, η ¼ 0.95.
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very helpful to make a closer comparison of the ABPmodel
with the BV one, as for the BV choice of Eq. (3.34), we
have ηðBVÞ ¼ 1. In particular, we find the following:

(i) In both models, the spacetime singularity used to
appear at the center is replaced by a transition
surface with a finite nonzero radius.

(ii) In both models, the spacetime on one side of the
transition surface is quite similar to the internal
region of a Schwarzschild black hole with a black
hole like horizon located at a finite distance from the
transition surface (but with the removal of the black
hole singularity used to occur at the center).

(iii) In both models, the spacetime is asymmetric with
respect to the transition surface, andmodel-dependent.
In particular, in the BV model, the spacetime on the
other side of the black hole like internal region
approaches asymptotically to a charged Nariai space
[68–70], of which the radius of the two-sphere
S2 approaches to a Planck scale constant, R → R0≃
OðlpÞ. In contrast, in theABPmodel the radius grows
exponentially without limits, R → exp ð− τ

2mGÞ as
τ → −∞, and a macroscopic universe is obtained.
The corresponding global structure can be seen clearly
from its Penrose diagram given by Fig. 2.

FIG. 15. Plots of the relative differences of the functions ðR;Λ; PR; PΛ; NðτÞÞ and CðτÞ near the black hole horizon with the same
choice of the parameters m and j, as those specified in Figs. 13 and 14, that is, m ¼ 1012mp, j0 ¼ 9.5, j ¼ 10, η ¼ 0.95.

UNDERSTANDING QUANTUM BLACK HOLES FROM QUANTUM … PHYS. REV. D 106, 126013 (2022)

126013-27



(iv) In the BV model, there exists multiple transition
surfaces at which we have dpc=dτ ¼ 0. When
passing each transition surface, pc decreases. As a
result, pc will soon decreases to a value at which the
two-spheres S2 have areas smaller than Δ, whereby
the effective Hamiltonian is no longer valid. On the
other hand, in the ABP model, only one such
transition surface exists, and the above mentioned
problem is absent. As a matter of fact, the two-
planes spanned by τ and x are asymptotically flat, as
shown explicitly by Eq. (4.10), although the four-
dimensional spacetime is not [cf. Eq. (4.16)].

When η≳ 1, the spacetime in general does not become
conformally flat, as can seen from Eq. (4.28), unless a ¼ d,
where a and d are two constants defined by Eq. (4.23).

Then, the corresponding Penrose diagram is given by
Fig. 9. When

a ¼ d; ð6:6Þ

the spacetime is conformally flat and asymptotically de
Sitter. It is remarkable that the condition (6.6) together with
(2.21) leads to

γ ¼
ffiffiffiffiffiffi
2π

p

8η
≃ 0.274; ð6:7Þ

which is precisely the value obtained from the consider-
ation of loop quantum black hole entropy obtained in [64].

FIG. 16. Plots of the functions ðX; Y;W; PΛ
R2 ;

PR
RΛÞ. The throat is located at τmin ¼ −3.260 × 1013, at which RðτminÞ ¼ 193115. Curves

are plotted with γ ≈ 0.274, m ¼ 1012mp, jx ¼ 105, η ≈ 1.142.
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As emphasized in [63], this coincidence should not be
underestimated, and may provide some profound physics.
In particular, the above picture is also consistent with the
recently emerging picture in modified LQC models [73],
in which the quantum bounce, which corresponds to the
current transition surface, connects two regions, one is
asymptotically de Sitter, and the other is asymptotically
relativistic, after considering the expectation values of
the Hamiltonian operator in LQG [74–76], by using com-
plexifier coherent states [77], as shown explicitly in [78–80].
In addition, a similar structure of the spacetime of a spherical
black hole also emerges in the framework of string [81], but
now the transition surface is replaced by an S-Brane.
When η≲ 1, the spacetime cannot be conformally flat

for any given values of a and d, as it can be seen from

Eq. (4.40). However, the corresponding Penrose diagram is
the same as that of the case with η≳ 1, and given precisely
by Fig. 9.
In review of all the above three cases, it is clear that the

spacetime on the other side of the transition surface is no
longer a white hole structure without spacetime singular-
ities, as obtained from most of the bottom-up models
[41,46,51], so that the corresponding Penrose diagram is
extended repeatedly along the vertical line to include
infinite identical universes of black holes and white holes
(without spacetime singularities). Instead, the white hole
region is replaced by either a conformally flat spacetime or
a nonconformally flat one, given respectively by Figs. 2
and 9. But, in any case the spacetime is already geodesi-
cally complete, and no extensions are needed beyond their

FIG. 17. Plots of the functions ðX; Y;W; PΛ
R2 ;

PR
RΛÞ. The throat is at τmin ¼ −2.646 × 1011, at which RðτminÞ ¼ 41609.4. Graphs are

plotted with γ ≈ 0.274, m ¼ 1010mp, jx ¼ 105, η ≈ 1.142.
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boundaries, so that in this framework multiple identical
universes do not exist.
In addition, the undesirable feature in the BV model that

multiple horizons exist on the other side of the transition
surface disappears in the ABP model. In this model, the
large quantum gravitational effects near the black hole
horizons seemingly do not exist either, despite the fact that
our numerical computations show that deviations may exist
when very near to the black hole horizons, as shown
explicitly in Figs. 5, 12, and 15. However, more careful
analysis is required, as the metric becomes singular when
crossing the horizons, and our numerical simulations may
become unreliable. We wish to come back to this important
question on another occasion.

When inverse volume corrections, represented by terms
proportional to the constants A, B, C in the effective
Hamiltonian (2.10), are taken into account, the effects are
always subleading, as these terms become important only
when the radius of the two-sphere τ; x ¼ Constant is of
the order of the Planck scale. For macroscopic black
holes, we find that the corresponding radii of the
transition surfaces are always much larger than the
Planck scale, so their effects will be always subleading
even when across the transition surface. Such analysis
was carried out in Sec. V, in which we mainly focus on
the case in which the conditions (6.6) and (6.7) hold. In
[63] it was shown that these subleading terms precisely
make up all the requirement for a spacetime to be

FIG. 18. Plots of the functions ðX; Y;W; PΛ
R2 ;

PR
RΛÞ. The throat is at τmin ¼ −1.416 × 107, at which RðτminÞ ¼ 2012.19. Graphs are

plotted with γ ≈ 0.274, m ¼ 106mp, jx ¼ 105, η ≈ 1.142.

GAN, ONGOLE, ALESCI, AN, SHU, and WANG PHYS. REV. D 106, 126013 (2022)

126013-30



asymptotically de Sitter, defined in [82], even to the
subleading order.
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APPENDIX: SOME PROPERTIES
OF THE STRUVE FUNCTIONS

In general, the νth order Struve function hν½X� is defined
as [67],

hν½z�≡
�
1

2
z

�
νþ1X∞

k¼0

ð−1Þkð1
2
zÞ2k

Γðkþ 3
2
ÞΓðkþ ν 3

2
Þ ; ðA1Þ

which satisfies the differential equation,

z2
d2w
dz2

þ z
dw
dz

þ ðz2 − ν2Þw ¼ 4ð1
2
zÞνþ1ffiffiffi

π
p

Γðνþ 1
2
Þ : ðA2Þ

The general solution of the above equation is

w ¼ aJνðzÞ þ bYνðzÞ þ hνðzÞ; ðA3Þ

where a and b are two integration constants, JνðzÞ and
YνðzÞ are the Bessel functions of the first and second kind,
respectively, and satisfy the associated homogeneous dif-
ferential equation.
Some useful properties of hνðzÞ are,

dðzνhνÞ
dz

¼ zνhν−1;

dðz−νhνÞ
dz

¼ 1ffiffiffi
π

p
2νΓðνþ 3

2
Þ − z−νhνþ1; ðA4Þ

while their asymptotic behaviors are given by

h0½X�≃
8<
:

2
πXþ 1ffiffiffiffiffi

πX
p ðsinX− cosXÞþOðX−3=2Þ; X→∞;

2X
π − 2X3

9π þOðX4Þ; X→ 0;

ðA5Þ

and

h−1½X�≃
8<
:

2
πXþ 1ffiffiffiffiffi

πX
p ðsinXþ cosXÞþOðX−3=2Þ; X→∞;

2
π−

2X2

3π þOðX4Þ X→ 0.

ðA6Þ

In Fig. 1, we plot out the Struve function h0 together with
h−1. For other properties of the Struve functions, we refer
readers to [67].
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