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We analyze nonlocal rotating observables in holography corresponding to spinning bound states. To
renormalize their energies and momenta we suggest and discuss different holographic renormalization
schemes motivated by the static nonlocal observables. Namely the holographic renormalization and the
rotating color singlet mass subtraction scheme. In the holographic renormalization we identify the infinite
boundary terms and subtract them. In the mass subtraction scheme we evaluate the energy of a spinning
trailing string corresponding to the color charged singlet which experiences dragging phenomena and we
subtract it from the energy of the bound state to obtain the renormalized finite energy. Then we apply our
generic framework to certain strongly coupled thermal theories with broken rotational symmetry. We find
numerical solutions corresponding to spinning bound states with a fixed size while varying their angular
frequency. By applying numerically the renormalization schemes, we find that there is a critical frequency
where the bound state ceases to exist or dissociates. We also note that bound states require lower angular
frequencies to dissociate when the theory has less symmetry.
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I. INTRODUCTION

Nonlocal observables have been studied extensively in
the context of gauge/gravity dualities, providing several
interesting insights for the duality and the nonperturbative
physics of the non-Abelian gauge fields. The central
example of such observables is the static Wilson loop
and the entanglement entropy, where their expectation
values are related in holography to extremal surfaces of
certain static boundary conditions. The analytical compu-
tation of extremal surfaces, in presence of scales of the
theory, like the finite temperature, is challenging and
usually can be done only with series expansions. At the
same time it is natural that it contains richer information
about the theory that probes. For example, the Wilson loop
expectation value provides information on confinement, the
stability, and the dissociation of static heavy quark bound
states in the dual theory. In the holographic approach, the
computation consists of the classical on-shell string action
of a worldsheet that is attached on the boundary of the

space, where its extremal area diverges. There are several
naturally motivated proposals on the renormalization
scheme that need to be invoked to cancel this divergence.
Each of them can be thought as corresponding eventually to
a different type of observable since the finite part of the
resulting expectation value depends on the scheme applied.
The vast majority of these studies has been focused on

static Wilson loops, corresponding to nonmoving bound
states and minimal surfaces with constant boundary con-
ditions over time. In this work we extend several of these
studies to rotating observables and surfaces and we present
an analytic explanation of the appropriate renormalization
procedures on the energies that need to be applied in this
case. These observables are related to minimal surfaces
with spinning boundary conditions, corresponding to
rotating heavy quark bound states. Such related studies
have been initiated in [1] where the rotating meson states
were examined in Witten-Sakai-Sugimoto model with a
finite radial cut-off and therefore a finite meson mass.
In our current work we initially work in full generality to

develop the holographic framework for corresponding sur-
faces with rotating endpoints. Irrespective of the particular
holographic theory the energy of the strings dual to heavy
quarks is divergent. The presence of infinities is due to
the infinite distance from the bulk to the boundary of the
holographic space and therefore the infinite length of the
string worldsheet. The infinite distance from the boundary
for the nonrotating case corresponds to the infinite mass of
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the boundary particles from the field theory perspective. The
renormalization of infinities for the case of moving bound
states is significantly more involved compared to the static
case and can be performed in different ways generalizing the
ideas applied on the static Wilson loop. Namely, we study
the holographic renormalization, which is based on the
expansion of the worldsheet energy in the near boundary
regime to identify the infinite term and subtract it. Then we
propose the mass renormalization scheme generalizing the
static case idea [2,3]. From the energy of the rotating bound
state, one removes the infinite thermal mass of the two heavy
quark components to remain with the static potential.
However, moving and rotating color singlets experience
drag in contrast to the color neutral mesons. The drag of the
quark is translated in holography with a minimal trailing
worldsheet solution that develops itself a black hole horizon.
The worldsheet horizon separates the upper segment of the
string ending on the boundary of the theory which moves
slower than the local velocity of the light, from the lower
segment of the string which ends on the horizon of the black
hole spacetime and whose local velocity exceeds that of
light. Fluctuations of the string worldsheet horizon in the
lower segment are causally disconnected from those on the
other side of the horizon, effectively disconnecting this part
of the string to its endpoint of the boundary [4–6], in any
type of holographic theory [7]. Moreover, the boundary
quark experiences an effective temperature that is given by
the worldsheet horizon [7]. Therefore, the energy subtracted
from the total infinite energy of the meson, is the energy of
the spiraling string causally connected to the boundary,
minus the energy of the external source that is provided to
the color singlet to maintain its motion. We also investigate
an approximate renormalization scheme of subtracting a
boosted thermal mass, motivated mainly by its simplicity
and direct applicability compared to the accurate mass
renormalization scheme.We show however that this approxi-
mate renormalization scheme is applicable only for low
angular frequencies.
By fixing the size of the rotating meson LT in a thermal

holographic theory of temperature T there are two phe-
nomena that are observed. There is a maximum at the
absolute value of total finite energy with respect to the
angular frequencies. Moreover, there is a maximum value
of angular frequency beyond which bound states cannot
exist. This has been observed also in [1] for the rotation
of fixed mass mesons. In fact this is a property of the
holographic string solutions in thermal backgrounds.
Second, the comparison of the energy of the rotating
meson, renormalized by the infinite thermal mass of the
individual quarks minus the energy given by the external
source to maintain their motion, leads to a critical angular
frequency where the total energy becomes zero. The critical
angular frequency is in general lower than the maximum
frequency we have mentioned above, and can be thought as
related to the meson melting to its ingredients.

As a side comment to our findings, we note that the
holographic renormalization scheme is appropriate to find
the maximum frequency beyond which mesons cannot
exist. While the mass renormalization scheme requires a
cumbersome computation and is appropriate to realise the
existence of a critical frequency that the meson melts to its
ingredients.
The second part of our work consists on applying the

formalism developed above, to a thermal theory of two
scales. We choose to study the non-local rotating observ-
able in thermal theories with broken rotational symmetry.
The framework for the study of several static observables,
as well as their holographic phenomenology in anisotropic
theories has been initiated in [8] while there is an extensive
followup literature on probes in strongly coupled aniso-
tropic theories and their phase transitions, including for
example Refs. [7,9–25]. We first solve numerically the
supergravity equations of motion to obtain the gravity
background. Then we find numerically the string solution
with the rotating endpoints of fixed length in the holo-
graphic background. The rotating worldsheet becomes
parallel to the radial direction in the bulk before reaching
the boundary, where it becomes parallel for a second time.
We initially work in the static gauge shooting from the
turning point of the string. At the point that the string
becomes parallel, certain derivatives diverge and we
switch to the radial gauge to find the rest of the solution
from this point toward the boundary. Using a patching
method for the two different segments we find the full
string solution. Having obtained the string solutions
numerically we can compute their infinite energy. Then
we apply the renormalization schemes we have described.
The holographic renormalization is relatively straightfor-
ward, and provides the maximum angular frequency of the
meson beyond which it cannot exist. We compare the
rotating meson states of the same size, in different
anisotropies, and we find that the increase of anisotropy
reduces the maximum angular frequency ω, hinting an
easier dissociation of the bound state.
Then we apply the cumbersome mass renormalization

scheme. On top of the string worldsheet with the two
boundary endpoints that corresponds to the bound state, we
compute the worldsheet that corresponds to the rotating
dragging color singlet state [4,26]. For the same fixed
radius of the meson, and for a range of angular frequencies
we find the solution numerically by shooting from the
worldsheet horizon to the boundary, and separately to the
black hole horizon. Eventually we patch the two segments
to obtain the full solution. We then compute the infinite
energy along the string from the boundary to the horizon of
the worldsheet, subtracting the energy of the external
source that is required to maintain the quark motion.
Finally we renormalize the total energy of the meson with
the above quantity to obtain the finite energy of the meson
dependence on the frequency for different anisotropies.
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We observe that there is a critical frequency, lower than
the maximum frequency mentioned above, at which the
renormalized energy becomes zero. This frequency can be
interpreted qualitatively as an analog of the critical fre-
quency that the meson dissociates to its individual quarks.
We compare two heavy mesons of the same size at different
anisotropies and we find that as the anisotropy increases the
critical frequency decreases. Therefore the presence of
anisotropy in the theory acts as a catalyst for the melting
of rotating mesons with respect to their velocities. This
implies that a rotating quarkonium suppression can be
potentially observed in the corresponding strongly coupled
systems with anisotropies present. These qualititave impli-
cations can be also thought as an additional motivation for
our current work.

II. SETUP FOR THE ROTATION IN
HOLOGRAPHIC THEORIES

Let us consider a dþ 2-dimensional holographic theory
with the generic characteristics of an anisotropic black hole
given by

ds2dþ2 ¼ gttðuÞdt2 þ gxixiðuÞdx2i þ gyyðuÞdy2 þ guuðuÞdu2:
ð1Þ

Without loss of generality we consider a d-dimensional
anisotropic space consisting of a (d − 1)-symmetric plane,
where the index i ¼ 1;…; d − 1 and an extra dimension y
that is responsible for the breaking of the isotropy. The
background has a horizon uh where gttðuhÞ ¼ 0, and is
allowed to have a boundary at ub where gxxðubÞ → ∞,
which we take without loss of generality to be at u ¼ 0. The
appropriate coordinate system to study the rotation on the
isotropic plane is

ds2dþ2 ¼ gttðuÞdt2 þ gxxðuÞðdρ2 þ ρ2dϕ2Þ

þ
Xd−1
i¼3

gxixiðuÞdx2i þ gyyðuÞdy2 þ guuðuÞdu2; ð2Þ

where ϕ is the cyclic angle. An appropriate parametrization
for the rotation of probes and the minimal surface with
angular frequency ω in the holographic background is
t ¼ τ, ρ ¼ σ, u ¼ uðσÞ, ϕ ¼ ωτ which we refer to as a
static gauge. The parametrization is appropriate for the
regime of surfaces where the derivative u0ðσÞ remains
finite. The alternative parametrization to which we refer
as a radial gauge: ρ ¼ ρðσÞ, u ¼ σ, becomes useful once
there are divergences in the static gauge. The use of the two
inverse parametrizations is essential for obtaining the full
solution of the rotating surfaces since the derivatives u0ðσÞ
diverge in the bulk before reaching the boundary, in
contrast to the static probes. We elaborate further on these

details later on where we present the surface solutions.
The action in the static gauge reads

ð2πα0ÞSs ¼
Z

dτdσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðgtt þ gxxρ2ω2Þðgxx þ guuu02Þ

q

≔
Z

dτdσ
ffiffiffiffiffiffi
Ds

p
; ð3Þ

where Ds is the square density of the Nambu-Goto action,
and let us absorb for the rest of the paper the ð2πα0Þ units in
the action for presentation purposes. The energy and the
angular momentum carried by the string are given by the
integration of the relevant conjugate momenta along
the string as

Es ¼
Z

dρ
1ffiffiffiffiffiffi
Ds

p ð−gttðgxx þ guuu02ÞÞ;

Js ¼
Z

dρ
1ffiffiffiffiffiffi
Ds

p ωρ2gxxðgxx þ guuu02Þ: ð4Þ

The length of the string is infinite and therefore both of
these expressions need a regularization which we discuss
later. A no-complex condition has to be imposed on the
configuration Eq. (3), which gives ρ2ω2 ≤ −gtt=gxx. This
immediately sets preliminary constraints on the solutions of
the equation of motion. For example, the probing string
cannot touch the black hole horizon unless it is static or
pointlike.
The energy and the angular momentum in the alternative

radial gauge can be found in the same way and read

Er ¼
Z

du
1ffiffiffiffiffiffi
Dr

p ð−gttðgxxρ02 þ guuÞÞ;

Jr ¼
Z

du
1ffiffiffiffiffiffi
Dr

p ωρ2gxxðgxxρ02 þ guuÞ; ð5Þ

where Dr is the square density of the action in this
parametrization

Dr ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðgtt þ gxxρ2ω2Þðgxxρ02 þ guuÞ

q
: ð6Þ

Notice that the parametrizations presented are consistent
for solving the string equations of the rotating probes. The
reason is that the meson is color neutral and experiences
no dragging phenomena, which are translated to trailing
strings.

A. Minimization of rotating surfaces

In this section we elaborate on the anisotropic effects of
the rotation in the string probes and describe the strategy to
obtain their solutions. The ordinary differential equation of
motion for the action (3) is of second order and reads
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∂σ

�
1ffiffiffiffiffiffi
Ds

p u0guuðgtt þ gxxρ2ω2Þ
�

−
1

2
ffiffiffiffiffiffi
Ds

p ∂uððgtt þ gxxρ2ω2Þðgxx þ guuu02ÞÞ ¼ 0: ð7Þ

The boundary conditions correspond to the two endpoints
of the string at the boundary of the holographic space,
defining the radius L of the rotating meson uð�LÞ ¼ 0 and
requiring the string to have a turning point in the bulk such
that u0ðσ0Þ ¼ 0, which by symmetry for the type of our
solutions should be located at σ0 ¼ 0.
There are few immediate remarks on the string solutions.

The reasons that the parametrizations we use are enough
and consistent to describe the rotation of the string is solely
due to the fact that the dual mesons are color neutral.
Therefore we expect that they will not experience any drag
effects as happens with the color singlets and there is no
need to apply a constant force on the boundary to maintain
the rotation of the meson. This is in contrast to the rotation
of color singlets where an external force is necessary to
maintain their motion, and the momentum flux from the
boundary to the bulk along the string results to the
generation of a black hole horizon on the induced string
metric [5], which depends on the anisotropy and leads to
universal phenomena [7,8,11]. Therefore the rotating string
profile corresponding to the meson can be described as a
rigid one with no trail. Nevertheless, we find that the
angular frequency does generate deformation effects on the
string profile due to rotation which depend on the magni-
tude of the angular velocity [1,27], in contrast to the static
string in thermal theories.
This string deformation due to finite angular momentum

complicates the strategy of obtaining the numerical string
solution. The string always reaches the boundary orthogo-
nally satisfying u0ðρÞ → ∞ which can be also understood
by the fact that the string extends infinitely from the bulk to
the boundary. For zero angular momentum the numerical
treatment of Eq. (7) is enough to obtain the full string
solution, with its boundary endpoints lying at ρ ¼ �L,
where along the string the “radius” satisfies ρ2 ≤ L2. For a
finite angular momentum there is a string deformation that
ρ ≥ L in the bulk, while on the boundary ρ ¼ �L. This
leads to a new numerical divergence, since there exists a
saddle point in the bulk at uðσ1Þ, that the deformation
maximizes such that u0ðσ1Þ → ∞. Therefore, we obtain
numerically the string solution from the turning point of the
string uðσ0 ¼ 0Þ to uðσ1Þ by solving Eq. (7), where we
change parametrization to the radial gauge and we solve the
inverse equation which reads

∂σ

�
1ffiffiffiffiffiffi
Dr

p ρ0gxxðgtt þ gxxρ2ω2Þ
�

−
1

2
ffiffiffiffiffiffi
Dr

p ∂ρððgtt þ gxxρ2ω2Þðgxxρ02 þ guuÞÞ ¼ 0: ð8Þ

The above equation is solved from uðσ1Þ to the boundary,
using the initial conditions obtained from the static gauge
equation (7) at uðσ1Þ. Following this strategy we obtain the
full string solutions in holographic theories as we apply it in
later sections. It may be instructive for the reader to have a
first look at the Figs. 1 and 2, in order to visualize the shape
deformations we describe in this section and the need of the
two gauges. The different colors on the string in the figures
represent the two different gauges we have used to obtain
the relevant solution.
The energy and the momentum carried by the string is

given by the integrals (4) for the range ρ ¼ 0 to ρ ¼ σ1 for
the solution (7), and the integrals in Eq. (5) from uðρ ¼ σ1Þ
to uðρ ¼ LÞ for the solution (8). The total energy and
momentum is given by their sum, while to take into account
the whole symmetric string with the integration boundaries
we mention we need to multiply by two:

Ebound ¼ 2ðEs þ ErÞ; Jbound ¼ 2ðJs þ JrÞ: ð9Þ

The length of the string is infinite, therefore the above
expressions are infinite and require renormalization.

III. RENORMALIZATION OF INFINITIES FOR
ROTATING PROBES

The energy of the holographic strings dual to heavy
quarks is divergent. The presence of infinities lies on the
infinite distance from the bulk to the boundary in the

FIG. 1. A string solution of the differential equations (7) and (8)
corresponding to a rotating bound state. We shoot from the
turning point of the string toward the boundary in the static gauge
to solve the Eq. (7). The string develops a local saddle point and
the derivative u0ðρÞ blows up. At this point we switch to the more
convenient radial gauge. We shoot from this point with the right
initial conditions toward the boundary solving (8). This full string
is obtained by patching the two solutions. The solution of the
radial gauge is depicted with red color and in the static with blue.
The turning point has been found by the methods described in the
main text such that the boundary length LT ¼ 0:1, while in this
plot the temperature, anisotropy, and spin are kept constant.
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holographic space and therefore the infinite length of the
string itself. The infinite string distance from the boundary
for static quarks corresponds to the infinite mass of the
boundary particles, from the field theory perspective. The
renormalization of infinities can be performed in different
ways we suggest below.
A straightforward approach for static bound states

consists of subtracting the bare mass of the quark. In
particular, for static mesons the corresponding counterterm
that is added in the energy to cancel the UV divergence,
corresponds to the static solution of the straight string and it
is the dominant contribution of the infinite mass of the
static quark

2πα0Sm¼2T
Z

ub

uk

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gttguu

p
≔SUVðubÞ−SIRðukÞ; ð10Þ

where ub is the boundary and uk is the deepest point in the
bulk of the spacetime, for example the position of the
horizon of the black hole in case that it is present. T is
the timescale of the integration and does not play any role
in the computation. The counterterm SUV depends only on
the intrinsic variables of the theory and on the cutoff ub. It
is equal to the upper bound contribution of the above
integral. The whole thermal mass Sm depends on the
state of the theory. The renormalization scheme for such
probes has been proposed in [2,3] and is applicable in
anisotropic theories [8] we examine below. This is a widely
used and straightforward renormalization scheme for the
static probes, while for the moving ones there are certain
complications.

The extra complication comes from the fact that color
singlets are charged and experience drag phenomena while
moving in thermal field theories. As a result the quark
corresponding to the string solution with a single endpoint
needs the application of a constant external force to keep it
moving, resulting to a momentum flow from the boundary
to the bulk generating a trailing string solution with an
intrinsic black hole in the worldsheet. Such solutions have
been examined in depth in isotropic [5,6,28] and generic
holographic theories [7,8,11,26]. Integrating the energy
over the trailing rotating string solutions will result to the
cancellation of the divergences of the energy (9), however
will add the contribution of the dragging of the color
singlet, which does not have a counterpart in the color
neutral meson.
Note that the divergences for rotating probes appear in the

angular momentum as well. The reason is the same as in the
energy, and the schemes to renormalize the infinities are
parallel to the ones we apply for the energy. Moreover, note
that the renormalization schemes we propose below apply in
a straightforward way in the expectation values of rotating
Wilson loops. Below we describe the most natural renorm-
alization schemes for the energy and momentum, which can
be thought eventually as corresponding to different type of
observables related to the quarkonium energy.

A. Holographic renormalization

Following our previous discussion, an appropriate
scheme to cancel the divergences in the energy is to take
into account the rotation by considering the velocity
dependent counterterm analog of the SUV, which we call
SUV;hol such that the finite energy is

Etot ¼ Ebound − SUV;hol; SUV;hol ¼ fðωLÞSUVðubÞ; ð11Þ

where Ebound is given by Eq. (9) and fðωLÞ is determined
by the characteristics of the probe solely on the boundary
and depends on the velocity. The idea behind this scheme is
to expand the energy in the near boundary regime, identify
the infinite term and subtract it, as we do for the holo-
graphic theories counterterms [29].
The same type of divergences appear in the angular

momentum as well. The reason is the same as in the energy
and the schemes to renormalize the infinities are parallel to
the ones we apply for the energy to get

Jtot ¼ Jbound − JUV;hol; JUV;hol ¼ hðωLÞSUVðubÞ; ð12Þ

where hðωLÞ is determined by the characteristics of the
probe on the boundary and depends on the velocity. To
determine the form of these terms we expand (5) asymp-
totically on the boundary ρ ¼ L and by using the fact that
the string approaches it perpendicularly we get

FIG. 2. The spinning strings at anisotropy a=T ¼ 0.5 and fixed
radius LT ¼ 0:1. The solutions are for angular velocities ranging
from almost static strings to ω ≃ 4.9, which is approximately the
faster spin that is allowed for the chosen boundary data, such that
a solution of the Eqs. (7) and (8) exists. The slowest rotating
string is the one that remains closer to the boundary, while the
fastest one reaches deeper in the bulk. Increase of the velocity
deforms stronger the string and moves the point u0ðρÞ → ∞
deeper in the bulk as it is depicted by the extension of the regions
parametrized with the radial gauge plotted with red color.
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SUV;hol ≃
Z

ub
du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gttguu

1þ gxx
gtt
L2ω2

s
;

JUV;hol ≃ L2ω

Z
ub
du

ffiffiffiffiffiffiffiffi
guu
−gtt

r
gxxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ gxx
gtt
L2ω2

q : ð13Þ

The above expressions take into account the rotation effects
on the energy and momentum, and the divergences appear
with the right factor in order to obtain a finite expression in
Eq. (9). At the limit ω ¼ 0 one recovers the static counter-
term SUVðubÞ that is included in the Eq. (10). Here we will
focus on nontrivial (anisotropic) RG flows that have a
conformal UV fixed point. For theories with a conformal
UV fixed point the near boundary expansion (13) gives

SUV;hol ≃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − L2ω2
p SUVðubÞ;

JUV;hol ≃
L2ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − L2ω2
p SUVðubÞ; ð14Þ

where the SUVðubÞ is the same of the Eq. (10). In summary,
for the holographic renormalization scheme the finite
energy and momentum for the rotating bound state
of radius L and angular frequency ω, is given by the
Eqs. (11), (12) where the counterterms in the expressions
are given by the Eq. (14).

B. Approximate boosted mass renormalization

The above expressions (14) would match the expected
relativistic energy and momentum, if instead of SUVðubÞwe
had the Sm, the thermal mass of the quarks, since the
Lorentz factor appears naturally. In fact this motivates the
computation of the following finite quantity as an approxi-
mate scheme to observe the phase transitions of rotating
mesons to their free ingredients

E ¼ ðEbound − SUV;holÞ −
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − L2ω2

p Sm − SUV;hol

�

¼ Ebound −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − L2ω2
p Sm; ð15Þ

where Sm is the thermal mass of the two static quarks, and
in this expression is approximated as given by Eq. (10).
A similar renormalization formula applies to the angular
momentum. Although this is close to be the analog of the
static mass subtraction scheme, there is a significant
complication we have neglected in writing down the
Eq. (15). A moving straight string extending from the
boundary to the horizon of the black hole, corresponding to
the Sm in Eq. (15), is not a solution in black hole
environments, due to the fact that the color singlet is
sensitive to dragging phenomena and therefore energy
loss occurs. The expression (15) does not capture such

phenomena and is not accurate. Nevertheless, it can be
thought as serving as a good and straightforward approxi-
mation of the exact color singlet renormalization moving in
the thermal background at least for low velocities and it is
worthy to be briefly discussed. We will compute the range
of the validity of this approximate scheme in the following
sections. An alternative motivated discussion on this type
of term and its approximate nature interpreting it as a mass
term in a different setup appears in [30].

C. Rotating color singlet mass subtraction
renormalization

The discussion of the previous sections motivates the
most natural subtraction scheme to observe the phase
transitions from a rotating meson bound state to its color
singlets. In this scheme, the energy and momentum of a
meson of size 2L and angular frequency ω, is compared
with the energy and momentum of its two ingredients. That
is two free quarks moving along a circle of radius L with
the same angular frequency. The color singlet corresponds
to a rotating string with a single boundary endpoint. The
string worldsheet due to the drag phenomena develops a
nontrivial trailing profile. Such rotating strings have
been studied in isotropic and anisotropic theories in
Refs. [4,26] and can be thought as generalization of linear
string motion [5,7,11].1 The trailing worldsheet develops a
horizon uws which depends on the velocity of the quark at
the boundary and the other scales present in the theory.
Thus one may consider as an interesting physical quantity
the following

E ¼ ðEbound − SUV;holÞ − ðEsinglet − SUV;holÞ
¼ Ebound − Esinglet: ð16Þ

Finding Esinglet is a nontrivial exercise. We first need to find
the numerical solution of the spiraling string with a single
endpoint at the boundary. The string is parametrized in the
radial gauge with ϕðuÞ ¼ ωτ þ θðuÞ. The function θðuÞ
parametrizes the spiraling of the trailing string and it is
necessary to caption the right worldsheet dynamics. The
action for the spiraling string is given by

Ssinglet¼
Z

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðgttþgxxρ2ω2Þðguuþgxxρ02Þ−gttgxxρ2θ02

q

≔
Z

du
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dsinglet

p
; ð17Þ

where Dsinglet is the square density of the Nambu-Goto
action for the spiraling string, and we have absorbed

1Another direction using our setup would be to study the
analog of the Wilsonian renormalization of rotating observables
to derive the holographic effective string action [31].
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the ð2πα0=T Þ in the action following our previous con-
ventions. The equation of motion for θðuÞ reads

θ02 ¼ −Π2
ðgtt þ gxxρ2ω2Þðguu þ gxxρ02Þ

gttgxxρ2ðgttgxxρ2 þ Π2Þ ; ð18Þ

where Π is a constant of motion, and can be thought as the
rate of energy loss of the string. It is the energy required to
keep the quark moving with a constant angular velocity.
Since it is constant it can be computed at any point of the
trajectory and the most convenient point is at the string
worldsheet horizon uws. We obtain uws by looking at the
sign change point of the above ratio (18) which leads to the
following algebraic system

gttðuwsÞ ¼ Πω; gxxðuwsÞρðuwsÞ2 ¼ −
Π
ω
; ð19Þ

which can be solved numerically. uws depends on Π, ω and
the rest of the scales of the theory. It is the horizon of the
worldsheet that separates the segment of the string that ends
on the boundary of the theory which moves slower than the
local velocity of the light, from the segment of the string
which ends on the horizon of the black hole spacetime and
whose local velocity exceeds that of light. This is analogous
to the linear quark motion. The equation for the radius
profile of the string

ρgxxðω2ðguu þ gxxρ02Þ þ gttθ02Þffiffiffiffiffiffiffiffiffiffiffiffiffi
Dsinglet

p
− ∂σ

�
gxxρ0ðgtt þ gxxρ2ω2Þffiffiffiffiffiffiffiffiffiffiffiffiffi

Dsinglet
p �

¼ 0; ð20Þ

will be solved numerically together with Eq. (18). We again
use a type of patching method to obtain the full string
solution since at uws there is a singularity. We solve
perturbatively (20) at uws to determine the first derivative
ρ0 in this regime and therefore the initial conditions for the
differential equation. Then we shoot from this point toward
the boundary of the background and then toward the
horizon of the black hole to obtain the two segments of
the string. The energy and the angular momentum carried
by the string are given by the integration of the relevant
conjugate momenta along the string as

Esinglet ¼ 2

Z
ub

uws

du
−gttðguu þ gxxρ02 þ gxxρ2θ02Þffiffiffiffiffiffiffiffiffiffiffiffiffi

Dsinglet
p ;

Jsinglet ¼ 2

Z
ub

uws

du
ωgxxρ2ðguu þ gxxρ02Þffiffiffiffiffiffiffiffiffiffiffiffiffi

Dsinglet
p : ð21Þ

The dependence of θ0 can be eliminated by the use of the
Eq. (18). Knowing the profile of the string we can integrate
along the string to find its infinite energy and momentum so
that to renormalize the observable (16). This quantity can

be thought as the closest analog to the mass renormalization
scheme for the static heavy quark bound states [2].
Nevertheless note that in order for the two color singlets

to have the same boundary conditions ðL;ωÞ with the
bound state meson, a continuous application of a constant
force is needed in order to maintain its rotation counter-
balancing the energy loss phenomena of the quark in the
thermal environment. One may also subtract from (16) the
energy deposited in the medium for a fixed unit of time T .
This is equal to the energy of the external source respon-
sible for maintaining the motion of the quark with a
constant speed. This energy loss for a period of time T
(which is the same period we have computed and normal-
ized the other energies in the manuscript) is given by

Eexternal ¼ −2gttðuwsÞ
1

2πα0
; ð22Þ

while we will again absorb the units of 2πα0 to be consistent
in our notation and the factor of two is due to the two
quarks. It is instructive to subtract the energy of the external
source to compute the quantity

E ¼ ðEbound − SUV;holÞ − ðEsinglet − SUV;hol − EexternalÞ
¼ Ebound − ðEsinglet − EexternalÞ: ð23Þ

This is the way we choose to renormalize the energy. In
summary the mass renormalization scheme is obtained by
Eq. (23), where Eexternal is given by Eq. (22), and Esinglet is
given by the Eq. (21) integrated along the string solution of
the differential equation (20) for the string segment above
the worldsheet horizon which is given by the algebraic
solution of equations (19).

IV. BRIEF IMPLEMENTATION OF THE
ANALYTIC RELATIONS

In this section we warm up by presenting a brief analysis
on an analytic perturbed background without specifying
explicitly the theory. The scale of the perturbation is a,
which can be thought as related to a source that generates
an anisotropy. The metric for such a theory takes pertur-
batively the form

gttðuÞ ¼ −gxx0ðuÞfðuÞ − a2gtt2ðuÞ;

guuðuÞ ¼
gxx0ðuÞ
fðuÞ þ a2guu2ðuÞ; gx1x1ðuÞ ¼ gxx0ðuÞ;

gx2x2ðu; ρÞ ¼ gxx0ðuÞρ2; gyyðuÞ ¼ gxx0ðuÞ þ a2gyy2ðuÞ;
ð24Þ

where fðuÞ is the blackening factor of the generic
black hole with temperature T. Then a ≪ T and
a ≪ ðany other scale in the theoryÞ can be considered as
the low anisotropy limit where the leading terms in the
expansion correspond to an isotropic thermal theory, and
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uðσÞ ¼ u0ðσÞ þ a2u2ðσÞ; ρðσÞ ¼ ρ0ðσÞ þ a2ρ2ðσÞ; ð25Þ

are the solutions uðρÞ and ρðuÞ that correspond to the static and radial gauge, respectively. The energy and momentum is
modified from the isotropic theory in the static gauge as

Es ¼
Z

dρ

"
gxx0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðf þ u00

2Þ
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f − ρ2ω2

p þ a2
fðf þ u00

2Þ
2ðfðf þ u00

2Þðf − ρ2ω2ÞÞ3=2 · ððf þ u00
2Þðf − 2ρ2ω2Þgtt2

þ u2f0gxx0ðfðf − 2ρ2ω2Þ − ρ2ω2u00
2Þ þ fðf − ρ2ω2Þðu00ðfu00guu2 þ 2gxx0u02Þ þ 2u2ðf þ u00

2Þg0xx0ÞÞ
#
;

Js ¼
Z

dρ

"
ωρ2gxx0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f þ u00

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðf − ρ2ω2Þ

p − a2
ρ2ωðf þ u00

2Þ
2ðfðf þ u00

2Þðf − ρ2ω2ÞÞ3=2 · ðfðf þ u00
2Þgtt2

þ u2f0gxx0ðf2 þ u00
2ð2f − ρ2ω2ÞÞ − fðf − ρ2ω2Þðu00ðfu00guu2 þ 2gxx0u02Þ þ 2u2ðf þ u00

2Þg0xx0ÞÞ
#
;

and in the radial one as

Er ¼
Z

du

2
64gxx0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fρ00

2
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ2

0
ω2

f

q þ a2
fðfρ002 þ 1Þ

2ðfðfρ002 þ 1Þðf − ρ20ω
2ÞÞ3=2 · ðf

2ðf − ρ20ω
2Þguu2

þ ðfρ002 þ 1Þðf − 2ρ20ω
2Þgtt2 þ 2fgxx0ðρ0ρ2ω2ðfρ002 þ 1Þ þ fρ00ρ

0
2ðf − ρ20ω

2ÞÞÞ

3
75;

Jr ¼
Z

du

2
64ωρ20gxx0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fρ00

2
p

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ2

0
ω2

f

q − a2
fρ0ωðfρ002 þ 1Þ

2ðfðfρ002 þ 1Þðf − ρ20ω
2ÞÞ3=2 · ðρ0ðfðρ

2
0ω

2 − fÞguu2

þ ðfρ002 þ 1Þgtt2Þ þ 2gxx0ðρ2ðfρ002 þ 1Þðρ20ω2 − 2fÞ þ fρ0ρ00ρ
0
2ðρ20ω2 − fÞÞÞ

3
75;

where the anisotropic contribution enters in the subleading
terms. Once the background is known the above expres-
sions in certain circumstances can be conclusive on the
qualitative effect of the anisotropy of the rotation of the
probes. For theories where the sign of the perturbation
integrand is definite along the whole RG flow, one should
be able to extract a conclusive qualitative answer on the
effect of the anisotropy without evaluating the integrals. In
the following sections we apply our framework on certain
theories numerically presenting a precise analysis.

V. APPLICATIONS ON THE AXION DEFORMED
ANISOTROPIC THEORIES

To apply our formalism let us consider a theory with
multiple scales so that the observations on the rotating
probes are more involved. Let us consider backgrounds that
are derived by the IIB supergravity action in the string frame

S ¼ 1

2κ210

Z
M

d10x
ffiffiffiffiffiffi
−g

p �
e−2ϕðRþ 4∂Mϕ∂

MϕÞ

−
1

2
F2
1 −

1

4 · 5!
F2
5

�
; ð26Þ

where the index M ¼ 0;…; 9, F1 ¼ dχ is the axion field
strength and ϕ denotes the dilaton. The action is known to
have solutions of the form [32,33]

ds2¼ 1

u2

�
−F ðuÞBðuÞdt2þdx21þdx22þHðuÞdx23þ

du2

F ðuÞ
�

þZðuÞdΩ2
S5

χ¼ax3; ϕ¼ϕðuÞ; ð27Þ

with an asymptotic AdS boundary. The anisotropic RG flows
can be found numerically, while analytical solutions are
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possible in the limit of low a=T. At the order of a2 the
solution reads

F ðuÞ ¼ fðuÞ þ a2F 2ðuÞ; BðuÞ ¼ 1þ a2B2ðuÞ;
HðuÞ ¼ e−ϕðuÞ; ZðuÞ ¼ e

ϕðuÞ
2 ;

ϕðuÞ ¼ a2ϕ2ðuÞ; fðuÞ ≔ 1 −
u4

u4h
;

uh ¼
1

πT
þ a2

T2

5 log 2 − 2

48π3T
;

where the functions are

F 2ðuÞ ¼
1

24u2h

�
8u2ðu2h − u2Þ − 10u4 log 2

þ ð3u4h þ 7u4Þ log
�
1þ u2

u2h

��
;

B2ðuÞ ¼ −
u2h
24

�
10u2

u2h þ u2
þ log

�
1þ u2

u2h

��
;

ϕ2ðuÞ ¼ −
u2h
4
log

�
1þ u2

u2h

�
:

In our study we focus on the numerical solutions of the form
(27) that are exact and valid for any value of anisotropy. We
solve numerically the equations of motion derived by the
action (26) for the background (27) for large anisotropies
beyond the perturbative regime, to obtain the functions
F ðuÞ, BðuÞ, HðuÞ, ZðuÞ, and ϕðuÞ with UV conformal
boundary conditions and anisotropic Lifshitz IR, as in [33].
The equation of motion for the dilaton obtained by the
action (26), can be expressed after some manipulations
as a third order differential equation that is independent of
the other functions. It is solved perturbatively in the near
horizon regime with an expansion of the form ϕ ¼
ϕh þ ϕnðu − uhÞn. Once the dilaton is solved we proceed
to solve the rest of equations. We use the perturbative dilaton
solution as initial data to start shooting from the horizon of
the black hole to numerically obtain the rest of the back-
ground functions. By completing all the integrations we
obtain smooth numerical data as a function of the holo-
graphic direction describing the complete RG flow for the
desirable choices of a=T. In our setup the dual theory has a
conformal UV fixed point and an anisotropic Lifshitz IR
fixed point with constant anisotropic exponent z ¼ 3=2. It
turns out that the value of the exponent is fixed by the form
of the axion-dilaton coupling in the supergravity action.
Anisotropic theories with nontrivial RG flows and arbitrary
exponents, describing confining-deconfining phase transi-
tions and their dependence on the anisotropy have been
obtained in [14] and anisotropic theories with trivial RG
flows in [34,35].

A. Properties of rotating minimal surfaces

In this section we elaborate on our strategy to find the
spinning strings solutions in the anisotropic theory numeri-
cally. We briefly describe the general methodology to solve
the equations of motion for such strings in any holographic
background. We like to fix the boundary length of the string
while varying the other parameters of the theory. In this
way we will be able to obtain valid conclusions on the
effects of angular frequency and anisotropy on the bound
states of fixed size. The turning point of the string which is
parametrized with the static gauge, is related to the
boundary conditions of the string which are described
by the radial gauge. For a range of angular velocities, we
determine the set of the turning points u⋆ðω; LTÞ, where
LT is kept fixed for certain values of anisotropy. Note that
u⋆ eventually will be the part of the initial conditions in the
static gauge numerics, while L is relevant to the part of the
string parametrized by the radial gauge.
The full string solution is obtained by a patching method

of the two segments of the string. First we integrate
numerically the differential equation (7) in the static gauge
starting from the turning point u⋆ðω; LTÞ to obtain a
function uðρÞ. For ω ≠ 0 the derivative u0ðρÞ blows up
in the bulk before the string reaches the boundary, since
there exists a point in the bulk that ρ > L. This deformation
is caused by the angular momentum. At this point we
switch to the radial gauge which is more convenient
numerically and we shoot from there to the boundary
solving the Eq. (8) to obtain ρðuÞ. The patching of the two
segments in the two different gauges gives the full string
solution which reaches the boundary at a fixed value LT.
Similar numerical approaches have been used to obtain
rotating strings in dS slicing of AdS [27].
The results of the numerical integration described above

are presented in Figs. 1 and 2. The string segments in the
two different gauges are presented with different coloring.
In the zero velocity limit one may work only in the static
or radial gauge since the string deformation is absent, i.e.,
ρ ≤ L and the divergence in the derivative occurs at the
boundary. As the angular velocity increases the deforma-
tion effects are stronger. This can be understood in the plots
by noticing the increase of the segment of the string
parametrized by the radial gauge and also the obvious
deformation of the shape of the string. Moreover, the
increase of the velocity forces the string solution to extend
deeper in the bulk in order to keep fixed its boundary length.
Since we have now the tools to obtain the full string

solution for any anisotropy we can proceed to compute the
energy and the momentum along the string.

B. Energy of moving probes in anisotropic theories

In this section we compute the energy of the rotating
probes in anisotropic theories in the different renormaliza-
tion schemes, which we also compare to each other.
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1. The numerical methods

Let us make a description of the numerics applied on the
anisotropic theory. We first determine the holographic
theory numerically. We choose to work with the physical
choice of fixing the scales of our theory a=T and produce
the background for several values of the ratio. We solve
numerically the equations of motion derived by the
action (26) for the background (27) to obtain the functions
F ðuÞ, BðuÞ, HðuÞ, ZðuÞ, ϕðuÞ. The method has been
described already in Sec. 5 below the metric ansatz.
Once we have obtained the background theory we

proceed to solve the rotating string worldsheet equation
with the two endpoints on the boundary following the
methodology described in the previous subsection. We do it
as follows, for each pair ðω; a=TÞwe find the initial data for
the string differential equations and more particularly its
turning point u⋆, such that LT ¼ constant. In this sense we
obtain the set of values u⋆ðω;a=TÞ such that LT¼ constant.
Our primary target is to compute the energies of the
different renormalization schemes for different anisotropies
while keeping the size of the meson fixed.
Using the obtained u⋆ðω; a=TÞ data we derive the string

solutions for the range of angular frequencies ω and the
different values a=T, following the methods we have
described in Sec. VA, and patching each segment of the
string solution parametrized by the radial and static gauge.
At this point we have obtained the desirable full string
solutions. Then we need to integrate the energy and the
momentum expressions along the string in the static gauge
and radial gauge respectively using the expressions (4)
and (5). The string segment in the radial gauge is the one
that reaches the boundary and has to be renormalized using
the suggested renormalization schemes we describe above.
In practice, a numerical regulator is used very close to the
boundary which does not affect the final result since the
regulator is canceled for the observables we compute.
The holographic renormalization and the approximate

mass subtraction scheme can then be applied in a relatively
straightforward way, by applying the formulas of the
Secs. III A and III B, respectively. On the other hand,
the renormalization that contains the trailing string is more
complicated. We need to numerically solve the single
endpoint trailing string solution for the same ðω; LTÞ
values of the corresponding rotating meson. We first
determine numerically from the differential equation (20)
the constant Π such that the spiraling string rotates
around the center, for a fixed radius LT with an angular
frequency ω. The numerical relation we obtain is of the
form ΠðLT;ωÞ. Simultaneously we also identify the values
ðuws; ρðuwsÞÞ from the Eq. (19) for the given set of values
ðLT;ωÞ. To find the full trailing solution of the string for
each ω we integrate the differential equation (20) from uws
to the boundary, and from uws to the black hole horizon
with the initial conditions obtained by solving perturba-
tively and analytically the Eq. (20) around uws. We patch

the two solutions at uws to get the full spiraling string.
Finally to obtain the infinite energy and angular momentum
of the spiralling string we numerically integrate (21) over
the obtained string worldsheet from the boundary to its
causally connected uws point.

C. The renormalized energy

In this section we present the results for the energy
and the angular momentum of the observables. The UV
limit for all the renormalized observables is common and
conformal while the IR differs depending on the scheme.
The holographic renormalization scheme does not depend
on the state of the theory since there is no IR contribution.
However for the rest of the observables the quantity that is
used to renormalize the infinity does contain an extra IR
term that depends on the state of the theory. This can be
thought of as motivated by the analog of the thermal mass
renormalization scheme for the static Wilson loop [2,3].
Our theory has two scales and the quantitative behavior

of each observable with respect to the anisotropy does
depend on the scheme we use to cancel the infinity. It is
helpful to recall first the role of the different renormaliza-
tion schemes in static solutions with a single scale, the
temperature. Static heavy quark observables that renorm-
alize with terms that include IR contributions, which have a
typical form of fð1=uhÞ, tend to develop total energies that
are simply shifted by the IR contribution of the extra term.
These terms are absent in holographic renormalization. The
most characteristic example is the Wilson loop at finite
temperature [3] and anisotropy [8]. For static bound states
there are two main observations we would like to focus.
There exists a maximum at the renormalized finite energy,
such that there are two string solutions of same length L,
but different energy. The solution that is closer to the
boundary is the stable and energetically favorable. This is a
property of the solution itself and occurs irrespective of the
renormalization scheme, it is evident in the holographic
renormalization and mass subtraction scheme. The second
observation appears in the mass renormalization scheme,
when from the energy of the meson, the thermal quark
masses including terms of the form fð1=uhÞ are subtracted.
There exists a critical length (or temperature depending
what dimensional quantity is kept fixed), where the energy
of the two separate free quarks becomes less than the
energy of the bound state. This is where the bound state
prefers to dissociate. This critical length is always smaller
than the length that the state becomes unstable and there-
fore of greater phenomenological importance.
In the case of spinning bound states the situation is more

involved. We choose a string solution of boundary size 2LT
that is energetically favorable and belongs in the stable
branch. We keep fixed the size of the meson and we change
the angular velocity to observe the effect of the angular
frequency and the anisotropy of the theory on the spinning
heavy meson. Using the holographic renormalization we
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find the maximum angular frequency beyond which the
bound state configuration does not exist. While using the
mass renormalization scheme of the spinning quarks we
aim to compare the energies of the bound state to that of the
free spinning quarks.
The holographic renormalization of rotating mesons

in theories of different anisotropies is depicted in
Figs. 3 and 4. The energy is given by the Eq. (11), where

the counterterms in the expressions are given by the
Eq. (14). The two mesons are compared for a fixed value
of LT for various angular frequencies in theories with a
different anisotropy. The numerical details on obtaining
this plot are mentioned in Sec. V B 1. The increase of
anisotropy leads to an increase of the absolute value of
energy of the spinning string. We note that for the rotating
bound state there exists an ωmax that the spin can reach.
This value is decreased for increasing anisotropies imply-
ing that the range of frequencies that the bound state of
meson exists decreases for higher anisotropies. This also
hints that the dissociation of the heavy bound state occurs
easier with increase of the anisotropy.
Next we subtract from the energy of the spinning meson

the energy of the boosted thermal quark mass, introduced in
Sec. III B. This is an approximate scheme since the boosted
quark is not an exact solution of the theory, and we neglect
the drag effects. Nevertheless, at low angular frequencies
the precise spiraling string solution in the thermal theories
that corresponds to the moving quark, approaches the
straight string solution. Therefore, the scheme is expected
to be a good and straightforward approximation at low
angular velocities of the exact spinning color singlet analy-
sis. We will come back to this point later. We renormalize for
now the energy of the meson as the Eq. (15), by computing
the boosted thermal mass for each angular frequency and
fixed LT. We obtain the results plotted in Figs. 5 and 6 for
the squared energy. Increase of the anisotropy, decreases the
ωmax as in the holographic renormalization scheme leading
to the same qualitative behavior. However, we emphasize
that this is an approximate scheme.
Lastly we proceed to the closest analog of the mass

renormalization scheme of the static mesons. For
rotating mesons, it is a challenging exercise as we have
elaborated already. We solve the spiraling string

FIG. 3. The energy of the spinning strings dual to rotating
mesons, obtained in the holographic renormalization scheme for
two different anisotropies, while keeping fixed the boundary
value LT ¼ 0:1. We observe that increase of anisotropy leads to
an increase of energy. Notice the existence of an ωmax that the
spin can reach. This value is decreased for increasing anisotropies
hinting that the range of frequencies that the bound state of meson
exists decreases for higher anisotropies. The red solid curve is for
a=T ≃ 0.7 and the blue dashed for a large anisotropy a=T ≃ 8.2.

FIG. 4. The energy versus the absolute angular momentum for
two different rotating strings with fixed boundary size LT. The
settings are similar to the Fig. 3. There is a maximum reachable
angular velocity for each particle. As we increase the angular
velocity from zero, the energy increases in the upper segment of
each curve, it reaches to a maximum at a certain value and then it
decreases. As in the Fig. 3 all the quantities are normalized with
the temperature which is kept fixed and equal to unit.

FIG. 5. The energy obtained by the rotating string dual to the
rotating bound state minus the approximated boosted thermal
mass (15) of the quark as a function of the frequency ω. There
exists an ωmax that decreases as the anisotropy increases. The plot
conventions remain the same as in Fig. 3.
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equations (18) and (20) for ðρðuÞ; θðuÞÞ, for a fixed radius
of rotation and different angular frequencies applying the
methods described in Secs. III C and V B 1. The projected
worldsheet solution ρðuÞ for a series of frequencies is
presented in Fig. 7, where the worldsheet horizon is
discerned. Increase of the angular frequency, leads to
increase of the drag effects and the trailing of the string,
while at the same time the worldsheet horizon moves closer
to the boundary. Having obtained the string solutions we
compute the energy of the string by integrating along
the worldsheet from the boundary endpoint to its horizon.

This choice is justified by several arguments. The boundary
quark experiences an effective temperature that is given by
the worldsheet horizon [7,28]. Moreover, fluctuations of the
string outside the worldsheet horizon u < uws at the boun-
dary side, are causally disconnected from those on the other
side behind the worldsheet horizon. Effectively this means
that the segment of the string u > uws is disconnected from
its endpoint located at the boundary u ¼ 0, like the linear
quark motion [5,6]. From the total energy of the spiraling
string causally connected to the boundary we need to
subtract the energy of the external source given by
Eq. (22), that is provided to the color singlet to maintain
its motion. Eventually we obtain the appropriate total
renormalized energy (23), which is presented in Fig. 8 for
two mesons of the same LT in different anisotropies. We
observe that the energy of the bound state is lower compared
to that of its free ingredients for low angular frequencies,
until a critical frequency is reached where they become
equal. Increase of the theory’s anisotropy leads to lower
critical angular frequencies hinting an easier dissociation of
the rotating meson. Here, we also note that for the study of
dissociation of the mesons one may compare the actions
themselves motivated by theWilson loop expectation values.
Qualitatively the same conclusions are obtained regarding
the existence of a critical frequency and its behavior.
Finally, motivated by the complexity of the computation

of the spiraling string and the mass subtraction
scheme (23), we would like to compare it with the easily
applicable approximate boosted mass scheme (15), in
order to obtain the range of applicability of the latter
one. We find the differences in energy and momentum for
fixed LT with respect to the angular frequencies, presented

FIG. 6. The absolute momentum obtained by the spiraling
string dual to the rotating meson minus the approximate boosted
thermal mass (15) of the quark as a function of the frequency ω.
The plot conventions are the same as in Fig. 3.

FIG. 7. The profile ρðuÞ of the trailing spiraling string for
different angular frequencies ω ¼ ð0.7; 4.2Þ and a fixed radius
LT and anisotropy a=T ≃ 8.2. The lower values of ω correspond
to the almost straight strings, while as the frequency increases the
profile of the string develops a curvature as can be seen in to
upper faster spiraling strings of the plot. The worldsheet horizon
is also discerned and as the frequency increases it approaches
closer to the boundary of the theory. The energy of the segment of
the string above the worldsheet horizon is the one we use to
renormalize the energy of the meson. The boundary of the
holographic background is at u ¼ 0.

FIG. 8. The total energy (23) of the rotating bound states as a
function of the frequency ω. The energy is renormalized with the
rotating color singlet energy taking into account its external source
energy to maintain its motion. The diagram is for two different
anisotropies, while keeping fixed the size LT. For the chosen
values we observe that there is a critical frequency such that
Ec ¼ 0, where the bound state energy is equal to the energy of its
free moving ingredients. As the anisotropy increases the critical
frequency ωc decreases. The conventions are the same as in Fig. 3.
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in Figs. 9 and 10. For low frequencies the two schemes
match well, since the trailing string is almost straight and
the worldsheet horizon is close to the holographic theory
black hole horizon. For intermediate and higher frequencies
though the schemes differ as the dragging effects become
significant. As a result the boosted mass subtraction
scheme may not be as reliable as the accurate mass
subtraction scheme in the regime of higher angular
frequencies, regarding the study of the phase transitions.

VI. ZERO TEMPERATURE SPINNING STRINGS

Before we conclude we briefly comment on the zero
temperature spinning string solutions by applying our
formalism to the AdS spacetime. We find that the spinning

strings in AdS are still deformed due to the angular
momentum and increase of the angular frequency leads
to an increase of the deformation even at zero temperature.
The string solutions are qualitatively similar to the thermal
case plotted earlier in Figs. 1 and 2. High-energy string
scattering amplitudes can be described by open classical
strings ending on D-branes [36,37]. The string spectrum at
certain energies is given by semiclassical folded strings.
The lowest energy rotating strings correspond to the
classical limit and their analysis is included in the generic
formalism we have developed here. These string solutions
can be studied with the same (numerical) methods, chang-
ing the quantities that we need fixed according to the
purpose of computation; for example, we may keep fixed
the position of the D-brane that the string ends instead of
the string’s boundary length. Recently similar rotating
string solutions have been obtained in [38] in an effort
to relate a class of deformations of the Veneziano amplitude
with logarithmic Regge trajectories, the Coon amplitude,
with the open string scattering amplitude for strings in AdS
ending on D-branes. Both systems have similarities but also
some differences at certain limits. In particular when
looking at the minimum energy of a state in the Coon
amplitude and comparing it to the rotating string spectrum
for large momentum, there are differences in their spec-
trum. It may be worthy to compute the string spectrum
when the D-brane where the rotating string ends, is taken
closer to the boundary, so that the string deformations
are taken into account in the computation of the spectrum.
This is the local saddle point in the near boundary regime
where the string becomes parallel to the radial direction.
Nevertheless, it is more possible that the Coon amplitudes
may correspond to ordinary strings in other background
than the AdS as suggested in [38]. In this case one may find
the suitable background conditions by imposing on our
generic string formulas the desirable behavior and solving
them for metric elements such that the lowest energy
rotating string has a spectrum that agrees with the Coon
amplitude behavior.

VII. DISCUSSION

In this work we have discussed several aspects of
minimal worldsheets with rotating endpoints, correspond-
ing to rotating heavy bound state observables. The energy
of the holographic strings, dual to heavy quarks is divergent
due to the infinite distance from the bulk to the boundary in
the holographic space and therefore the infinite length of
the string worldsheet. We have introduced analytically
several renormalization schemes to treat the UV divergen-
ces of the bound states. They can be thought as corre-
sponding to slightly different observables with their core
related to the energy of the heavy meson. This is in parallel
to the energy of the static bound states. Namely we discuss
the holographic renormalization (11), based on the expan-
sion of the worldsheet energy in the near boundary regime,

FIG. 9. The difference between the energy of the spiraling
string for the segment above the worldsheet horizon and the
boosted static mass (15), for two different anisotropies, while
keeping fixed the LT. For low angular frequencies we observe the
expected proximity but as the frequency increases there are
notable differences. The settings are the same as in Fig. 3.

FIG. 10. The difference between the angular momentum of the
spiraling string for the segment above the worldsheet horizon and
the angular momentum of the boosted static mass for two
different anisotropies, while keeping fixed the LT. For higher
angular frequencies the two schemes start diverging to each other.
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to identify the infinite term and subtract it to cancel the
infinity of the energy of the bound state. We then propose
the mass renormalization scheme for the rotating observ-
ables (23), which involves the computation of the infinite
energy of the two free color singlets to subtract the
divergence of the energy of the heavy quark bound state
energy. The renormalization schemes have the same UV
counterterm contribution while differ from each other by a
finite IR contribution. Implementing the mass renormali-
zation scheme for rotating strings is a challenging exercise.
The rotating color singlets experience drag in contrast to the
color neutral mesons. The drag of the quark is translated in
holography to a trailing worldsheet solution that develops a
horizon itself. The worldsheet horizon separates the upper
segment of the string ending to the boundary of the theory
which moves slower than the local velocity of the light,
from the lower segment of the string which ends on the
horizon of the black hole spacetime and whose local
velocity exceeds that of light. Moreover, the quark expe-
riences an effective temperature determined by the world-
sheet horizon. Therefore the appropriate energy of the
spiraling string we use to renormalize for our purposes is
computed by integration of the string segment causally
connected to the boundary from which we additionally
subtract the energy of the external source that is provided to
the color singlet to maintain its motion and counterbalance
the drag. We have argued that the mass renormalization
scheme is the appropriate scheme to study the existence
of the critical frequency where the rotating bound state
dissociates to its ingredients. The rotating color singlet
mass subtraction described is technically demanding.
Motivated by this difficulty we also suggest an approximate
scheme where we use the energy of a boosted thermal
mass (15) as an alternative approach to renormalize. This is
applicable in a straightforward way, but it can be consid-
ered only as an approximate scheme, mostly reliable for
low velocities. The holographic framework for the renorm-
alization schemes that we have proposed is applicable to
any holographic theory.
As a side note, we mention that one may additionally

consider the application of the Legendre transform scheme
[39,40]. The Legendre transform application lies on the fact
that the Nambu-Goto action is a functional of coordinates,
while the worldsheet satisfies a Neumann boundary con-
dition along the holographic direction at the boundary. Its
application removes the UV singularity and has no IR
contribution, in this sense we expect the Legendre trans-
form to be equivalent to the holographic renormalization
scheme as in the case of static Wilson loops.
We have then applied our holographic framework on

certain thermal theories with multiple scales. We compute
the nonlocal rotating observables in the axion deformed
thermal theories with broken rotational invariance and a
nontrivial renormalization group flow with a conformal UV
fixed point and a Lifshitz-like anisotropic IR fixed point.

We solve numerically the supergravity equations of motion
to obtain the holographic background. Then we find numeri-
cally the minimal surface with rotating endpoints on the
boundary corresponding to the heavy bound state. The
rotation deforms the string and the worldsheet becomes
transverse to the boundary in the bulk, before reaching the
boundary which becomes transverse to boundary once more.
At this point in the bulk the string distance becomes maximal
in the spatial direction and we need to change the para-
metrization to obtain the full string solution with a patching
method we apply, see for example Figs. 1 and 2. We then
discuss the properties of the rotating minimal surfaces with
respect to the angular frequency and anisotropy. The meson
is color neutral and therefore the corresponding string is not
trailing behind. The energy and momentum of the string are
computed by the integration of the appropriate momenta
along the string in both parametrizations.
Then we apply the renormalization schemes of our

framework. The holographic renormalization is relatively
straightforward, and gives the maximum angular frequency
of the meson, beyond which it cannot exist. We compare the
spinning bound states of the same size, in two different
anisotropies, and we find that the increase of anisotropy
reduces the maximum angular frequency ω, hinting an easier
dissociation of the bound state. Then we apply the cumber-
some mass renormalization scheme to compare the energy of
the bound state versus the energy of its free components
undergoing the same motion. We obtain numerically the
worldsheet that corresponds to the color singlet states, for the
same fixed radius of spin as the bound state and the same
range of angular frequencies. We shoot from the worldsheet
horizon to the boundary, and separately to the black hole
horizon and eventually we patch the two segments to obtain
the full string solution. We compute the energy of the string
by integrating along the string from the boundary to the
worldsheet horizon. The boundary quark experiences an
effective temperature that is given by theworldsheet horizon,
and thus this is a natural choice to make. Moreover
fluctuations of the string behind the worldsheet horizon
u < uws are causally disconnected from those on the other
side of the horizon and this part of the string is disconnected
from its endpoint located at the boundary u ¼ 0, justifying
further this choice. From the total energy of the spiraling
string causally connected to the boundary we choose to
subtract the energy of the external source (23) that is
provided to the color singlet to maintain its motion. Once
we take all the effects into account we observe that there
is a critical frequency, lower than the maximum frequency
mentioned above, at which the renormalized energy
becomes zero. This frequency is related qualitatively to
the one that the bound state dissociates to its ingredients.
Increase of the anisotropy of the theory results to a lower

critical frequency. When there is a nonzero relative velocity
of the rotating quarkonium, the expectation is that the
quarkonium suppression is enhanced compared to thermal
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dissociation that occurs when at rest in a heat bath.
Moreover, independent of the renormalization scheme used,
we find that increase of the anisotropy reduces the angular
frequency that the bound state exists and the anisotropy acts
as a catalyst to this type of phase transitions, implying
qualitatively a quarkonium suppression in the corresponding
anisotropic strongly coupled systems. This can also be
thought to be in agreement with other qualitative behaviors
of non-local observables, or even phase transitions in the
strongly coupled anisotropic theories [8,14]. Note that here
we work in the plasma’s rest frame, but we could also work
in the bound state’s rest frame [41], where the plasma rotates.
It would be interesting to see how our obtained string profile
and the rest of our findings translate in the heavy dipole’s rest
frame. It is also possible to obtain the dependence of the
maximum length of the bound state in the rotating plasma
with respect to the velocity of rotation. Especially, since in
anisotropic theories the scaling of a moving dipole’s screen-
ing length with the Lorentz factor shows a richer structure
than the isotropic ones [10].

Finally we have noted that the deformation of the string
worldsheet due to the angular momentum is present in zero
temperature AdS spacetimes. Our framework may be useful
in the recent efforts [38] to relate the Coon amplitude and
the open string scattering amplitude for strings ending on
D-branes in certain backgrounds.

ACKNOWLEDGMENTS

We would like to thank F. Diakonos, C. Hoyos, N. Irges,
N. Tetradis for useful discussions. The research work of
D. G. is supported by the Ministry of Science and
Technology, Taiwan with the Young Scholar Columbus
Fellowship grant No. 110-2636-M-110-008. D. G. would
like to thank the Department of Theoretical Physics of
CERN for hospitality during the final stages of this work.
V. G.’s work has been supported by the Hellenic
Foundation for Research and Innovation (HFRI) and the
General Secretariat for Research and Technology (GSRT),
under Grant agreement No. 2344.

[1] K. Peeters, J. Sonnenschein, and M. Zamaklar, Holographic
melting and related properties of mesons in a quark gluon
plasma, Phys. Rev. D 74, 106008 (2006).

[2] J. M. Maldacena, Wilson Loops in Large N Field Theories,
Phys. Rev. Lett. 80, 4859 (1998).

[3] A. Brandhuber, N. Itzhaki, J. Sonnenschein, and S.
Yankielowicz, Wilson loops in the large N limit at finite
temperature, Phys. Lett. B 434, 36 (1998).

[4] K. Bitaghsir Fadafan, H. Liu, K. Rajagopal, and U. A.
Wiedemann, Stirring strongly coupled plasma, Eur. Phys. J.
C 61, 553 (2009).

[5] S. S. Gubser, Drag force in AdS=CFT, Phys. Rev. D 74,
126005 (2006).

[6] J. Casalderrey-Solana and D. Teaney, Transverse momen-
tum broadening of a fast quark in a N ¼ 4 Yang Mills
plasma, J. High Energy Phys. 04 (2007) 039.

[7] D. Giataganas and H. Soltanpanahi, Universal properties of
the Langevin diffusion coefficients, Phys. Rev. D 89,
026011 (2014).

[8] D. Giataganas, Probing strongly coupled anisotropic
plasma, J. High Energy Phys. 07 (2012) 031.

[9] D. Giataganas, Baryons under strong magnetic fields or in
theories with space-dependent θ-term, Phys. Rev. D 98,
106010 (2018).

[10] M. Chernicoff, D. Fernandez, D. Mateos, and D.
Trancanelli, Quarkonium dissociation by anisotropy, J. High
Energy Phys. 01 (2013) 170.

[11] D. Giataganas and H. Soltanpanahi, Heavy quark diffusion
in strongly coupled anisotropic plasmas, J. High Energy
Phys. 06 (2014) 047.

[12] K. Rajagopal and A. V. Sadofyev, Chiral drag force, J. High
Energy Phys. 10 (2015) 018.

[13] D. Giataganas, Observables in strongly coupled anisotropic
theories, Proc. Sci. Corfu2012 (2013) 122 [arXiv:1306
.1404].

[14] D. Giataganas, U. Gürsoy, and J. F. Pedraza, Strongly-
Coupled Anisotropic Gauge Theories and Holography,
Phys. Rev. Lett. 121, 121601 (2018).

[15] D. Giataganas, D.-S. Lee, and C.-P. Yeh, Quantum fluc-
tuation and dissipation in holographic theories: A unifying
study scheme, J. High Energy Phys. 08 (2018) 110.

[16] I. Y. Aref’eva, K. Rannu, and P. Slepov, Holographic
model for heavy quarks in anisotropic hot dense QGP with
external magnetic field, J. High Energy Phys. 07 (2021)
161.

[17] U. Gursoy, Holographic QCD and magnetic fields, Eur.
Phys. J. A 57, 247 (2021).

[18] I. Y. Aref’eva, A. Ermakov, K. Rannu, and P. Slepov,
Holographic model for light quarks in anisotropic hot dense
QGP with external magnetic field, arXiv:2203.12539.

[19] A. A. Golubtsova, E. Gourgoulhon, and M. K. Usova,
Heavy quarks in rotating plasma via holography, Nucl.
Phys. B979, 115786 (2022).

[20] H. Bohra, D. Dudal, A. Hajilou, and S. Mahapatra, Chiral
transition in the probe approximation from an Einstein-
Maxwell-dilaton gravity model, Phys. Rev. D 103, 086021
(2021).

[21] A. Ipp, D. I. Müller, and D. Schuh, Anisotropic momentum
broadening in the 2þ 1D glasma: Analytic weak field
approximation and lattice simulations, Phys. Rev. D 102,
074001 (2020).

[22] S. Iwasaki, M. Oka, and K. Suzuki, A review of quarkonia
under strong magnetic fields, Eur. Phys. J. A 57, 222
(2021).

HOLOGRAPHIC NONLOCAL ROTATING OBSERVABLES AND … PHYS. REV. D 106, 126012 (2022)

126012-15

https://doi.org/10.1103/PhysRevD.74.106008
https://doi.org/10.1103/PhysRevLett.80.4859
https://doi.org/10.1016/S0370-2693(98)00730-8
https://doi.org/10.1140/epjc/s10052-009-0885-6
https://doi.org/10.1140/epjc/s10052-009-0885-6
https://doi.org/10.1103/PhysRevD.74.126005
https://doi.org/10.1103/PhysRevD.74.126005
https://doi.org/10.1088/1126-6708/2007/04/039
https://doi.org/10.1103/PhysRevD.89.026011
https://doi.org/10.1103/PhysRevD.89.026011
https://doi.org/10.1007/JHEP07(2012)031
https://doi.org/10.1103/PhysRevD.98.106010
https://doi.org/10.1103/PhysRevD.98.106010
https://doi.org/10.1007/JHEP01(2013)170
https://doi.org/10.1007/JHEP01(2013)170
https://doi.org/10.1007/JHEP06(2014)047
https://doi.org/10.1007/JHEP06(2014)047
https://doi.org/10.1007/JHEP10(2015)018
https://doi.org/10.1007/JHEP10(2015)018
https://doi.org/10.22323/1.177.0122
https://arXiv.org/abs/1306.1404
https://arXiv.org/abs/1306.1404
https://doi.org/10.1103/PhysRevLett.121.121601
https://doi.org/10.1007/JHEP08(2018)110
https://doi.org/10.1007/JHEP07(2021)161
https://doi.org/10.1007/JHEP07(2021)161
https://doi.org/10.1140/epja/s10050-021-00554-0
https://doi.org/10.1140/epja/s10050-021-00554-0
https://arXiv.org/abs/2203.12539
https://doi.org/10.1016/j.nuclphysb.2022.115786
https://doi.org/10.1016/j.nuclphysb.2022.115786
https://doi.org/10.1103/PhysRevD.103.086021
https://doi.org/10.1103/PhysRevD.103.086021
https://doi.org/10.1103/PhysRevD.102.074001
https://doi.org/10.1103/PhysRevD.102.074001
https://doi.org/10.1140/epja/s10050-021-00533-5
https://doi.org/10.1140/epja/s10050-021-00533-5


[23] M. D’Elia, L. Maio, F. Sanfilippo, and A. Stanzione, Phase
diagram of QCD in a magnetic background, Phys. Rev. D
105, 034511 (2022).

[24] A. Ipp, D. I. Müller, and D. Schuh, Jet momentum broad-
ening in the pre-equilibrium glasma, Phys. Lett. B 810,
135810 (2020).

[25] M. D’Elia, L. Maio, F. Sanfilippo, and A. Stanzione,
Confining and chiral properties of QCD in extremely strong
magnetic fields, Phys. Rev. D 104, 114512 (2021).

[26] K. B. Fadafan and H. Soltanpanahi, Energy loss in a
strongly coupled anisotropic plasma, J. High Energy Phys.
10 (2012) 085.

[27] C.-S. Chu and D. Giataganas, Thermal bath in de Sitter
space from holography, Phys. Rev. D 96, 026023
(2017).

[28] U. Gursoy, E. Kiritsis, L. Mazzanti, and F. Nitti, Langevin
diffusion of heavy quarks in non-conformal holographic
backgrounds, J. High Energy Phys. 12 (2010) 088.

[29] S. de Haro, S. N. Solodukhin, and K. Skenderis, Holo-
graphic reconstruction of space-time and renormalization in
the AdS=CFT correspondence, Commun. Math. Phys. 217,
595 (2001).

[30] C. Herzog, A. Karch, P. Kovtun, C. Kozcaz, and L. Yaffe,
Energy loss of a heavy quark moving through N ¼ 4
supersymmetric Yang-Mills plasma, J. High Energy Phys.
07 (2006) 013.

[31] D. Gutiez and C. Hoyos, Holographic Wilsonian renorm-
alization of a heavy quark moving through a strongly
coupled plasma, J. High Energy Phys. 10 (2020) 119.

[32] T. Azeyanagi, W. Li, and T. Takayanagi, On string theory
duals of Lifshitz-like fixed points, J. High Energy Phys. 06
(2009) 084.

[33] D. Mateos and D. Trancanelli, The Anisotropic N ¼ 4
Super Yang-Mills Plasma and its Instabilities, Phys. Rev.
Lett. 107, 101601 (2011).

[34] D. Giataganas, D.-S. Lee, and C.-P. Yeh, Vacuum solution
of section 7.1.2, quantum fluctuation and dissipation in
holographic theories: A unifying study scheme, J. High
Energy Phys. 08 (2018) 110.

[35] G. A. Inkof, J. M. C. Küppers, J. M. Link, B. Goutéraux,
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