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I. INTRODUCTION

Timelike Liouville gravity is a two-dimensional model
of gravity built upon Liouville conformal field theory in its
nonunitary or timelike regime. Starting from the Euclidean
path integral of gravity in two dimensions with a cosmo-
logical constant and coupled to unitary cm ≥ 25 conformal
matter, in the conformal gauge, the effective action for the
conformal factor of the metric is the timelike Liouville
action [1], and the conformal factor takes the role of the
timelike Liouville field. In such a setting, gravity is a
conformal field theory.
The word timelike [2] comes from the fact that the

kinetic term of the Liouville field in the action appears with
an additional minus sign, so the Liouville direction is a
timelike direction in a Lorentzian-signature field space [3].
This implies that the theory is nonunitary; accordingly its
central charge is cL ≤ 1. Despite requiring a more difficult
quantization, this feature makes this theory a very interest-
ing toy model of higher-dimensional gravity: it reproduces
the well-known wrong-sign kinetic term problem of the
Weyl factor of the metric in Einstein-Hilbert gravity,
identified already more than 40 years ago [4], which entails
an action unbounded from below and hence an ill-defined
Euclidean path integral of gravity. Timelike Liouville
theory is therefore a very suited model to address this
issue since it allows us to tackle it with all the bootstrap
techniques of conformal field theories.
Another advantage of this theory is that it can be coupled

to unitary conformal matter. Diffeomorphism invariance

results in conformal symmetry in the conformally flat
gauge. As a result, the total central charge of the theory
has to vanish, i.e., cL þ cm ¼ 26. Since cL ≤ 1, the matter
sector must have cm ≥ 25. This is in contrast to what
happens in the so-called spacelike Liouville gravity. In the
spacelike regime, the Liouville field has the right-sign
kinetic term; hence the theory is unitary and is modeled by
the standard Liouville CFT with cL ≥ 25. As a CFT,
spacelike Liouville theory was solved many years ago,
and many of its properties have long been well understood
(for reviews see [5,6]). As a theory of gravity with a
cosmological constant, it was much explored thanks to its
connections (see [7–11] among many others) to discrete
models of two-dimensional gravity. However, as a lower-
dimensional theory of Einstein-Hilbert gravity in the
conformal gauge, it needs to be coupled to (possibly)
nonunitary cm ≤ 1 matter (so that cL þ cm ¼ 26) and
hence makes for a more exotic model than its timelike
counterpart.
As a CFT, progress in solving timelike Liouville theory

was achieved during the past decade. In particular, a three-
point structure constant which solves the degenerate boot-
strap equations [12] was computed [13–17] and later
proven to satisfy all crossing-symmetry constraints [18].
These results were consequently used to show that timelike
Liouville CFT can accommodate a unitary theory of gravity
coupled to conformal matter by identifying the allowed
gravitational spectrum and by further showing its consis-
tency with the conformal symmetry constraints [19,20].
Given the consistency and viability of this theory, both as a
CFT and as a theory of gravity, it is now time to explore its
generalizations. One such generalization consists of placing
the theory on a space with boundaries.
Boundary spacelike Liouville theory was thoroughly

studied in the past and proven to be very fruitful. As a
boundary CFT (BCFT), all of its data have been computed:
two bulk one-point function solutions were found, the
FZZT [21,22] and the ZZ branes [23] corresponding to
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Neumann and Dirichlet boundary conditions, respectively;
the boundary two-point function was found in [21,22]; the
boundary three-point function was determined in [24]; and
the bulk-boundary two-point function in [25].
The two one-point function solutions, the FZZT and ZZ

branes, have played an important role in several develop-
ments in lower-dimensional string theory on time-dependent
backgrounds [26,27]. Furthermore, ZZ branes have been
relevant to understanding the possible discrete nature of 2D
gravity through their connection to matrix models [28–30].
Further applications of the spacelike Liouville BCFT con-
formal data to two-dimensional quantum gravity can be
found in [31,32] (reviews include [5,30,32]). The success of
these developments in the spacelike regime motivates the
study of boundary conditions in timelike Liouville theory.
In this paper, we study boundary timelike Liouville

theory. Concretely, we compute the bulk one-point struc-
ture constant analogous to the spacelike FZZT solution,
given in (3.25), and the boundary two-point structure
constant, given in (3.47). The main outcome of our work
is that these two structure constants do not correspond to
the analytic continuations of their spacelike counterparts.
We employ familiar bootstrap techniques [12,13,21], such
as using degenerate operators to derive shift equations.
These have been successfully used in the spacelike regime
and for the sphere three-point structure constant in the
timelike theory.
In the past there have been some attempts to solve for

such CFT data in timelike CFTs [33–35]. Most of these
works, however, focus on some approximation or some
particular case, such as limiting to the cL ¼ 1 Liouville
theory or setting the cosmological constant to zero. To the
best of our knowledge, boundary timelike Liouville theory
at generic central charge or cosmological constant has not
been explored in the past.
The outline of the paper is the following. In Sec. II we

give an introduction to timelike Liouville theory, with its
basic correlators in the full complex plane. In Sec. III we
present our results for boundary timelike Liouville theory
on the disk or the upper half-plane. Concretely, in Sec. III A
we present our result for the bulk one-point function, and in
Sec. III D we present our result for the boundary two-point
function. We conclude in Sec. IV with a discussion of our
results, a comparison with those in spacelike Liouville
theory, and some outlook for the future. Finally, several
appendixes cover some of the more detailed computations
required in the introduction and bulk of the work.

II. TIMELIKE LIOUVILLE THEORY

In this section, we give a brief introduction to the main
elements of timelike Liouville theory on the sphere or the
plane, thereby setting up our notation. Reviews can be
found in [6,17,19].
Timelike Liouville theory consists of an interacting

timelike scalar χ, the Liouville field, with action

StL½χ� ¼
1

4π

Z
d2z

ffiffiffi
h

p
ð−ð∇χÞ2 − qRhχ þ 4πμe2βχÞ; ð2:1Þ

where μ is the cosmological constant, q is the so-called
background charge, and β is the Liouville coupling con-
stant. Besides the exponential interaction, it exhibits a linear
coupling of the field to the fixed background curvature Rh
weighted by the background charge. Despite the cosmo-
logical constant being dimensionful, this action exhibits
Weyl invariance, where the Weyl transformation shifts the
Liouville field linearly:

h → e2σðzÞh; χ → χ − qσðzÞ: ð2:2Þ

When the fiducial metric h is the flat metric ds2 ¼ dz dz̄,
the action becomes1

StL½χ� ¼
1

2π

Z
dz dz̄ð−∂χ∂̄χ þ πμe2βχÞ: ð2:3Þ

The Weyl symmetry then descends to conformal symmetry,
and Liouville theory becomes a CFT. At the quantum level
it has been shown to be a solution to the bootstrap equations
and constitutes a consistent CFT on all orientable Riemann
surfaces [18]. Its central charge is parametrized by the
background charge as

c ¼ 1 − 6q2: ð2:4Þ

We focus on real actions and hence on q ∈ R, so the central
charge is mostly negative c ≤ 1.
Given the linear transformation of the field, the natural

primaries of this conformal field theory are vertex oper-
ators,

Vα ¼ e−2αχ; ð2:5Þ

where α is called the Liouville charge. Remarkably, vertex
operators in such an interacting theory have the same
anomalous dimension as in free theory, so

Δα ¼ Δ̄α ¼ αðα − qÞ; ð2:6Þ

the −αq contribution being classical and the α2 contribution
being anomalous. In particular, the cosmological constant
operator in the action V−β ¼ e2βχ has dimension Δβ ¼
Δ̄β ¼ βðβ þ qÞ. Given that the action has to be conformally
invariant, this operator must have dimensions (1,1), which
then implies the well-known relation between the coupling
constant and the background charge

1So written, the action diverges upon evaluating it on its
solutions. To regularize it, we can place it on a disk and introduce
the corresponding boundary terms so that the large radius limit is
finite [36]. We disregard these terms here since they are irrelevant
for the presentation.
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q ¼ 1

β
− β: ð2:7Þ

The semiclassical limit corresponds to q → ∞ or β → 0.
The Liouville charge α parametrizes the spectrum of the

theory. While it is a priori complex, its range is constrained
by conformal invariance and by any further physical
requirements the theory may need to satisfy. Crossing
symmetry of four-point functions constrains intermediate
or internal states to have α ∈ R [18], which gives a
spectrum of internal conformal dimensions bounded from
below with a minimum atΔq=2 ¼ Δ̄q=2 ¼ −q2=4. However,
the charges of the insertions of the four-point function or
external states can be analytically continued outside of this
range while keeping the four-point function crossing
symmetric, so the actual spectrum of external charges is
not constrained by crossing. When the Liouville field
corresponds to the conformal factor of the metric, i.e.,
when timelike Liouville theory is a theory of gravity,
diffeomorphism invariance needs to be further imposed.
This then restricts the range of α, but in a way that is
compatible with unitarity of the whole gravityþmatter
theory. For more details see [19,20].
The timelike Liouville action (2.1) is related to the well-

known spacelike Liouville action,

SsL½ϕ� ¼
1

4π

Z
d2z

ffiffiffi
h

p
ðð∇ϕÞ2þQRhϕþ 4πμe2bϕÞ; ð2:8Þ

by the analytic continuation

ϕ ¼ iχ; Q ¼ iq; b ¼ −iβ; a ¼ iα: ð2:9Þ

This analytic continuation ensures both actions can be real.
Spacelike Liouville theory has central charge c ¼ 1þ 6Q2

with c ≥ 1, and its primaries are given by Va ¼ e2aϕ with
Δa ¼ Δ̄a ¼ aðQ − aÞ. The spectrum is unitary, consisting
of Liouville charges a ¼ Q

2
þ iP with Liouville momentum

P ∈ R. Spacelike Liouville theory is a well-established
CFT; its bulk correlators as well as its boundary state
solutions are well known. Unfortunately, the analytic
continuation (2.9) of some of these data to the timelike
regime is not well defined. The corresponding timelike
CFT data then need to be found independently. We review
this next for the bulk correlators.

A. Correlators

As in any CFT, higher-point correlators can be deter-
mined from the two- and three-point functions of the
theory. The timelike Liouville three-point function on
the complex plane reads

hVα1ðz1ÞVα2ðz2ÞVα3ðz3Þi

¼ Cðα1; α2; α3Þ
jz12j2ðΔt−2Δ3Þjz13j2ðΔt−2Δ2Þjz23j2ðΔt−2Δ1Þ ; ð2:10Þ

where we use the notation Δi to indicate Δαi , Δt ¼
P

Δi

is the sum of all dimensions, and the structure constant is
[13–16]

Cðα1; α2; α3Þ ¼ −
1

2β
ðπμγð−β2Þβ2þ2β2Þαt−qβ

ϒβðβ − qþ αtÞ
ϒβðβÞ

×
Y3
i¼1

ϒβðαt − 2αi þ βÞ
ϒβðβ þ 2αiÞ

; ð2:11Þ

with αt ¼
P

αi and γðxÞ ≔ ΓðxÞ=Γð1 − xÞ. The Upsilon
function ϒβðxÞ [36] has a simple integral definition for
ReðxÞ ∈ ð0;Reðβ−1 þ βÞÞ:

lnϒβðxÞ ¼
Z

∞

0

dt
t

��
β−1 þ β

2
− x

�
2

e−2t

−
sinh2ððβ−1þβ

2
− xÞtÞ

sinhðβtÞ sinhð tβÞ
�
: ð2:12Þ

This formula admits an analytic continuation to x ∈ C and
can also be represented by an infinite product:

ϒβðxÞ ¼ λð12ðβ−1þβÞ−xÞ2 Y
m;n∈N

f

� β−1þβ
2

− x
β−1þβ

2
þmβ þ nβ−1

�
;

fðxÞ ¼ ð1 − x2Þϵx2 ; ð2:13Þ

where λ is some constant. Importantly, this function
satisfies shift relations with shift parameters β; β−1; see
Appendix A for more properties of this function.
As mentioned above, this structure constant does not

follow from the analytic continuation (2.9) of the well-
known structure constant of spacelike Liouville theory
given by the DOZZ formula [36,37] since such a continu-
ation diverges [13]. Instead, this structure constant was
found as an independent solution to the conformal bootstrap
constraints: the equations that follow from the associativity
property of the OPE, or equivalently from crossing sym-
metry, and which must be satisfied for any CFT.
Concretely, the strategy consists of looking for a solution

of a subset of the bootstrap constraints [12], sometimes
called the degenerate equations. The degenerate equations
are shift equations for the Liouville structure constants that
follow from crossing symmetry of the four-point function
where one of the four insertions is a level-2 degenerate
field. Degenerate fields Vhm;ni, at level mn, are parame-
trized by two positive integers ðm; nÞ and have charges

αm;n ¼ 1−m
2β − ð1−nÞβ

2
. They are the primaries of degenerate

BOUNDARY TIMELIKE LIOUVILLE THEORY: BULK ONE- … PHYS. REV. D 106, 126011 (2022)

126011-3



representations, i.e., quotients of Verma modules. For a
pedagogical reference see [6].
Two shift equations are then obtained for each of the two

degenerates at level 2: Vh1;2i and Vh2;1i. These are the only
two equations; they are effectively linear in the three-point
structure constant, so they are much easier to solve than the
infinite set of general bootstrap constraints which are
quadratic in the structure constant and are integral equa-
tions. The solution found for the timelike regime [13–16]
was later proven to solve all of the bootstrap equations
numerically [18], thus confirming it is the correct timelike
three-point structure constant.
The shift equations do not determine the normalization

of the three-point structure constant. Our choice of nor-
malization is based on the so-called Coulomb gas method
or perturbative method, which we explain in Appendix C.
In Appendix D we review in detail the derivation of the
bulk timelike structure constants, with particular emphasis
on separating the normalization-independent factors from
those that follow from fixing the normalization.
One last comment about the normalization is necessary.

In the semiclassical limit β → 0, γð−β2Þ → −1=β2, so the
argument of the normalization in the parenthesis in (2.11),

ðπμγð−β2Þβ2þ2β2Þαt−qβ ; ð2:14Þ

is negative for μ > 0. In that case, a phase factor
expf−iπ αt−q

β g should be included [17].
The general form of the two-point function is

hVα1ðz1ÞVα2ðz2Þi

¼ 2π
Gðα1Þ½δðα1 − α2Þ þRðα2Þδðq − α1 − α2Þ�

jz12j2ðΔ1þΔ2Þ : ð2:15Þ

Here,GðαÞ is the two-point function structure constant, and
the coefficient RðαÞ is the so-called reflection coefficient.
This reflection can be understood as coming from the
invariance of conformal dimensions Δα ¼ Δ̄α ¼ αðα − qÞ
under α → q − α. This implies that the pair of operators Vα

and Vq−α have the same dimension and must therefore be
related by a reflection coefficient RðαÞ, such that

Vα ¼ RðαÞVq−α; ð2:16Þ

and which satisfies RðαÞRðq − αÞ ¼ 1.
Given (2.16), the reflection coefficient can be obtained

from the three-point structure constant (2.11) by reflecting
one of the operators and is given by

RðαÞ ¼ ðπμγð−β2ÞÞ2α−qβ
Γðβð2α − qÞÞΓðβ−1ðq − 2αÞÞ
Γðβðq − 2αÞÞΓðβ−1ð2α − qÞÞ :

ð2:17Þ

Notice that this expression is independent of the choice of
αi-independent normalization chosen for the three-point
structure constant.
As opposed to the three-point function, the two-point

function structure constant and reflection coefficient have a
good analytic continuation (2.9) between the spacelike and
timelike regimes, and Eq. (2.17) coincides with the analytic
continuation of the spacelike reflection coefficient, up to a
minus sign. Given that in the spacelike regime the two-
point structure constant and the reflection coefficient are
taken to coincide, it is natural to take this convention in the
timelike regime as well, GðαÞ ¼ RðαÞ, so that the two-
point function becomes

hVα1ðz1ÞVα2ðz2Þi ¼ 2π
Rðα1Þδðα1 − α2Þ þ δðq− α1 − α2Þ

jz12j2ðΔ1þΔ2Þ :

ð2:18Þ

This two-point function then coincides with the analytic
continuation of the spacelike one up to an overall minus
sign. The overall factor of 2π arises in the spacelike two-
point function by defining the latter using the limit2

hVa1Va2i ¼ lim
a→0

hVa1Va2Vai; ð2:19Þ

or in other words, from defining the identity as the limit
lima→0 Va, with unit coefficient. This gives a two-point
function of the form (2.15) with the spacelike analogous
functions.
It is worth noticing that the timelike two-point function

(2.18) cannot be defined by an analogous limit from the
timelike three-point function (2.10). Indeed, the limit of
vanishing charge, limα→0 Vα, does not yield the identity
operator but a nondegenerate primary of vanishing con-
formal dimension V0 ≠ Vh0i [17,18,38].3 As a conse-
quence, the limit limα→0 Cðα1;α2; αÞ does not yield a
diagonal expression—i.e., a factor δðα1 − α2Þ—and simply
corresponds to the three-point function with a primary of
vanishing dimension. Nevertheless, the timelike two- and
the three-point functions are related as

RðαÞ ¼ −2βCðα; α; 0Þ: ð2:20Þ

The relative factor raises no issue since, as just explained,
these two quantities need not be related, and it eventually

2This limit can be verified by using the expression for the
spacelike structure constant, the DOZZ formula, and using
the limit limϵ→0

ϵ
ϵ2−x2 ¼ πδðxÞ and the asymptotic behavior of

the Upsilon function limx→0 ϒbðxÞ ¼ ϒbðbÞx.
3This is a significant difference between the timelike and the

spacelike theories, as in the latter such an operator does not exist
because unitarity implies the identity is the only operator with
vanishing dimension.
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comes from the normalization of the three-point structure
constant.
Besides following from the analytic continuation of the

spacelike two-point function, the timelike two-point func-
tion can also be obtained from shift equations analogous to
those for the three-point structure constant. These follow
from imposing crossing symmetry of a four-point function
where now two (instead of one) of the four insertions is one
of the two level-2 degenerate fields, Vh1;2i or Vh2;1i; we
review the derivation in Appendix D. The resulting shift
equations fix the Γ-function factors in (2.17) but, again, not
its normalization; this eventually depends on the choice of
operator normalization that also determines the three-point
structure constant.

III. BOUNDARY TIMELIKE LIOUVILLE THEORY

The study of boundary conformal field theory (BCFT)
was pioneered by Cardy [39–41] in the mid to late 1980s.
Solving a BCFT amounts to determining the bulk and
boundary primaries and the lowest-point correlators, from
which higher-point ones follow by factorization. Concretely,
the essential data are the bulk one-point function, the
boundary and the bulk-boundary two-point functions, and
the boundary three-point function.
The study of boundary states in spacelike Liouville

theory was initiated by Fateev, Zamolodchikov, and
Zamolodchikov, and simultaneously by Teschner, in the
early 2000s. Two boundary conditions emerged from these
works: the FZZT [21,22] and the ZZ solutions [23]. In this
section, we derive the bulk one-point and the boundary
two-point structure constants of timelike Liouville theory
on the upper half-plane, with boundary conditions analo-
gous to those of the spacelike FZZT.
In spacelike Liouville theory, the bulk-boundary two-

point function reduces to the bulk one-point function when
the boundary operator’s charge is taken to zero [25] since,
in that case, this operator becomes the identity. However, in
timelike Liouville theory this need not be the case since, at
least in the bulk spectrum, the vanishing charge limit does
not imply the operator becomes the identity, as explained
in Sec. II.
The action for timelike Liouville theory on a space with a

boundary is

SBtL½χ� ¼
1

4π

Z
M

d2x
ffiffiffi
h

p
ð−ð∇χÞ2 − qRhχ þ 4πμe2βχÞ

þ 1

2π

Z
∂M

dξ h1=4ð−qKhχ þ 2πμBeβχÞ; ð3:1Þ

where ξ is the coordinate of the boundary, Kh is the
boundary curvature, and μB is the boundary cosmological
constant, which parametrizes the boundary condition. The
boundary terms are fixed by demanding conformal invari-
ance of the boundary condition.

We consider the fiducial metric h to be the flat disk. This
is equivalent to the upper half-plane, ds2 ¼ dzdz̄ with
Imz > 0, as long as the boundary condition on the field at
infinity is taken to be

χðzÞ⟶jzj→∞
− 2 q log jzj þOð1Þ: ð3:2Þ

The action on the upper half-plane becomes

SBtL½χ� ¼
1

2π

Z
Imz>0

dzdz̄ð−∂χ∂̄χ þ πμe2βχÞ þ
Z∞
−∞

dxμBeβχ ;

ð3:3Þ

where x now runs over the real axis. The background
charge no longer appears in the action and is instead
introduced through the asymptotics of the field (3.2).
Similar to the bulk primaries Vα ¼ e−2αχ , the boundary

primary operators are given by

Bδ ¼ e−δχ ; ð3:4Þ

with conformal dimension Δδ ¼ δðδ − qÞ.

A. Bulk one-point function

The bulk one-point function for any CFT on the upper
half-plane is

hVαðzÞi ¼
UðαÞ

jz − z̄j2Δα
: ð3:5Þ

Besides depending on the charge α of the operator, the one-
point structure constant UðαÞ must further depend on the
cosmological constant μB which parametrizes the boundary
condition; here we leave this dependence implicit to not
clutter the notation.
To determine the structure constant UðαÞ, it is conven-

ient to follow the bootstrap approach and derive shift
relations [12] similar to those reviewed in Sec. II A and
Appendix D for two- and three-point structure constants.
This was done originally in [21] in the spacelike Liouville
regime, but we closely follow the more normalization-
explicit approach presented in [42].
As explained in Sec. II A, to derive shift equations for the

three-point structure constant, we consider four-point
functions with one insertion of either of the two level-
2 degenerate operators. Similarly, to derive shift equations
for the bulk one-point structure constant, we consider two-
point functions with an insertion of either of the two level-
2 degenerate operators. These two operators are
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Vh1;2i∶ α1;2 ¼
β

2
; Δ1;2 ¼ −

1

2
þ 3

4
β2;

Vh2;1i∶ α2;1 ¼ −
1

2β
; Δ2;1 ¼ −

1

2
þ 3

4β2
: ð3:6Þ

We start by looking at hVαðxÞVh1;2iðyÞi, where x and y
belong to the upper half-plane. The corresponding cross-
ratio is

z ¼ ðy − xÞðȳ − x̄Þ
ðy − x̄Þðȳ − xÞ : ð3:7Þ

Two OPEs are now possible (see Fig. 1): one where the two
operators are brought close together, x → y; x̄ → ȳ, hence
z → 0; and one where the operators are brought close to the
boundary x → x̄; y → ȳ, hence z → 1. The kinematical part
of each of these OPEs can be seen to correspond,
respectively, to the s- and t-channel degenerate four-point
conformal blocks F s

�ðzÞ and F t
�ðzÞ, given in (B4) and

(B5), where one of the three generic insertions is, in this
case, taken to be the same degenerate Vh1;2i.
Concretely, the s-channel decomposition reads

hVαðxÞVh1;2iðyÞi ¼
X
�
C�ðαÞU

�
α� β

2

�
F s

�ðzÞ; ð3:8Þ

where we have omitted length prefactors ∼jx − yj for
simplicity. Note that C�ðαÞ are the bulk OPE coefficients

VαVh1;2i ∼ CþðαÞVαþβ
2
þ C−ðαÞVα−β

2
; ð3:9Þ

and the conformal blocks F s
�ðzÞ are evaluated on α1 ¼

α3 ¼ α and α2 ¼ α1;2.
The t-channel decomposition requires instead the bulk-

boundary OPEs, which, for the case of the degenerate
operator, are

Vh1;2i ∼ c−Bh1;1i þ cþBh1;3i: ð3:10Þ

The operators on the right-hand side are boundary degen-

erate operators Bhm;ni, with δm;n ¼ 1−m
2β − ð1−nÞβ

2
. Here, Bh1;1i

corresponds to the boundary identity, with δ1;1 ¼ 0. The
bulk-boundary OPE coefficients depend on the boundary
cosmological constant μB.
The t-channel decomposition then becomes

hVαðxÞVh1;2iðyÞi ¼ c−UðαÞF t
−ðzÞ þ cþRðα; δ1;3ÞF tþðzÞ;

ð3:11Þ

where again the conformal blocks are evaluated on α1 ¼
α3 ¼ α and α2 ¼ α1;2. Note that Rðα; δÞ is the structure
constant corresponding to the bulk-boundary two-point
function hVαBδi on the disk, and the one-point structure
constant comes from the bulk-boundary two-point function
Rðα; 0Þ ¼ UðαÞ; see Fig. 2. We do not need the expression
for the structure constant Rðα; δÞ to derive the shift
equations.
Crossing symmetry, or in other words associativity of the

OPE, implies that the s- and t-channel decompositions have
to equal each other, hence

CþðαÞU
�
αþ β

2

�
F sþðzÞ þ C−ðαÞU

�
α −

β

2

�
F s

−ðzÞ

¼ c−UðαÞF t
−ðzÞ þ cþRðα; α1;3ÞF tþðzÞ: ð3:12Þ

Using the relation between the s- and t-channel conformal
blocks F s

i ðzÞ ¼
P

j¼� BijF t
jðzÞ, with the elements of the

degenerate fusing matrix Bij given by (B8) and (B6) and
evaluated at α1 ¼ α3 ¼ α;α2 ¼ α1;2, we obtain the shift
equation

FIG. 2. Bunching the two operators on the disk together is like
pinching off a sphere with the two operators, while taking them
far apart is like decomposing the disk into two disks.

FIG. 1. The s- and t-channel decomposition for two points on
the upper half-plane.
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c−UðαÞ ¼ CþðαÞU
�
αþ β

2

�
Bþ− þ C−ðαÞU

�
α −

β

2

�
B−−:

ð3:13Þ

At this point, to make any progress with this equation we
need to input the expressions for the (bulk) OPE coef-
ficients, and hence we need to partially fix our normali-
zation, namely, the α-dependent part. Our choice for such
normalization has been explained in detail in Appendix C
and consists of identifying Liouville correlators on the
complex plane whose charges satisfy αt ¼ qþ nβ, with n a
non-negative integer, to their expression obtained from a
perturbative computation. They then become identified
with integrated correlators of the free theory with appro-
priate insertions of screening operators.
With such a normalization, one realizes that the first

OPE coefficient CþðαÞ is in fact an α-independent quan-
tity, and fixing it amounts to fixing the α-independent
normalization of the three-point structure constant. For
now, we keep denoting it as Cþ. The second OPE
coefficient follows from the integral of a free correlator
with insertion of a screening operator [see (C8)]. The ratio
of the two coefficients is

C−ðαÞ
Cþ

¼ −
πμ

γðβ2Þ
γð2αβ þ β2 − 1Þ

γð2αβÞ : ð3:14Þ

We require the structure constant UðαÞ to satisfy the
reflection property UðαÞ ¼ RðαÞUðq − αÞ where RðαÞ is
given in (2.17). Following [42] we define

AðαÞ ≔ ½πμγð−β2Þ�αβð2α− qÞΓðβ−1ðq− 2αÞÞΓðβð2α− qÞÞ;
ð3:15Þ

so that RðαÞ ¼ − AðαÞ
Aðq−αÞ. Now, in terms of

URðαÞ ≔
UðαÞ
AðαÞ ; ð3:16Þ

the reflection property takes a particularly simple form:

URðαÞ ¼ −URðq − αÞ: ð3:17Þ

The shift equations also take a very simple form in terms of
URðαÞ. Introducing the expressions for the OPE coeffi-
cients, the degenerate fusing matrix elements, and the
reflection-invariant one-point function into (3.13), the shift
equation becomes

2 coshðπβsÞURðαÞ ¼ UR

�
αþ β

2

�
þUR

�
α−

β

2

�
; ð3:18Þ

where a new parameter s, satisfying

2 coshðπβsÞ ¼ −
c−
Cþ

1

β2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πμγð−β2Þ

p Γðβ2Þ
Γð−1þ 2β2Þ ; ð3:19Þ

has been introduced for reasons that will become clear later.
This parameter depends on μB through the bulk-boundary
OPE coefficient c−.
An analogous equation can be derived from crossing

symmetry of the two-point function with the other level-2
degenerate operator, hVαðxÞVh2;1iðyÞi. Keeping in mind the
Liouville duality

β → −
1

β
; ð3:20Þ

μ → μ̃; with πμγð−β2Þ ¼ ½πμ̃γð−1=β2Þ�−β2 ; ð3:21Þ

this second equation reads

2 cosh

�
πs
β

�
URðαÞ¼UR

�
α−

1

2β

�
þUR

�
αþ 1

2β

�
; ð3:22Þ

where the parameter s further satisfies

2 cosh

�
πs
β

�
¼−

c̃−
C̃þ

β2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πμ̃γð−1=β2Þ

p Γð1=β2Þ
Γð−1þ2=β2Þ ; ð3:23Þ

which includes, in this case, the bulk and bulk-boundary
OPE coefficients involving Vh2;1i, C̃þ, and c̃−, respectively.
The two shift equations obtained for URðαÞ, Eqs. (3.18)

and (3.22), admit as solutions any linear combination
of URðαÞ ¼ e�2πsα. However, we must further impose
URðαÞ ¼ −URðq − αÞ. This restricts the relative coefficient
between the two solutions to be −e2πsq, or in other words, it
restricts the general solution to be proportional to the
combination

eπsð2α−qÞ − e−πsð2α−qÞ ∼ sinhðπsð2α − qÞÞ: ð3:24Þ

The one-point structure constant then becomes

UðαÞ ¼ C½πμγð−β2Þ�αβð2α − qÞΓðβ−1ðq − 2αÞÞ
× Γðβð2α − qÞÞ sinhðπsð2α − qÞÞ; ð3:25Þ

where the α-independent normalization C remains unfixed
by the shift equations.

B. Dependence on μB
To determine the μB dependence of s, notice that the

bulk-boundary OPE coefficient c− is related to the bulk-
boundary two-point structure constant as

c− ¼ Rðα1;2;δ1;1Þ
Dðδ1;1Þ

¼ Rðα1;2; q− δ1;1Þ ¼ Rðβ=2; qÞ; ð3:26Þ
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whereDðδÞ is the boundary two-point structure constant, to
be defined and computed next in Sec. III D. The only
property of this two-point function we have used here is
that it acts as the boundary reflection coefficient, just as for
the bulk two-point function, such that Bδ ¼ DðδÞBq−δ.
To determine the two-point structure constant Rðβ=2; qÞ,

we again resort to the perturbative method explained in
Appendix C. Concretely, we identify Liouville correlators
on the upper half-plane whose charges satisfy 2αt þ δt ¼
qþ nβ with n a non-negative integer, to integrated corre-
lators of the free theory with additional screening operators,
as given by (C12).
The charges in the two-point function hVh1;2iBqi are such

that 2αt þ δt ¼ β þ q, i.e., n ¼ 1, so this two-point func-
tion admits the perturbative expression (C12):

hVh1;2iðzÞBqðxÞi ¼−
μB
2β

�
Vh1;2iðzÞBqðxÞ

Z
∞

−∞
dyB−βðyÞ

�
0

;

ð3:27Þ

where the correlator on the right-hand side is evaluated on
the timelike free theory on the upper half-plane and is hence
given by (C14). Its structure constant can then be obtained
by fixing the two unintegrated insertions,

Rðβ=2; qÞ
22Δ1;2

¼ −
μB
2β

Z
∞

−∞
hVh1;2iðiÞBqð∞ÞB−βðyÞi0dy

¼ −
2β

2=2μB
2β

Z
∞

−∞

dy

ji − yj2β2 ; ð3:28Þ

where in the second step we have used the expression for
the free correlators on the upper half-plane (C14). The
factor of 22Δ1;2 accounts for the fact that the correlator is
evaluated at z ¼ i. Finally, the bulk-boundary OPE coef-
ficient results in

c− ¼ Rðβ=2; qÞ ¼ −
πμB
β

Γð−1þ 2β2Þ
Γ2ðβ2Þ : ð3:29Þ

Substituting this expression into the definition of the s
parameter (3.19) and further using the fact that with our
normalization for the bulk correlators Cþ ¼ −1=2β (see
Appendix C), we obtain

coshðπβsÞ ¼ −μB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinðπβ2Þ

−μ

s
; ð3:30Þ

which gives the explicit dependence of s on the boundary
cosmological constant.
The Liouville duality (3.20) then needs to be comple-

mented by μB → μ̃B such that s defined as above further
satisfies

cosh

�
πs
β

�
¼ −μ̃B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ðπ=β2Þ

−μ̃

s
: ð3:31Þ

Assuming β; μ; μB and their duals ∈ R, and given that we
want the semiclassical limit at β → 0, Eq. (3.30) deter-
mines different reality conditions for s depending on the
signs of the cosmological constants. Concretely, μ > 0
requires s ∈ C with an imaginary part proportional to 1=β.
On the other hand, μ < 0 requires s purely imaginary if the
rhs of (3.30) is < 1. If instead it is > 1, then s can be real
for μB < 0, or else it must be complex again, with the
imaginary part proportional to 1=β.
The analogous conclusions can be drawn from the dual

equation (3.31), depending on the signs of the dual cosmo-
logical constants. In the cases when s is required to be
complex, the imaginary part is now fixed to be proportional
to β instead. Since s needs to satisfy both equations, these
two conditions restrict the ranges of the constants for which
the one-point function (3.35) is a valid solution. In particular,
when μ; μ̃ > 0, the one-point function is only a solution for
certain rational values of β2. Instead, having all negative
cosmological constants seems to be allowed for generic
values of β or the central charge. A more thorough analysis
of all the cases would require checking the compatibility of
the signs of the cosmological constants as established by
their duality relations and depending on the values of β,
which we leave for future work.

C. Normalization

We now proceed to fix the α-independent normalization
of the one-point structure constant, namely, the constant C
in (3.25). Again using the perturbative method, a one-point
function with charge 2α ¼ qþ nβ is such that

hVαðzÞi ¼
1

2β

Xbn=2c
k¼0

ð−μÞkð−μBÞn−2k
k!ðn − 2kÞ!

×

�
VαðzÞ

�Z
Imz>0

d2ziV−βðziÞ
�

k

×

�Z
∞

−∞
dxjB−βðxjÞ

�
n−2k

�
0

: ð3:32Þ

In particular, in the case α ¼ q=2 (hence n ¼ 0),

hVq=2ðzÞi ¼
1

2β
hVq=2ðzÞi0 ¼

1

2β
jz − z̄jq2=2: ð3:33Þ

Returning to our expression for the one-point function
(3.25), we hence demand

lim
α→q=2

UðαÞ ¼ 1

2β
; ð3:34Þ

which fixes the structure constant to be
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UðαÞ ¼ 1

2β
½πμγð−β2Þ�2α−q2β Γðβ−1ðq − 2αÞ þ 1Þ

× Γðβð2α − qÞ þ 1Þ sinhðπsð2α − qÞÞ
πsð2α − qÞ : ð3:35Þ

However, the case n ¼ 0 is special. For n ≥ 1, the one-
point function (3.25) exhibits a pole due to the factor
Γðβ−1ðq − 2αÞÞ ¼ Γð−nÞ. This is not the case when n ¼ 0
since then the pole disappears with the vanishing sinh
factor. To compare with the perturbative answer in the case
n ≥ 1, we then take the residue

Res
α¼qþnβ

2

UðαÞ ¼ −C
ð−1Þn
n!β

½πμγð−β2Þ�qþnβ
2β

× Γð1þ nβ2Þ sinhðnπβsÞ; n ≥ 1: ð3:36Þ

To match the above to the perturbative answer (3.32), we
first use (3.30) to rewrite the s dependence in terms of μB,
and we must then expand the result in powers of μ=μ2B. It
seems, though, that this is not enough since the expressions
for even n and those for odd n require opposite signs for the
normalization constant C. Whether there is a good reason
for this mismatch, or whether it is simply an indication that
the perturbative normalization is not a good normalization
criteria in the timelike regime, is unclear at this point.
For now, we use an overall � to indicate two possible
normalizations. The resulting one-point function is

UðαÞ ¼ � 1

2
½πμγð−β2Þ�2α−q2β Γðβ−1ðq − 2αÞ þ 1Þ

× Γðβð2α − qÞ þ 1Þ sinhðπsð2α − qÞÞ
ð2α − qÞ : ð3:37Þ

While the α dependence of the two one-point functions
(3.35) and (3.37) is the same, the s or μB dependence is not.
With the additional factor of s in the denominator, Eq. (3.35)
is invariant under s → −s, consistent with the s-defining
relations (3.30) and (3.31) in terms of μB, being insensitive
to the sign of s. The expression (3.37) is instead odd in s, but
one can restrict the solutions to a particular sign of s. We
discuss these two normalizations further in Sec. IV.

D. Boundary two-point function

On the upper half-plane, the boundary two-point func-
tion is given by

hBμ1μ2
δ1

ðxÞBμ2μ1
δ2

ð0Þi¼Dðδ1jμ1;μ2Þδðδ1−δ2Þþδðq−δ1−δ1Þ
jxjΔ1þΔ2

ð3:38Þ

where μ1,μ2 are the boundary cosmological constants on
either side of the operator Bμ1μ2

δ , and x takes values on the
real line. The factor of 1 in front of the second Dirac delta in

the numerator means that the boundary two-point structure
constant acts as a boundary reflection coefficient such that

Bμ1μ2
δ ¼ Dðδjμ1; μ2ÞBμ1μ2

q−δ : ð3:39Þ

Using the parametrization (3.30), we may also denote this
operator as Bs1s2

δ and the structure constant as Dðδjs1; s2Þ.
See Fig. 3 for a depiction of this correlator. The goal of this
subsection is to compute Dðδjs1; s2Þ.
Consider the boundary three-point function hBs1s2

δ Bs2s2
h1;3i

Bs2s1
δ−βi with the level-3 degenerate operator4

Bss
h1;3i∶ δ1;3 ¼ β: ð3:40Þ

Two OPEs arise corresponding to the degenerate oper-
ator approaching either of the other two operators in the
correlator. Taking Bs2s2

h1;3i close to Bs1s2
δ gives the OPE

Bs1s2
δ Bs2s2

h1;3i∼cþðδÞBs1s2
δþβþc0ðδÞBs1s2

δ þc−ðδÞBs1s2
δ−β ; ð3:41Þ

where the boundary OPE coefficients5 satisfy

cσðδÞ ¼
hBs1s2

δ Bs2s2
h1;3iB

s2s1
δþσβi

Dðδþ σβjs1; s2Þ
¼ hBs1s2

δ Bs2s2
h1;3iB

s2s1
q−δ−σβi ð3:42Þ

with σ ∈ fþ; 0;−g. In the second step, we have used the
fact that the boundary two-point structure constant acts as a
reflection coefficient as in (3.39). With this OPE, the three-
point function becomes

hBs1s2
δ Bs2s2

h1;3iB
s2s1
δ−βi ¼ c−ðδÞDðδ − βjs1; s2Þ: ð3:43Þ

Instead, taking Bs2s2
h1;3i to Bs2s1

δ−β gives

hBs1s2
δ Bs2s2

h1;3iB
s2s1
δ−βi ¼ cþðδ − βÞDðδjs1; s2Þ ð3:44Þ

FIG. 3. Disk model of the boundary two-point function.

4We refer the reader to [21] for an explanation as to why using
a level-2 degenerate field as we have been doing for bulk fields
does not work in this case.

5These boundary OPE coefficients cσ are not to be confused
with the bulk-boundary ones in (3.10).
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where cþðδ − βÞ ¼ hBs1s2
q−δB

s2s2
h1;3iB

s2s1
δ−βi. See Fig. 4 for a

representation of the two OPEs.
Equating both expansions leads to the shift relation

Dðδjs1; s2Þ
Dðδ − βjs1; s2Þ

¼ c−ðδÞ
cþðδ − βÞ : ð3:45Þ

As was required for the shift equation of the bulk one-
point structure constant, we now need to fix the ratio of
OPE coefficients. As before, we do this via perturbative

screening integrals. Namely, we compute each of the two
coefficients separately using the expression for Liouville
correlators in terms of integrated free correlators (C12) and
(C14). Their δ-independent normalization is not important
since we require only their ratio.
The coefficient cþðδ − βÞ needs no screening operators

since the momenta of the operators add to q. On the other
hand, the momenta of c−ðδÞ add to qþ 2β, which can be
screened by either a single bulk field V−β or two boundary
fields B−β, leading to two contributions. The required
integrals are evaluated in [21] and give

Dðδjs1; s2Þ
Dðδ − βjs1; s2Þ

¼ 4μβ4γð−β2Þ
π

Γð2δβ − 1ÞΓð1 − 2δβÞΓð2δβ − 1þ β2ÞΓð1 − 2δβ þ β2Þ sin
�
πβ

�
δþ i

s1 þ s2
2

��

× sin
�
πβ

�
δ − i

s1 þ s2
2

��
sin

�
πβ

�
δþ i

s1 − s2
2

��
sin

�
πβ

�
δ − i

s1 − s2
2

��
: ð3:46Þ

Using the shift relations (A3) and (A8), and additionally requiring that Dðδjs1; s2ÞDðq − δjs1; s2Þ ¼ 1, it follows that

Dðδjs1; s2Þ ¼ ½πμγð−β2Þβ2þ2β2 �ð2δ−qÞ=2β Γβðq − 2δþ βÞ
Γβð2δ − qþ βÞ

Y
��0

Sβ

�
δþ β � i

s1 �0 s2
2

�
ð3:47Þ

where the��0 indicates that the two sets of signs have to be taken to be independent of each other so the product consists of
four factors. Note that Γβ is the double Gamma function (A2), and Sβ is the double-sine function (A7), defined by a ratio of
double Gamma functions (see Appendix A for more properties of these functions). The overall sign in this expression is
such that Dðq=2js1; s2Þ ¼ 1, just as the bulk reflection coefficient satisfies Rðq=2Þ ¼ 1.6

IV. DISCUSSION

In this work, we have studied boundary timelike Liouville theory on the Euclidean disk or upper half-plane by computing
two of the basic boundary CFT data: the bulk one-point and the boundary two-point structure constants. Similar to the
FZZT solutions for boundary Liouville theory in the spacelike regime [21,22], we find a family of conformal boundary

FIG. 4. Two OPEs of the three-point function with the degenerate operator Bh1;3i.

6This is analogous to the spacelike case, where the boundary two-point structure constant of the operator with chargeQ=2 is −1, just
as the spacelike reflection coefficient is −1.
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conditions parametrized by the boundary cosmological
constant μB. The bulk one-point structure constant, given
in (3.25) [or the normalized expressions (3.35) and (3.37)],
exhibits a sinh behavior of the operator charge α, while the
boundary two-point function (3.47) exhibits a product of
double-sine functions of the charge.
It is instructive to compare our results to the spacelike

Liouville expressions for the same objects. In spacelike
Liouville theory, the bulk one-point and the boundary two-
point structure constants were determined [21,22] with the
same bootstrap approach as we have employed in this
work. Namely, crossing symmetry of correlators with
spacelike degenerate operator insertions was used to derive
shift equations for the structure constants. The shift
equations we have derived in the timelike regime coincide
with the analytic continuation q ¼ −iQ, β ¼ ib, α ¼ −ia
of the spacelike ones.
The solution for the one-point structure constant in the

spacelike regime is the famous FZZT one-point function
[21,22]

UFZZTðaÞ ¼ 2½πμγðb2Þ�Q−2a
2b Γðb−1ð2a−QÞ þ 1Þ

× Γðbð2a−QÞ þ 1Þ cosh ½πsð2a−QÞ�
ð2a−QÞ ; ð4:1Þ

where the parameter s is, in this case, defined by

coshðπbsÞ ¼ μB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinðπb2Þ

μ

s
: ð4:2Þ

Comparing with our (non-normalized) one-point function
solution for the timelike regime (3.25), the most important
difference is in the cosh versus the sinh dependence on the
Liouville charge. Naively, it would seem that the timelike
one-point structure constant should be the analytic continu-
ation of the spacelike one since the analytic continuation
is well defined7: cosh ½πsð2a −QÞ� → cosh ½πσð2α − qÞ�,
where σ would be defined as σ ¼ is. However, we are
forced to discard this solution because it does not have the
desired reflection property, as we explain next.
The best way to obtain the correct one-point function is

to look for the valid solutions to the shift equations in each
regime of the theory. In doing so, we realize that in both the
spacelike and the timelike regimes, the shift equations
admit both the sinh and the cosh solutions (and in fact any
linear combination of the two). It is then the reflection
property of the one-point function that selects either one or

the other solution, and it happens to select a different
answer in each regime.
The reason reflection determines a different solution in

each regime is eventually encoded in the expression of the
reflection coefficient. The spacelike reflection coefficient
as determined from reflection of the DOZZ three-point
structure constant reads

RDOZZðaÞ ¼−½πμγðb2Þ�Q−2a
b
Γðb−1ð2a−QÞÞΓðbð2a−QÞÞ
Γðb−1ðQ− 2aÞÞΓðbðQ− 2aÞÞ :

ð4:3Þ

This is not exactly equal to the analytic continuation of the
timelike reflection coefficient RðαÞ given in (2.17): There
is an additional overall minus sign. In other words, in each
regime the corresponding three-point structure constants
determine reflection coefficients which are related by
analytic continuation up to a minus sign. In the spacelike
regime, the one-point function UR satisfying the shift
equations is exactly reflection invariant, while in the
timelike case it is reflection invariant up to a minus sign;
see Eq. (3.17).
One may wonder whether the difference between the

cosh and the sinh behaviors in each regime is a pure
artifact of the normalization. On the one hand, we could
define a normalization-invariant one-point structure con-
stant UNðαÞ≡UðαÞ=NðαÞ, as done with the three-point
structure constant in (D8). Such a structure constant
indeed reproduces the different cosh and sinh depend-
ences in each regime, signaling that this is a genuine
difference between the two. On the other hand, we could
easily find a normalization NðαÞ such that the timelike
structure constant UðαÞ ∼ coshðπsð2α − qÞÞ. However,
such a choice would imply that the operators are normal-
ized with an s-dependent function and, therefore, that the
bulk correlators become s-dependent. In other words,
while one could choose a normalization for which both
spacelike and timelike one-point structure constants are
the analytic continuation of each other, such a choice
entails a drastic change of the bulk theory.
Next, we compare the s or μB dependence and the

normalization between the two normalized timelike one-
point functions we obtained, (3.35) and (3.37), and the
FZZT solution (4.1). The only s dependence of the FZZT
solution is in the argument of cosh½πsð2a −QÞ�. This
is analogous to the timelike one-point function (3.37)
whose only dependence on s is in the argument of
sinh½πsð2α − qÞ�, while (3.35) has an additional factor
of s in the denominator.
The FZZT solution is normalized with the perturbative

method, namely, by imposing that for charges satisfying
2a ¼ Q − nb with n a non-negative integer, the one-point
function reproduces the spacelike perturbative expressions
[corresponding to the analytic continuation of (3.32)]. The
FZZT solution in fact exhibits poles for all n ≥ 0 because of

7There might seem to be two different analytic continuations
depending on whether s is also analytically continued or not,
leading to either cosh ½πσð2α − qÞ� or cos ½πsð2α − qÞ�. However,
notice that these two are the same solution since this would also
change the definition of s in terms of μB accordingly.
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one of the Gamma functions, and the residue at these
charges is required to reproduce the perturbative answer.
Therefore, the normalization constant is fixed by demanding

Res
a¼Q=2

UFZZTðaÞ ¼ 1; ð4:4Þ

which corresponds to the case n ¼ 0. The resulting nor-
malized expression (4.1) reproduces the perturbative
answers for all other positive n.
In the timelike case, we use the same perturbative

method, but there is an important difference: The solution
(3.25) does not exhibit a pole for n ¼ 0. In other words,
Eq. (3.25) is finite in the limit α → q=2, while the FZZT
solution (4.1) is divergent at a ¼ Q=2.8 The timelike
normalization based on matching the n ¼ 0 perturbative
answer is different than that for n ≥ 1 and leads to the
additional s dependence in the denominator of (3.35). The
normalization (3.37), based on the matching of the n ≥ 1
perturbative answers, is therefore analogous to the FZZT
solution (the overall 1=2β instead of the factor of 2 is due to
a different normalization of the free correlators and path
integral compared to ours).
However, this normalization does not seem to reproduce

all the n ≥ 1, but rather each sign choice in (3.37)
reproduces either n even or n odd. The reason for this
remains unclear, but it could be an indication that the
perturbative method is not the most appropriate condition
for correlators in the timelike regime. Another disadvantage
of this normalization is that it is not invariant under s → −s.
The equations relating s to μB in both regimes are invariant
under such transformations of s. Hence, there is no physical
meaning to its sign, and one would expect the one-point
structure constant to be invariant under this transformation
as well. In the spacelike case, this is achieved because the s
dependence is through cosh instead of sinh. An alternative
computation of the timelike one-point function using, for
example, a saddle-point approximation of its path integral
could help fix this normalization.
We can further compare the two equations for the s

parameter (4.2) and (3.30) in each regime:

coshðπbsÞ ¼ μB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinðπb2Þ

μ

s
;

coshðπβsÞ ¼ −μB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinðπβ2Þ

−μ

s
: ð4:5Þ

Following the discussion at the end of Sec. III A, for a
generic value of b, the spacelike boundary solution requires
μ > 0, while the timelike one requires μ < 0 (assuming that
both bulk and boundary cosmological constants are real). In
the spacelike semiclassical limit b → 0, bulk and boundary
cosmological constants scale as μ; μB ∼ b−2, as follows
from the equation of motion and boundary condition for the
classical field ϕc ¼ 2bϕ,

∂∂̄ϕc ¼ 2πμb2eϕc ; ið∂ − ∂̄Þϕc ¼ 4πμBb2eϕc=2: ð4:6Þ

The semiclassical limit of the above spacelike equation is
then compatible with μ > 0. In the timelike regime, the
bulk cosmological constant scales instead as μ ∼ −β−2
since the equation of motion for the classical field χc ¼
2βχ now has an additional minus sign in front of the
derivative term:

−∂∂̄χc ¼ 2πμβ2eχc : ð4:7Þ

This minus sign compensates for the one in the timelike
equation for s in (4.5).
We now compare our solution for the timelike boundary

two-point structure constant to the spacelike FZZT solution
[21,22]. The latter reads

DFZZTðdjs1; s2Þ ¼ ½πμγðb2Þb2−2b2 �ðQ−2dÞ=2b

×
Γbð2d−QÞ
ΓbðQ− 2dÞ

Y
��0

1

Sbðd� i s1�
0s2

2
Þ ; ð4:8Þ

where d is the charge of the boundary operators in the
spacelike boundary two-point function, hBμ1μ2

d1
ðxÞBμ2μ1

d2
ð0Þi.

This expression was also obtained as a solution to shift
equations analogous to those used in Sec. III D but valid
in the spacelike regime. First, we notice that the
analytic continuation of this solution to the timelike regime
is not defined because ΓbðxÞ has simple poles for
x ¼ −mb − nb−1, wherem and n are non-negative integers;
thus, when b is taken to be purely imaginary, infinitely many
poles accumulate for certain imaginary values of x.
Comparing with our solution for Dðδjs1; s2Þ (3.47), we

note that the two structure constants are not the analytic
continuation of each other: The arguments in the double-
sine functions in the two expressions are shifted by β terms.
This is also the case for the two factors of double Gamma
functions. This is reminiscent of what happens for the bulk
three-point structure constants: The arguments of the ϒβ

functions in the timelike expression (2.11) exhibit β-shifts
with respect to those in the DOZZ formula.
The spacelike expression (4.8) is such that DFZZT

ðQ=2js1; s2Þ ¼ −1, while our timelike expression satisfies
Dðq=2js1; s2Þ ¼ 1. This behavior is analogous to what
happens with the bulk reflection coefficients as explained

8It is interesting to note that in the spacelike regime
RDOZZðQ=2Þ ¼ −1, which implies that the primary VQ=2 exactly
vanishes. Thus, it is in fact somewhat surprising that the FZZT
solution does not vanish but instead diverges for this charge
value. In the timelike regime, Rðq=2Þ ¼ 1, and the primary Vq=2
is finite, consistent with our one-point function solution having a
finite α → q=2 limit.
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above,RDOZZðQ=2Þ ¼ −1 butRðq=2Þ ¼ 1, confirming the
good role of D as a boundary reflection coefficient.
It is also worth comparing our results to related ones

obtained earlier in the literature. In [33], Gutperle and
Strominger obtained the bulk one-point and boundary
two-point structure constants of the timelike Liouville theory
but with the bulk cosmological constant turned off, μ ¼ 0,
and by analytic continuation of the spacelike expressions of
such a theory. Since μ ¼ 0, their one-point structure constant
exhibits a power-law dependence on μB consistent with the
relation (3.30), and the dependence on the operator charge is
an inverse sin function. The analytic continuation of the
spacelike boundary two-point function was found to diverge,
and an integration contour was prescribed to circumvent the
divergence. If we want to compare our results to theirs, we

need to take the limit μ → 0, or equivalently s → ∞, of our
expressions. However, such a limit of our one-point solution
(3.35) goes to zero due to the factor of s in the denominator.
In order to reproduce the results in [33], we would need to
pick a normalization factor that does not depend on s; i.e.,
the proportionality constant C in (3.25) is s-independent
(though it may still depend on β).

A. Outlook

It would be very interesting to find the timelike analog of
the ZZ boundary conditions. Spacelike ZZ boundary
conditions are parametrized by a pair of positive integers
m, n, so, for instance, the disk one-point structure constant
[23] in this boundary condition is given by

Uðm;nÞ
ZZ ðaÞ ¼ sinðπb−1QÞ sinðπmb−1ð2a −QÞÞ

sinðπb−1ð2a −QÞÞ sinðπmb−1QÞ
sinðπbQÞ sinðπnbð2a −QÞÞ
sinðπbð2a −QÞÞ sinðπnbQÞU

ð1;1Þ
ZZ ðaÞ; ð4:9Þ

where

Uð1;1Þ
ZZ ðaÞ ¼ ½πμγðb2Þ�−a=bΓð1þ b2ÞΓð1þ b−2ÞQ

ðQ − 2aÞΓðbðQ − 2aÞÞΓðb−1ðQ − 2aÞÞ :

ð4:10Þ

While the analytic continuation of this solution is well
defined just as the FZZT solution, one can verify that the
analytic continuation does not satisfy the required reflec-
tion property.
It would also be very interesting to explore the geomet-

rical interpretation of such a solution. The ZZ one-point
function entails setting Dirichlet boundary conditions for
the Liouville field at infinity and hence corresponds to a
D0-brane localized in the Liouville field spacelike direc-
tion. An analogous timelike solution could correspond to a
brane localized in the field timelike direction. It would also
be interesting to check if such a possible ZZ-like solution is
related to our result for the one-point function (3.35), just as
the spacelike FZZT and ZZ solutions are [29,43]. More
importantly, with these two solutions in hand, we should
study the spectrum of boundary states of this theory in
detail. Together with the search of ZZ-like solutions, this is
a necessary next step to take.
In [28], a connection was established between 1þ 1-

dimensional string theory and the c ¼ 1 matrix quantum
mechanics. It was proposed that this matrix model corre-
sponds to the theory of unstable D0-branes in the minimal
string theory. This proposal was based on the quantitative
match between the rate of closed string emission produced
by a rolling eigenvalue of the matrix quantum mechanics
and that produced by a rolling tachyon in string theory,
where the latter is computed with the analytic continuation

of the FZZT one-point structure constant. It would be very
interesting to explore similar avenues with our timelike
one-point function solution and eventually see if they can
shed any light on a possible microscopic description of
timelike Liouville gravity.
As for boundary timelike Liouville theory as a BCFT, in

order to have a complete description, we would need to also
compute the bulk boundary and the boundary three-point
structure constants. As for the latter, it would be interesting
to check its relation to the boundary two-point structure
constant we have computed (3.47). As with their bulk
analogs, we would not expect the limit of the boundary
three-point structure constant, when one of the charges is
taken to vanish, to give a diagonal expression [though we
would expect it to be related to the boundary two-point
constant when evaluated on two equal charges just as (2.20)
for the bulk]. In other words, we would not expect the
boundary operator with vanishing dimension to be the
identity but rather a nondegenerate operator. More gen-
erally, given that timelike Liouville theory, like its spacelike
counterpart, lends itself easily to exact solutions, any
exploration of its timelike boundary description has the
potential to shed some light on nonunitary BCFTs.
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APPENDIX A: SPECIAL FUNCTIONS

In this appendix, we list the special functions relevant for
our results and calculations.

1. Little gamma function (γ)

The little gamma function can be defined by

γðxÞ ≔ ΓðxÞ
Γð1 − xÞ :

γðxÞγð1 − xÞ ¼ 1; γðxÞγð−xÞ ¼ −x−2: ðA1Þ

2. Double Gamma function (Γβ)

The double Gamma function Γβð¼ Γβ−1Þ can be defined
by the following integral representation, valid for Rex > 0,

logΓβðxÞ ¼
Z

∞

0

dt
t

�
e−xt − e−ðβ−1þβÞt=2

ð1 − e−βtÞð1 − e−β
−1tÞ

−
1

2

�
β−1 þ β

2
− x

�
2

e−t −
1

t

�
β−1 þ β

2
− x

��
ðA2Þ

and by analytic continuation elsewhere on the complex
plane. This function is meromorphic with simple poles at
x ¼ −mβ − nβ−1, wherem and n are non-negative integers,
whereas 1=ΓbðxÞ is an entire function. It follows from the

definition that Γβðβ
−1þβ
2

Þ ¼ 1.
Crucial to our calculations are the following shift

relations:

Γβðxþ βÞ ¼
ffiffiffiffiffiffi
2π

p
βxβ−

1
2

ΓðβxÞ ΓβðxÞ;

Γβðxþ β−1Þ ¼
ffiffiffiffiffiffi
2π

p
β−xβ

−1þ1
2

Γðβ−1xÞ ΓβðxÞ: ðA3Þ

Further details and proofs of these claims can be found in
Appendix A of [5] and Appendix A of [44].

3. Upsilon function (ϒβ)

The Upsilon function can be defined in terms of the
double Gamma function as

ϒβðxÞ ≔
1

ΓβðxÞΓβðβ−1 þ β − xÞ : ðA4Þ

Clearly, ϒβðxÞ ¼ ϒβðβ−1 þ β − xÞ.

The shift formulas for the Upsilon function follow from
(A3):

ϒβðxþ βÞ ¼ γðβxÞβ1−2βxϒβðxÞ;
ϒβðxþ β−1Þ ¼ γðβ−1xÞβ2β−1x−1ϒβðxÞ: ðA5Þ

The following is often useful:

ϒβð−xÞ ¼ ϒβðxþ β þ β−1Þ
¼ −x2γðβxÞγðβ−1xÞβ2ðβ−1−βÞxϒβðxÞ

¼ −
ΓðβxÞΓðβ−1xÞ

Γð−βxÞΓð−β−1xÞ β
2ðβ−1−βÞxϒβðxÞ:

It follows from the definition (A4) that ϒβðxÞ is an entire
function with simple zeros at x ¼ −mβ − nβ−1 and
x ¼ ðmþ 1Þβ þ ðnþ 1Þβ−1, where m and n are non-

negative integers, and that ϒβðβ
−1þβ
2

Þ ¼ 1.
Other useful shift relations are

ϒβððβ−1 − βÞ − xÞ ¼ ϒβðxþ 2βÞ;

ϒβðx − ðβ−1 − βÞÞ ¼ ϒβ

�
2

β
− x

�
: ðA6Þ

4. Double-sine function (Sβ)

While the product of ΓβðxÞ and Γβðβ−1 þ β − xÞ gives
the Upsilon function, their ratio defines the double sine
function:

SβðxÞ ≔
ΓβðxÞ

Γβðβ−1 þ β − xÞ : ðA7Þ

Its name is justified by the following shift relations:

Sβðxþ βÞ ¼ 2 sinðπβxÞSβðxÞ;
Sβðxþ β−1Þ ¼ 2 sinðπβ−1xÞSβðxÞ: ðA8Þ

5. Hypergeometric function (2F1)

The four-point conformal block on a sphere with a level-
2 degenerate operator satisfies a differential equation which
can be brought into the form of the following hyper-
geometric equation:

xð1 − xÞ d
2f

dx2
þ ½C − ðAþ Bþ 1Þx� df

dx
− ABf ¼ 0: ðA9Þ

For generic values of A, B, C, its two linearly independent
solutions, expanded about x ¼ 0, are
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2F1ðA; B;C; xÞ; ð1 − xÞ1−C2F1ð1þ A − C; 1þ B − C; 2 − C; xÞ;

where 2F1ðA;B;C; xÞ ¼ 2F1ðB; A;C; xÞ is the hypergeometric function.
We use the Euler transformation

2F1ðA; B;C; xÞ ¼ ð1 − xÞC−A−B2F1ðC − A;C − B;C; xÞ ðA10Þ

and the following connection formula, which relates a 2F1 expanded around x ¼ 0 to a linear combination of a pair of 2F1 s
expanded around x ¼ 1:

2F1ðA; B;C; xÞ ¼
ΓðCÞΓðC − A − BÞ
ΓðC − AÞΓðC − BÞ 2F1ðA; B;Aþ Bþ 1 − C; 1 − xÞ

þ ΓðCÞΓðAþ B − CÞ
ΓðAÞΓðBÞ ð1 − xÞC−A−B2F1ðC − A;C − B; 1þ C − A − B; 1 − xÞ: ðA11Þ

APPENDIX B: DEGENERATE CONFORMAL BLOCKS

In this appendix we derive the four-point degenerate conformal blocks required for the computation of various shift
equations that appear in this work.
Consider a conformal four-point correlator of primary operators with an insertion of either of the two level-2 degenerate

operators,

Vh1;2i∶ α1;2 ¼
β

2
; Δ1;2 ¼ −

1

2
þ 3

4
β2; Vh2;1i∶ α2;1 ¼ −

1

2β
; Δ2;1 ¼ −

1

2
þ 3

4β2
: ðB1Þ

For now, we focus on the first degenerate. Consider, in particular, the insertions at specific points:

F ðzÞ ¼ hVα3ð∞ÞVα2ð1ÞVh1;2iðz; z̄ÞVα1ð0Þi: ðB2Þ

This correlator satisfies the following BPZ equation:

�
1

β2
d2

dz2
þ
�

1

z − 1
þ 1

z

�
d
dz

−
Δ2

ðz − 1Þ2 −
Δ1

z2
þ Δ1;2 þ Δ1 þ Δ2 − Δ3

zðz − 1Þ
�
F ðzÞ ¼ 0 ðB3Þ

along with its antiholomorphic counterpart. After some redefinitions, this equation can be recast into the form of a
hypergeometric equation (A9); its solutions are given in terms of the hypergeometric function 2F1 and are called degenerate
conformal blocks.
The solutions to this equation have singularities at either z ¼ 0, z ¼ 1, or z ¼ ∞. Singularities of conformal correlators

correspond to operators coming close to each other, so these three singularities correspond to the s, t, and u-channels. For
each singularity point, there are two solutions, corresponding to the two possible states being exchanged in that channel.
The s-channel degenerate conformal blocks correspond to solutions that are singular at z → 0,

F sþðzÞ≡ F
�
β=2 α2

α1 α3
; α1 þ

β

2
; z

�
¼ zα1βð1 − zÞα2β2F1ðA;B;C; zÞ;

F s
−ðzÞ≡ F

�
β=2 α2

α1 α3
; α1 −

β

2
; z

�
¼ z1−α1β−β

2ð1 − zÞ1−α2β−β2 2F1ð1 − A; 1 − B; 2 − C; zÞ; ðB4Þ

and the t-channel blocks correspond to solutions that are singular at z → 1,

F tþðzÞ≡ F
�
β=2 α1

α2 α3
; α2 þ

β

2
; 1 − z

�
¼ zα1βð1 − zÞα2β2F1ðA;B; 1þ Aþ B − C; 1 − zÞ;

F t
−ðzÞ≡ F

�
β=2 α1

α2 α3
; α2 −

β

2
; 1 − z

�
¼ z1−α1β−β

2ð1 − zÞ1−α2β−β2 2F1ð1 − A; 1 − B; 1þ C − A − B; 1 − zÞ; ðB5Þ
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where

A ¼ −1þ ðα1 þ α2 þ α3Þβ þ
3β2

2
;

B ¼ ðα1 þ α2 − α3Þβ þ
β2

2
; C ¼ 2α1β þ β2: ðB6Þ

One can verify that F s
� and F t

� are solutions to the
differential equation (B3). One can also verify that the
parameters in F s

� and F t
� are identical up to the exchange

of α1 and α2, and z → 1 − z. As a further check, note that
the above expressions satisfy the property (see, for exam-
ple, [45])

F
�
α2α3

α1α4
; α; z

�
¼z→0zΔα−Δ1−Δ2ð1þOðzÞÞ:

Since the hypergeometric equation only has two inde-
pendent solutions, the two solutions in each channel are
related to those in either of the other two channels. Using
identities (A10) and (A11) we see that

F s
i ðzÞ ¼

X
j¼�

BijF t
jðzÞ; i ¼ �; ðB7Þ

where

Bþþ ¼ ΓðCÞΓðC−A−BÞ
ΓðC−AÞΓðC−BÞ ; Bþ− ¼ ΓðCÞΓðAþB−CÞ

ΓðAÞΓðBÞ ;

B−þ ¼ Γð2−CÞΓðC−A−BÞ
Γð1−AÞΓð1−BÞ ;

B−− ¼ Γð2−CÞΓðAþB−CÞ
Γð1þA−CÞΓð1þB−CÞ : ðB8Þ

The matrix Bij is called the degenerate fusing matrix.
The above conformal blocks and their fusing matrix can

be used to derive shift equations for the different CFT
correlator data. Since they only encode the kinematical part
of the corresponding four-point functions, they need to be
multiplied with the corresponding dynamical data, which
upon channel decomposition are given in terms of structure
constants and OPE coefficients. Because the four-point
functions considered contain a degenerate operator, the
channel decomposition involves only two intermediate
states. For instance, this was used [12] to obtain the
three-point function structure constants. Further, in the
case where one of the three generic insertions is also given
by the same level-2 degenerate, the resulting Bij are
required to derive shift equations for the bulk one-point
function, as done in Sec. III A.

APPENDIX C: COULOMB GAS APPROACH

In this section we summarize a method used for
computing certain special correlators in Liouville theory,
referred to as the Coulomb gas approach, the method of
screening integrals or Dotsenko-Fateev integrals, or the
perturbative approach (see Refs. [21,36,46]). Our choice of
normalization for the correlation functions is based on this
method.
This method identifies a relation between Liouville

correlators and Coulomb gas correlators on the sphere
for certain combinations of the charges of the insertion
operators. Such a relation follows from integrating the zero
mode in the path integral expression of the correlator.
Indeed, if we separate the Liouville field as χ ¼ χ̄ þ χ0,
where χ0 is the zero mode, then a generic correlator

�Yn
i¼1

VαiðziÞ
�

¼
Z

Dχ̄Dχ0e−StL½χ̄þχ0�e−2αtχ0
Yn
i¼1

e−2αiχ̄ðziÞ;

ðC1Þ

where αt ¼
P

αi is the total Liouville charge. Integrating
χ0 using the integral expression for the Gamma function,
one obtains

�Y
i

VαiðziÞ
�

¼ Γð−nÞ
2β

μn
�Y

i

e−2αi χ̄ðziÞ

×

�Z
d2we2βχ̄ðwÞ

�
n
�

0

; ðC2Þ

where

n ¼ αt − q
β

; ðC3Þ

and the subscript on the right-hand-side bracket indicates
the correlator is evaluated on the Coulomb gas theory. The
integral of the zero mode effectively brings the exponential
interaction term from the original action down to the path
integrand, turning the action into that of a Coulomb gas and
the interaction term into correlator insertions.
Though this relation is derived on the sphere, it holds in

the complex plane as well since the relation between the
two is only a conformal transformation. The correlator on
the right-hand side of (C2) is then evaluated on a (timelike)
free scalar theory; its generic expression is

�Y
i

VαiðziÞ
�

0

¼
Y
i>j

jzijj4αi αj : ðC4Þ

Notice that the power of the dimensions is positive since
this correlator is for a timelike field, whose free propaga-
tor ∼ log jzijj2.
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To be able to use the expression for the free correlator in the above relation (C2), n must be a non-negative integer, but in
that case Γð−nÞ diverges. However, the perturbative expansion of the path integral (C1) in μ, which would give (C2) at order
n, suggests rewriting the above as9

�Y
i

VαiðziÞ
�

¼ −
1

2β

ð−μÞn
n!

�Y
i

e−2αi χ̄ðziÞ
�Z

d2we2βχ̄ðwÞ
�

n
�

0

; ðC5Þ

namely, it suggests replacing Γð−nÞ by its residue − ð−1Þn
n! . This expression is hence typically referred to as the perturbative

expression, and the integrated operators are called screening operators since they ensure that the total charge of the Coulomb
gas correlator is equal to q. This establishes our choice of normalization: It is such that the above expression (C5) with the
free correlators given by (C4) is satisfied for Liouville correlators with αt ¼ qþ nβ.
This expression can be used, for instance, to determine the OPE coefficients C�ðαÞ, in VαVh1;2i ∼ C�ðαÞVα�β=2, as in

Sec. III and in Appendix D. These two coefficients are given by three-point structure constants as usual:

CþðαÞ ¼
Cðα; β

2
; αþ β

2
Þ

Gðαþ β
2
Þ ¼ C

�
α;
β

2
; q − α −

β

2

�
; C−ðαÞ ¼

Cðα; β
2
; α − β

2
Þ

Gðα − β
2
Þ ¼ C

�
α;
β

2
; q − αþ β

2

�
; ðC6Þ

where in the second step we have used the relation between the bulk two-point function and the reflection coefficient
GðαÞ ¼ RðαÞ (2.18).
For CþðαÞ, the charges of the corresponding three-point function are such that αt ¼ q; hence, n ¼ 0 and the three-point

function requires no insertion of screening operators in (C5). As a consequence, it is independent of α, and with the
normalization chosen for the free-field correlators,

CþðαÞ ¼ −
1

2β
: ðC7Þ

In the case of C−ðαÞ, the charges of the corresponding three-point function satisfy n ¼ 1 and hence require the insertion
of one screening operator:

C−ðαÞ ¼
μ

2β

Z
d2whVαð0ÞVβ

2
ð1ÞVq−αþβ

2
ð∞ÞV−βðwÞi

0
¼ μ

2β

Z
d2wj1 − wj−2β2 jwj−4αβ: ðC8Þ

The resulting integral can be performed using the Dotsenko-Fateev integral formulas [47,48],

Z
d2wjwj2ðm−1Þj1 − wj2ðl−1Þ ¼ πγðmÞγðlÞ

γðmþ lÞ :

The OPE coefficient becomes

C−ðαÞ ¼
πμ

2βγðβ2Þ
γð2αβ þ β2 − 1Þ

γð2αβÞ : ðC9Þ

Notice that the above choice of normalization is equivalent to fixing the normalization of the three-point function structure
constant to satisfy

Cðα1; α2; α3Þ ¼
αt¼q

−
1

2β
; ðC10Þ

and more generically,

9In the spacelike Liouville regime, the DOZZ formula for the three-point structure constant is divergent when one of the operators is a
degenerate one, namely, when ahr;si ¼ Q=2 − ðr=bþ sbÞ=2, which is the kind of situation where n ¼ ðQ − atÞ=b is a non-negative
integer. In such cases, the three-point structure constant is obtained from the residue of the corresponding DOZZ formula, which further
justifies substituting Γð−nÞ by its residue −ð−1Þn=n!.
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Cðα1; α2; α3Þ ¼
αt¼qþnβ

−
1

2β

ð−μÞn
n!

Z
d2w1…d2wn

�
Vα1ð0ÞVα2ð1ÞVα3ð∞Þ

Yn
i

V−βðwiÞ
�

0

: ðC11Þ

The above choice of normalization, namely, the factor of −1=2β in (C7), then fixes the αi-independent normalization of the
three-point structure constant. In particular, notice that the above expressions for the OPE coefficients, (C7) and (C9),
exactly follow from (C6) with the expression for the three-point structure constant (2.11). This is in sharp contrast to the
spacelike regime, where the three-point structure constant as given by the DOZZ formula diverges for the combination of
charges required for the analogous OPE coefficients. Then, the perturbative method is especially useful.
The above relation between Liouville and free-theory correlators for special cases of the Liouville charges can also be

derived in the case where the theory is placed on the upper half-plane, in the presence of a boundary cosmological constant
μB, and boundary operators on the boundary along the real axis. In this case,

�Y
i

VαiðziÞ
Y
j

BδjðxjÞ
�

¼ 1

2β

Xbn=2c
k¼0

ð−μÞkð−μBÞn−2k
k!ðn − 2kÞ!

×

�Y
i

VαiðziÞ
Y
j

BδjðxjÞ
�Z

Imz>0

d2wiV−βðwiÞ
�

k
�Z

∞

−∞
dyjB−βðyjÞ

�
n−2k

�
0

; ðC12Þ

where now

n ¼ 2αt þ δt − q
β

: ðC13Þ

Again, the above expression is only valid when n is a non-negative integer. As in (C5), this expression can be thought of as
perturbative in the sense that it can be interpreted as following from a perturbative expansion in μ, μB up to a total power of

n. This inspires the substitution of Γð2k − nÞ by ð−1Þn−2k
2ðn−2kÞ!, i.e., the divergent Gamma function by its residue. The integrated

correlator on the right-hand side is evaluated on the free theory on the upper half-plane, which reads

�Y
i

VαiðziÞ
Y
j

BδjðxjÞ
�

0

¼ ðQijzi − z̄ij2α2i Þð
Q

i;jjzi − xjj4αiδjÞ
ðQi>jjxi − xjj−2δiδjÞð

Q
i>jjðzi − zjÞðzi − z̄jÞj−4αiαjÞ

: ðC14Þ

This expression is used in Sec. III A to determine the normalization of the bulk one-point structure constant.

APPENDIX D: TIMELIKE BULK CORRELATORS

In this appendix we review the derivation of the two- and three-point functions and the normalizations chosen. We closely
follow [6] in that we try to distinguish between the parts of the structure constants that are required by the bootstrap and
those that are fixed by choosing the normalization.
The general form of the two-point function is

hVα1ðz1ÞVα2ðz2Þi ¼ 2π
Gðα1Þ½δðα1 − α2Þ þRðα2Þδðq − α1 − α2Þ�

jz12j2ðΔ1þΔ2Þ ; ðD1Þ

with the reflection coefficient and the two-point structure constant to be determined.
If we impose hVα1Vα2i ¼ Rðα1ÞhVq−α1Vα2i, we find

GðαÞ
Gðq − αÞ ¼

RðαÞ
Rðq − αÞ ; ðD2Þ

which suggests the identification of the two-point function and the reflection coefficient up to an α-independent constant. In
the case of spacelike Liouville theory, this constant is fixed by choosing the normalization of the identity as 1 ¼ lima→0 Va.
Defining the two-point function as the limit of the three-point function when one of the insertions tends to the identity as
in (2.19), and using the DOZZ formula [36,37] for the three-point structure constant, the overall normalization of the
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two-point function can be computed. By reflecting the DOZZ formula, the reflection coefficient is found to be identical to
the two-point structure constant. We hence adopt the same relation GðαÞ ¼ RðαÞ. The two-point function then reads

hVα1Vα2i ¼ 2π
Rðα1Þδðα1 − α2Þ þ δðq − α1 − α2Þ

jz12j2ðΔ1þΔ2Þ ; ðD3Þ

with GðαÞ ¼ RðαÞ.
We next look for the three-point structure constant. This structure constant satisfies degenerate or shift equations [12] that

result from imposing crossing symmetry of the four-point function with insertions of the level-2 degenerate operators Vh1;2i,
Vh2;1i (B1). In particular, crossing symmetry of the four-point function with one insertion of the degenerate Vh1;2i and three
generic insertions Vαi leads to

X
�
C

�
α1 �

β

2
; α2; α3

�
C�ðα1ÞjF s

�ðzÞj2 ¼
X
�
C

�
α2 ∓ β

2
; α1; α3

�
C�ðα2ÞjF t

�ðzÞj2; ðD4Þ

where C� are the OPE coefficients,

VαVh1;2i ∼ CþðαÞVαþβ
2
þ C−ðαÞVα−β

2
; VαVh2;1i ∼ C̃þðαÞVα− 1

2β
þ C̃−ðαÞVαþ 1

2β
; ðD5Þ

andF s
�ðzÞ,F t

�ðzÞ are the s- and t-channel degenerate conformal blocks (B4) and (B5), computed in Appendix B. Using the
expressions for the degenerate fusing matrix (B8), which relates these two sets of conformal blocks, the above crossing
symmetry equation (D4) leads to the shift equation

Cþðα1ÞCðα1 þ β
2
; α2; α3Þ

C−ðα1ÞCðα1 − β
2
; α2; α3Þ

¼ γðqβ − 2βα1Þ
γð2βα1 − qβÞ

Y
�;�0

γ

�
1

2
þ β

�
α1 −

q
2

�
� β

�
α2 −

q
2

�
�0 β

�
α3 −

q
2

��
: ðD6Þ

The notation �;�0 indicates that the two � are independent of each other.
A second equation follows from the crossing symmetry of the four-point function with the degenerate Vh2;1i now inserted,

and it can also be obtained from Eq. (D6) after substituting β by −1=β and C� by C̃�.
Next, we derive two analogous shift equations for the two-point function. The crossing symmetry of the four-point

function with two insertions of Vh1;2i and two insertions of a generic operator Vα leads to

C2þðαÞGðαþ β=2Þ
C2
−ðαÞGðα − β=2Þ ¼

γðqβ − 2βαÞγð2βα − qβ þ β2Þ
γð−qβ þ 2βαÞγð−2βαþ qβ þ β2Þ : ðD7Þ

A second shift equation again follows by using insertions of Vh2;1i instead, and it can be obtained from Eq. (D7) by
substituting β by −1=β and C� by C̃�.
The above shift equations require one to fix the expression for the ratio of OPE coefficients, which is effectively part of

the normalization choice. It is then convenient to separate this choice from the part of the structure constants that must
satisfy the above shift relations regardless of the normalization chosen. To this aim, we define an operator-normalization
invariant structure constant as

CNðα1; α2;α3Þ≡ Cðα1; α2; α3Þ
Nðα1ÞNðα2ÞNðα3Þ

; ðD8Þ

where NðαiÞ are the normalization factors coming from each operator insertion.10

10The primary operators VαðzÞ are composite operators and hence need to be renormalized. The function NðαÞ encodes this
renormalization factor, such that NðαÞ → λðαÞNðαÞ under operator renormalization Vα → λðαÞVα. The three-point function CNðαiÞ is
invariant under such renormalization.
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This can now be substituted into (D6) to obtain

CNðα1 þ β
2
; α2; α3Þ

CNðα1 − β
2
; α2;α3Þ

¼ β4βðq−2α1Þ
Y
�;�0

γ

�
1

2
þ β

�
α1 −

q
2

�
� β

�
α2 −

q
2

�
�0 β

�
α3 −

q
2

��
;

N2ðαþ β=2ÞGðα − β=2Þ
N2ðα − β=2ÞGðαþ β=2Þ ¼ β8βð2α−qÞ

γðqβ − 2βαÞγðqβ − 2βαþ β2Þ
γð−qβ þ 2βαÞγð−qβ þ 2βαþ β2Þ ; ðD9Þ

where for the second equation we have used (D7). The relative factor of β4βðq−2αÞ between the two equations only needs to
be such that shifts by β and −1=β commute, but it is otherwise arbitrary, given the ambiguity in the definitions of NðαÞ
and CN .
The solution to the shift equation for the normalized structure constant CN is given by

CNðα1; α2; α3Þ ¼ ϒβðβ − qþ αtÞ
Y3
i¼1

ϒβðαt − 2αi þ βÞ; ðD10Þ

up to a constant (not determined by the shift equations) that we can choose to be 1. The solution to the second shift
equation is

N2ðαÞ
GðαÞ ¼ 1

ϒβðβ þ q − 2αÞϒβðβ − qþ 2αÞ ; ðD11Þ

again up to an α-independent constant. Given that GðαÞ ¼ RðαÞ, the left-hand side can be interpreted as NðαÞNðq − αÞ
[notice that our solution for CNðαiÞ is invariant under reflection of the charges], so it is natural to choose11

NðαÞ ¼ nðαÞ
ϒβðβ þ q − 2αÞ ¼

nðαÞ
ϒβðβ þ 2αÞ : ðD12Þ

It then further follows that

GðαÞ ¼ n2ðαÞϒβðβ − qþ 2αÞ
ϒβðβ þ q − 2αÞ ¼ n2ðαÞβ2ð1þβ2Þq−2αβ

Γðβð2α − qÞÞΓðβ−1ðq − 2αÞÞ
Γðβðq − 2αÞÞΓðβ−1ð2α − qÞÞ ; ðD13Þ

where in the second step we have used the shift relations of the Upsilon function. The function nðαÞ encapsulates our choice
of normalization. Notice that even though it depends on α, this factor in the correlators is not responsible for their behavior
under shifts since nðαÞ drops out from the shift equations (D9).
With the above expressions for CNðαiÞ and NðαÞ, we rewrite the structure constant as

Cðα1; α2; α3Þ ¼ ϒβðβ − qþ αtÞ
Y3
i¼1

nðαiÞ
ϒβðαt − 2αi þ βÞ
ϒβðβ þ 2αiÞ

: ðD14Þ

We must now proceed to fix the normalization factor
Q

3
i¼1 nðαiÞ. From a path integral perspective, it is clear that nðαÞmust

depend on the cosmological constant μ appearing in the Liouville action. This dependence can in fact be derived from a
scaling argument in the path integral on the sphere. Indeed, upon a constant shift of the field such as χ → χ − 1=2β logðμÞ, a
correlator transforms as

�Yn
i¼1

VαiðziÞ
�

μ

¼
Z

Dχ e−StL½χ�
Yn
i¼1

e−2αiχðziÞ → μ
αt−q
β

�Yn
i¼1

VαiðziÞ
�

μ¼1

: ðD15Þ

It is then clear that nðαÞ ∼ μ
3α−q
3β , and the rest of the normalization can be chosen at will.

11In particular, this means that nðαÞnðq − αÞ must be independent of α and proportional to the constant we have omitted in (D11).

TERESA BAUTISTA and ADITYA BAWANE PHYS. REV. D 106, 126011 (2022)

126011-20



1. Normalization

One way to fix the normalization is by means of the
perturbative or Coulomb gas method, explained in
Appendix C. There we showed that correlators whose
charges satisfy αt ¼ qþ nβ for some non-negative integer
n can be related to correlators in the free theory with
insertions of integrated screening operators, as given by
(C5).As explained inAppendixC,with such amethodwe fix
the ratio of the OPE coefficientsC−ðαÞ=CþðαÞ, and we may
further fix their individual normalization since the perturba-
tive computation shows that CþðαÞ is independent of α.
Concretely, we found that the ratio of coefficients is

C−ðαÞ
CþðαÞ

¼ −
πμ

γðβ2Þ
γð2αβ þ β2 − 1Þ

γð2αβÞ : ðD16Þ

This ratio can now be introduced into the shift equations for
the two- or the three-point structure constants, which then
determine the latter completely, only up to an αi-independent
constant. In particular, from Eqs. (D7) and (D13), it follows
that

nðαÞ ∝ ðπμγð−β2Þβ2þ2β2Þαβ: ðD17Þ
It is clear that fixing the ratio C−ðαÞ=CþðαÞ is equivalent to
choosing the normalization function nðαÞ, up to an α-
independent constant. In particular, this further determines
the α dependence of NðαÞ and of GðαÞ.
Finally, we are left with determining the αi-independent

normalization. As explained in Appendix C, our choice of
normalization is such that12

Cðα1;α2; α3Þ ¼
αt¼q

−
1

2β
: ðD18Þ

This condition adds a prefactor of

−
1

2βϒβðβÞ
ðπμγð−β2Þβ2þ2β2Þ−q

β ðD19Þ

to the three-point structure constant. The final expression
reads

Cðα1; α2; α3Þ ¼ −
1

2β
ðπμγð−β2Þβ2þ2β2Þαt−qβ

ϒβðβ − qþ αtÞ
ϒβðβÞ

×
Y3
i¼1

ϒβðαt − 2αi þ βÞ
ϒβðβ þ 2αiÞ

:

In [17], the overall normalization is given by a factor of
2π=β instead of −1=2β. The normalization is chosen such
that the resulting three-point function can be interpreted as
arising from the standard Liouville theory path integral on
an integration cycle different from that in the spacelike
regime.13 Our normalization is instead fixed so that it
agrees with the perturbative calculations.
Finally, having fixed the normalization of the three-point

structure constant, RðαÞ and GðαÞ ¼ RðαÞ are fully
determined and given by (2.17).
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