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There is a property of a quantum state called “magic.” As shown by the Gottesman-Knill theorem, so-
called stabilizer states, which are composed of only Clifford gates, can be efficiently computed on a
classical computer, and thus quantum computation gives no advantage. Nonstabilizer states are called
magic states, which are necessary to achieve the universal quantum computation. Magic (monotone) is the
measure of the amount of nonstabilizer resource, and it measures how difficult it is for a classical computer
to simulate the state. We study magic of states in the integrable and chaotic regimes of the higher-spin
generalization of the Ising model through two quantities: “mana” and “robustness of magic” (RoM). We
find that in the chaotic regime, mana increases monotonically in time in the early-time region, and at late
times these quantities oscillate around some nonzero value that increases linearly with respect to the system
size. Our result also suggests that under chaotic dynamics, any state evolves to a state whose mana almost
saturates the optimal upper bound; i.e., the state becomes “maximally magical.” We find that RoM also
shows similar behaviors. On the other hand, in the integrable regime, mana and RoM behave periodically in
time in contrast to the chaotic case. In addition to mana and RoM, for the early-time behavior of magic, we
study the stabilizer Rényi entropy, which can be numerically computed for larger systems than mana and
RoM. In the anti-de Sitter/conformal field theory correspondence, classical spacetime emerges from the
chaotic nature of the dual quantum system. Our results suggest that magic of quantum states is strongly
involved in the emergence of spacetime geometry.
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I. INTRODUCTION

The question of how spacetime emerges from a more
fundamental, microscopic concept of quantum gravity is
one of the most intriguing questions in modern physics. In
the context of holography, or the anti-de Sitter/conformal
field theory correspondence (AdS=CFT correspondence)
[1–3], the properties of the classical spacetime emerge from
the quantum nature of the dual CFTs. The connection
between the quantum nature of the CFT and geometry of
the dual spacetime has been examined by quantum infor-
mation-theoretic notions such as “quantum entanglement”
[4] and “computational complexity” [5]. In this paper, we
add a new quantum information-theoretic notion called

“magic” to this list, which can capture a classical feature of
gravity, as shown in the latter part of this paper.1

Quantum entanglement captures one aspect of the
quantumness of a state, i.e., how much quantum correlation
the state has. It is known that a CFT state with high energy
density holographically corresponds to a black hole space-
time. Such a high energy density state, even if it is initially a
simple state, quickly evolves into highly entangled, very
complex states. In the dual geometry, this property of the
state is captured by the growing black hole interior [7]. This
property of the classical spacetime can be measured by the
holographic dual to entanglement entropy proposed in [4]
in most cases.
However, quantum entanglement alone does not fully

account for the rich structure of a quantum state, nor does it
fully characterize the properties of the dual classical
spacetime. In one case, while the quantum entanglement
reaches its equilibrium value relatively quickly, the black
hole interior continues to expand afterward, and hence the
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1Reference [6] is a pioneering work on magic in a quantum
system at the critical point. This work studied magic in the Z3

Potts model and a tensor network model of AdS=CFT.
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quantum entanglement fails to capture the property of the
classical spacetime [5,7].
It was proposed in [5] that this continued growth in the

black hole interior reflects the growing “computational
complexity” of the quantum state [8–11], which entangle-
ment entropy cannot capture. For simplicity, let us consider
a discrete system that consists of N qubits. A local unitary
operator that interacts with only a few neighboring sites is
called a gate. A computational complexity is defined as the
minimum number of gates required to build a target
quantum state from a fixed reference state. In the chaotic
system, one can expect that the complexity of a state grows
linearly in time since a gate per second acting on a state will
give us a new state that is different from the original state.
The holographic counterpart of the computational com-

plexity for the CFT state dual to a AdS black hole was
proposed in [12,13]. It is given by the gravitational action
evaluated in the black hole interior (or more precisely, the
so-called Wheeler–de Witt patch in the black hole space-
time).2 Since the size of the black hole interior measured by
this action grows linearly in time, it correctly reproduces
the typical behavior of complexity in chaotic systems.
Magic, which we study in this paper, measures the

complexity of quantum states that cannot be diagnosed by
quantum entanglement or computational complexity. To
introduce magic, let us classify all operations used in
quantum computations into the stabilizer operations and the
others. Stabilizer operations consist of the unitary type
called Clifford operations, the injection of states in the Pauli
basis, and the projection measurement in Pauli operators,
all of which can be efficiently simulated on a classical
computer, although some of them can generate quantum
entanglement [16,17].3 The states that they generate are
called stabilizer states. This suggests that entanglement
entropy4 (which measures only the amount of quantum
entanglement) or computational complexity (which counts
all gates equally) cannot distinguish whether a quantum
state is indeed complex in the sense that it is difficult to
perform classical calculations at high speed.5 Such com-
plexity is produced by the non-Clifford gates. We will
explain the Pauli operators, Clifford operations, and stabi-
lizer states in detail in Secs. II A and II D.
To achieve the universal quantum computation we also

need the non-Clifford unitary gates, which can be realized
by the injection of nonstabilizer states (called magic states)

combined with the stabilizer operations [23]. Magic is the
measure of the amount of a nonstabilizer resource, and
intuitively, it is a property of a state that describes how
difficult it is to simulate the state on a classical computer.
Roughly speaking, the difficulty to simulate a state jψi is
measured by how many copies of reference nonstabilizer
states one needs to prepare as an initial state to obtain jψi
from the initial state through the stabilizer operations.6

In this paper, we evaluate magic through the quantities
called mana and robustness of magic.7 In particular, we are
interested in the relation between magic and the chaotic
property of a system. The definitions of mana and RoM are
explained in Secs. II B and II C, respectively. To this end,
we study mana and RoM in the higher-spin generalization
of the Ising model, which has the chaotic and integrable
(nonchaotic) regimes depending on the values of the
parameters.
This model may not have a classical gravity dual since it

only has small degrees of freedom, and the dual gravity
theory would become strongly coupled. However, for
specific choices of the values of the parameters, as we
explained, the dynamics of this system becomes chaotic
and captures one of the characteristic properties of classical
gravity.
In this paper, we find that in the chaotic parameter

regime, the states evolve to almost maximally magical
states, suggesting that the chaotic property is closely related
to magic of a quantum state [29,30]. From this result, we
expect that magic is an important building block of classical
spacetime, with the same basis as quantum entanglement
and computational complexity.
We study the time evolution of pure-state mana and RoM

in the higher-spin generalization of the Ising model [31].
This model is integrable when the transverse magnetic field
hx is turned off. If the spin of each site is J ¼ 1=2, this
model is also integrable when the longitudinal magnetic
field hz vanishes while hx is nonzero. When ðhx; hzÞ are not
close to these points, on the other hand, the model is
chaotic. In the latter two cases, the chaotic property of the
model is reflected well in the level statistics: When J ¼ 1=2
and hz ¼ 0, the level statistics coincides with that of the set
of independent random numbers, while when J ≥ 1 and
hz ¼ 0 or when both of hx, hz are nonzero [in particular,
around ðhx; hzÞ ¼ ð−1.05; 0.5Þ], the level statistics agrees
with that of the random matrix theory with the Gaussian
orthogonal ensemble (GOE). We study how the behavior of
mana and RoM depends on the dynamics of the system.2Recent studies [14,15] pointed out that there are many

ambiguities in this definition of the holographic complexity,
but their details are out of the scope of this paper.

3Here, efficient means that a quantum computer consisting of
n-qubits can be computed in n polynomial time on a classical
computer.

4However, a series of papers [18–21] suggest the relation
between the fluctuation property of the entanglement spectrum of
a state generated by a circuit and the non-Cliffordness of the
circuit.

5For a related work, see also [22].

6The minimum number of stabilizer states required to expand a
quantum state is called the stabilizer rank χ, which is also one of
the indicators for quantifying magic [24,25]. With χ, we can
estimate the time it would take to simulate a quantum state on a
classical computer.

7There are also several other quantities measuring magic (see,
for example, Refs. [26–28]).
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The main results obtained in the analysis of the time
evolution of mana and RoM in Sec. IV are as follows: We
found that the time evolution of mana and RoM depends on
the chaotic property of the dynamics. At early times, both
mana and RoM increase monotonically, and at late times of
the chaotic regime, mana and RoM oscillate between the
maximum values and the nonzero minimum values. We
find that these maxima and minima are almost the same
regardless of the choice of the initial state.8 On the other
hand, in the integrable regime, both mana and RoM behave
periodically and depend on the initial states. Hence, the
typical minimum values of mana and RoM at sufficiently
late times are larger in the chaotic regime than in the
integrable regime. We also observe that in the chaotic
regime, the late-time maximum value of mana almost
saturates the optimal bound that would be determined by
the number of sites and the dimension of one-site Hilbert
space. As the number of sites increases, the typical
minimum value of mana at late times approximately
coincides with the maximum value. These results suggest
that under the chaotic dynamics, any state evolves to a state
which almost saturates the optimal bound of mana.
In Sec. IV we also study the time evolution of mana and

RoM when the open boundary condition and the periodic
boundary condition are imposed on the system, and we find
that the late-time behavior of these quantities does not
depend significantly on the boundary condition.
Holographic systems describing classical gravity have

large degrees of freedom. It is difficult to make accurate
predictions for such systems from those with small degrees
of freedom that we analyze in this paper. However, once
mana is properly defined in the holographic systems, we
expect that it will encode some geometrical information in
anti-de Sitter space, as entanglement entropy and computa-
tional complexity do.
With this in mind, in Sec. V, we comment on some

possible behaviors of mana in the holographic systems,
including the following three possibilities: (1) Mana grows
fast at early times and gradually slows down, as observed in
the chaotic regime of the higher-spin generalized Ising
model; (2) mana grows linearly in time until it saturates the
upper bound derived from Jensen’s inequality in Sec. II B
(and also its holographic version in Sec. V); (3) the
exponential of mana, not mana itself, grows linearly in
time until it saturates the upper bound. In this section, we
consider the time evolution of mana for a quenched
thermofield double state in a two-dimensional conformal
field theory with gravity dual (so-called holographic CFT).

It is known that this state describes a wormhole spacetime
that continues to grow linearly with time via holography.
Under some assumptions, we estimate the saturation

time of mana in cases 2 and 3.
In case 1, the time dependence of mana differs from the

linear growth of the wormhole captured by computational
complexity (as well as entanglement entropy at early
times). This suggests that the gravitational counterpart of
mana, even if it exists, is not a simple quantity to measure
the size of the wormhole.
In case 2, we estimate that mana would reach the upper

bound in a polynomial time of the system size. In this case,
the time dependence of mana deviates from that of
complexity at a relatively early time, suggesting that the
state largely deviates from the ones that can be efficiently
simulated on a classical computer after that time.
In case 3, mana would reach the upper bound in an

exponential time of the system size. In this case, the time
dependence of mana does not deviate from that of complex-
ity. This suggests that the early-time nonstabilizerness of
the density matrix increases in time and that it saturates at
exponential time of the system size. This fact is supported
by the numerical computation on mana and another magic
monotone called stabilizer Rényi entropy [28].
So far, we have described the background of this study

and the results obtained. In Sec. II, we explain the aspect of
magic as the resource of quantum computation and the
definition of two physical quantities, mana and RoM, that
measure magic. In Sec. III, we describe the higher-spin
generalized Ising model. In Sec. IV, we numerically study
the time dependence of mana and RoM in the chaotic and
integrable regimes of the higher-spin generalized Ising
model. We comment on the observations and some possible
interpretations obtained from the numerical plots. In Sec. V,
we comment on several possibilities of the behavior of
mana in the holographic systems. We estimate the time
when mana saturates its upper bound under some assump-
tions. We also approximate the early-time behavior of mana
numerically computed by the linear function of time, and
estimate the saturation time. In Sec. VI, we discuss the
results of this paper and some future directions.
Some technical details which are not directly related to

the analysis in the main text are allocated to the appendixes.
In Appendix A, we display the initial state dependence of
the late-time values of mana and robustness of magic. In
Appendix B, we consider the small time expansion of mana
MðρðtÞÞ with the aim (though not successful) of under-
standing the linear growth of mana at early time observed
in Sec. V.

II. MAGIC IN QUANTUM COMPUTATION

In this paper, we study how chaotic properties emerge
from the quantum nature of a state through the notion of
magic, which measures how difficult it is for a classical
computer to simulate the state. The purpose of this section

8Here we have assumed that the initial state is not an energy
eigenstate. In general, if there is a Hamiltonian (not necessarily of
a spin chain), one of whose eigenstates has a small value of
magic, the magic of that state remains low even at late times since
the state is invariant under the time evolution of that Hamiltonian.
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is to define two quantities that measure magic of states,
mana and RoM, and to explain the resource aspect of
magic. We study the time evolution of these quantities in a
higher-spin generalized Ising model in the chaotic and
nonchaotic parameter regimes in Sec. IV. In Sec. II A, we
first introduce the Clifford operations, which are (parts of)
the classical operations, and the stabilizer states generated
by the Clifford operations. Then, in Secs. II B and II C, we
introduce mana and RoM. Finally, in Sec. II D, we mention
some aspects of magic in the framework of resource theory.

A. Clifford group and stabilizer states

To introduce the notion of magic, which measures how
difficult it is for a classical computer to simulate the state,
we first explain the Clifford group and the stabilizer states,
the states which can be efficiently computed on a classical
computer.
Let us consider a quantum system with d orthonormal

states (we assume d to be a prime number) jki
(k ¼ 0; 1;…; d − 1) and a pair of operators z, x acting
on this system,

z ¼
Xd−1
k¼0

ωkjkihkj ðω ¼ e
2πi
d Þ;

x ¼
Xd−1
k¼0

jðkþ 1Þ mod dihkj: ð2:1Þ

Note that x, z satisfy the following properties:

xd ¼ zd ¼ 1; xazb ¼ ω−abzbxa;

trzaxb ¼
�
d ða; bÞ ¼ ð0; 0Þ mod d

0 otherwise;
ð2:2Þ

where a and b are integers. We also define the generalized
Pauli operators taa0 as

taa0 ¼
�
iaa

0
zaxa

0
d ¼ 2

ω−2̄aa0zaxa
0

d ≥ 3;
ð2:3Þ

where 2̄ is an integer such that 2 × 2̄≡ 1 mod d. For
general d, taa0 satisfies the following relations:

t†aa0 ¼ t−a;−a0 ; taa0 tbb0 ¼ ω2̄ðab0−ba0Þtaþb;a0þb0

¼ ωab0−ba0tbb0 taa0 ; ð2:4Þ

trtaa0 ¼
�
d ða; a0Þ ¼ ð0; 0Þ mod d

0 otherwise:
ð2:5Þ

In particular, taa0 are orthonormalized in the following
sense:

trðtaa0 t†bb0 Þ ¼
�
d ða; a0Þ ¼ ðb; b0Þ mod d

0 otherwise:
ð2:6Þ

We consider a system that consists of L sites of this
generalized qubit (or “qudit”) whoseHilbert space is spanned
by fjk1i ⊗ jk2i ⊗ � � � ⊗ jkLig, and we consider the gener-
alized Pauli operators (generalized Pauli strings) acting on
these states labeled by a⃗ ¼ ðða1; a01Þ; ða2; a02Þ;…; ðaL; a0LÞÞ:

Ta⃗ ¼ ta1a01 ⊗ ta2a02 ⊗ � � � ⊗ taLa0L : ð2:7Þ
The Clifford groupCd is a discrete set of unitary matrices

such that each element of Cd transforms the set of all Pauli
strings fTa⃗g to itself up to some overall phases:

U ∈ Cd ⇔ UTa⃗U† ¼ eiϕUða⃗ÞTσða⃗Þ for all a⃗; ð2:8Þ

where eiϕUða⃗Þ are some phases and σU is a permutation on
dL choices of a⃗. The symbol ϕ is a real number. Explicitly,
the Clifford group Cd for d ¼ 2 is generated by the
following elements, Ra; Pa; SUMa;b, which are, respec-
tively, called the Hadamard gate, phase gate, and con-
trolled-NOT gate9 [32]:

(i) Ra; Pa (a ¼ 1; 2;…; L):

Ra ¼ 1 ⊗ � � � 1 ⊗ Ra ⊗ 1 ⊗ � � � 1;
Pa ¼ 1 ⊗ � � � 1 ⊗ Pa ⊗ 1 ⊗ � � � 1; ð2:9Þ

with

R ¼ 1ffiffiffi
2

p
�
1 1

1 −1

�
; P ¼

�
1 0

0 i

�
; ð2:10Þ

(ii) CNOTa;b (a; b ¼ 1; 2;…; L):

CNOTa;b∶ ð� � �⊗ jkai
a

⊗ � � � jkbi
b

� � �Þ

→ ð� � �⊗ jkai
a

⊗ � � � jðkaþ kbÞ
b
mod 2i � � �Þ;

ð2:11Þ

where jki is the eigenstate of z with eigenvalue
z ¼ ωk, as introduced above (2.1).

On theother hand, theCliffordgroupCd ford > 3 is generated
by the following elements, Ra; Pa; Sa; SUMa;b [33]:

(i) Ra, Pa, Sa (a ¼ 1; 2;…; L):

Ra ¼ 1 ⊗ � � � 1 ⊗ R
a
⊗ 1 ⊗ � � � 1;

Pa ¼ 1 ⊗ � � � 1 ⊗ P
a
⊗ 1 ⊗ � � � 1;

Sa ¼ 1 ⊗ � � � 1 ⊗ S
a
⊗ 1 ⊗ � � � 1 ð2:12Þ

9Here, we follow the notation of [32].
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with

R ¼ 1ffiffiffi
d

p ðωðk−1Þðl−1ÞÞ0≤k;l≤d−1

¼ 1ffiffiffi
d

p

0
BBBBB@

1 1 1 � � � 1

1 ω ω2 � � � ωd−1

1 ω2 ω4 � � � ω2ðd−1Þ

..

.

1
CCCCCA;

P ¼ ðωkðk−1Þ
2 δklÞ0≤k;l≤d−1

¼

0
BBBBBBBBBB@

1 0 � � � 0

0 ω 0 � � � 0

0 0 ω3 0 � � � 0

. .
.

0 � � � 0 ω
ðd−2Þðd−3Þ

2 0

0 � � � 0 ω
ðd−1Þðd−2Þ

2

1
CCCCCCCCCCA
;

S ¼ ðδk−al;d ðmod dÞÞ1≤k;l≤d−1; ð2:13Þ

where a on the right-hand side of S is an integer such
that fa; a2; a3; � � �gðmod dÞ ⊃ ðZdnf0gÞ. One can
choose any a satisfying this condition. For example,
for d ¼ 3, the choice a ¼ 2 works since all the
elements of Zdnf0g ¼ f1; 2g can be realized as
a2 ¼ 4≡ 1, a ¼ 2.

(ii) SUM gate SUMa;b (a; b ¼ 1; 2;…; L):

SUMa;b∶ ð� � �⊗ jkai
a

⊗ � � � jkbi
b

� � �Þ

→ ð� � �⊗ jkai
a

⊗ � � � jðka þ kbÞ
b
mod di � � �Þ:

ð2:14Þ

Choose one of the eigenstates of any single generalized
Pauli operator as a base state. Here, let us choose j0⃗i ¼
j0i ⊗ j0i ⊗ � � � ⊗ j0i as the base state. The set of all
stabilizer states fjSig is defined as the states generated by
the elements of the Clifford group Cd acting on the base
state:

fjSig ¼ fUj0⃗ijU ∈ Cdg: ð2:15Þ

For general d and L, the number of all stabilizer states is
given as [34]

jfjSigj ¼ dL
YL
n¼1

ðdn þ 1Þ: ð2:16Þ

We also define the convex hull of the stabilizer pure states
fjsihsjgjsi∈fjSig, which we call STAB:

STAB ¼
�X

i

cijsiihsij
����jsii ∈ fjSig; ci ≥ 0;

X
i

ci ¼ 1

�
:

ð2:17Þ

B. Mana

In this section, we introduce one of the measures for
magic of a quantum state called mana. Since STAB is a
convex hull spanned by the stabilizer pure states, it would
be natural to expect that for a given state expanded in the
basis of stabilizer states, the negative coefficients in
the expansion can be used to quantify the discrepancy
of the state from STAB. Indeed, both mana and robustness
of magic are related to the negativity of the state in
this sense.
To define mana, we first define the phase space point

operator Aa⃗ by using the generalized Pauli strings (2.7) as

Aa⃗ ¼ d−LTa⃗

X
b⃗

Tb⃗T
†
a⃗; ð2:18Þ

which satisfies10

A†
a⃗ ¼ Aa⃗; TrAa⃗Ab⃗ ¼

�
dL a⃗ ¼ b⃗mod d

0 otherwise:
ð2:20Þ

With these phase space point operatorsAa⃗, we define discrete
Wigner functions Wρða⃗Þ of a given density state ρ as

Wρða⃗Þ ¼
1

dL
TrρAa⃗: ð2:21Þ

Since a set of the phase space point operators fAa⃗g
forms a complete orthonormal basis of dL × dL Hermitian
matrices, this implies ρ ¼ P

a⃗ Wρða⃗ÞAa⃗. If we impose the
normalization condition trρ ¼ 1, fWρða⃗Þg satisfiesP

a⃗ Wρða⃗Þ ¼ 1. Then, we define mana MðρÞ of a state ρ
as the negativity of fWρða⃗Þg:

MðρÞ ¼ log
X
a⃗

jWρða⃗Þj ¼ log
�
1þ 2

X
a⃗

ðs:t:Wρða⃗Þ<0Þ

jWρða⃗Þj
	
:

ð2:22Þ

10Note that by using (2.4), we can also write Aa⃗ as

Aa⃗ ¼ d−L ⊗
L

i¼1

�X
b;b0

ωaib0−a0ibtbb0
�
: ð2:19Þ

This expression is useful for explaining (2.20).
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For ρ being a pure state, it is known thatMðρÞ ¼ 0 if and only
if ρ is a stabilizer pure state (discrete Hudson’s theorem) [34].
SinceSTAB is the convex hull of the stabilizer pure states, this
also implies that MðρÞ ¼ 0 for any ρ ∈ STAB. However,
when ρ is amixed state,MðρÞ ¼ 0 does not necessarily imply
ρ ∈ STAB. In this sense, mana is not a faithful quantification
of the nonstabilizerness of the states. Also, mana is defined
only when the number of states d on a single site is odd.
Nevertheless, mana is a useful measure to quantify magic of
the state since the definition of mana does not involve any
optimization over the large degrees of freedom, unlike
robustness of magic (2.28) or the relative entropy of magic
[35] (which we do not consider in this paper).
Note that mana MðρÞ obeys the following inequality:

MðρÞ ≤ 1

2
ðL log d − S2Þ; ð2:23Þ

where S2 is the Rényi entropy S2 ¼ − log trρ2 which can
also be written in Wρða⃗Þ as

e−S2 ¼ dL
X
a⃗

Wða⃗Þ2: ð2:24Þ

The inequality (2.23) can be shown by using the concavity
of the function fðxÞ ¼ ffiffiffi

x
p

(Jensen’s inequality). For more
details of the derivation of the inequality, see [36].
Let us add some comments on the upper bound for the

case where ρ is a pure state, ρ ¼ jψihψ j, which is of our
main interest in the subsequent sections. In this case,
Jensen’s inequality reduces to

Mðjψihψ jÞ ≤ L
2
log d: ð2:25Þ

Note that the inequality (2.25) [also (2.23)] does not mean
that there actually exists either a state that saturates the
bound or an infinite series of states whose mana converges
to the saturation of the bound. That is, the right-hand side of
(2.25) may not be the optimal upper bound, which we call
M0ðd; LÞ, on mana of the pure states in the qudit system
with L sites. Indeed for d ¼ 3 and L ¼ 1, M0ðd; LÞ is
known to be [35]11

M0ð3; 1Þ ¼ log

�
5

3

�
; ð2:26Þ

which is smaller than ð1=2Þ log 3. To our knowledge, the
optimal bound for L ≥ 2 is still not known. Nevertheless,
for d ¼ 3, since there exists a state jψi ¼ jSi⊗L where
jSi ¼ jSi ¼ ðj1i − j2iÞ= ffiffiffi

2
p

is the state in the single qudit

system withMðjSihSjÞ ¼ M0ð3; 1Þ (see [35]), whose mana
is Mðjψihψ jÞ ¼ LMðjSihSjÞ ¼ LM0ð3; 1Þ, the optimal
upper bound M0ð3; LÞ must not be less than LM0ð3; 1Þ.
Together with (2.25), we conclude that M0ð3; LÞ is in the
following window:

L log

�
5

3

�
≤ M0ð3; LÞ ≤

L
2
log 3: ð2:27Þ

In Sec. IVA, we will use this fact to interpret the numerical
results in the chaotic regime of the higher-spin generalized
Ising model.

C. Robustness of magic

We have defined mana, one of the measures for magic of
a quantum state. Here, we introduce another measure called
robustness of magic. Robustness of magic, RoMðρÞ, of a
given state ρ is defined as [38–41]

RoMðρÞ ¼ inf

� X
fjSigðV jSi<0Þ

jV jSij
����V jSi ∈ R;

X
fjSig

Ba⃗;jSiV jSi ¼ Fa⃗ðρÞ
�
; ð2:28Þ

where

Ba⃗;jSi ¼ TrðTa⃗jSihSjÞ; Fa⃗ ¼ TrðTa⃗ρÞ; ð2:29Þ

with the generalized Pauli strings Ta⃗ (2.7) and the stabilizer
pure states jSi (2.15). Note that since fTa⃗g is a complete set
of dL × dL matrices, the constraint

P
b⃗ Ba⃗;jSiV jSi ¼ Fa⃗ðρÞ

is equivalent to the following:

ρ ¼
X
fjSig

V jSijSihSj: ð2:30Þ

That is, RoMðρÞ (2.28) directly measures the amount of the
negative coefficients when ρ is expanded in fjsihsjgjsi∈fjSig
in the most optimal way.

D. Stabilizer formalism and magic monotone

We would also like to briefly comment on the stabilizer
formalism and the resource theory of magic, which allows
us to formulate the “nonstabilizerness” systematically.
Let us start with a brief explanation of the resource

theory. The resource theory is an idea to classify the
quantum states by using the following three notions:
(i) a set of operations C, which, in general, are non-
invertible; (ii) free states S, which can be created from
any single state in S by full C acting on it; (iii) monotone,
which is some quantity defined for any state so that it does
not increase under C and that it vanishes for the elements in
S. The states that cannot be generated by C acting on any

11The optimal upper bound is also known for d ¼ 5 and L ¼ 1

as M0ð5; 1Þ ¼ Arcsinhð3þ ffiffiffi
5

p Þ − log 5 [37], which is smaller
than ð1=2Þ log 5, the right-hand side of (2.25). However, we will
not use this result in this paper.
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free states are called resource states. A monotone is positive
if (provided that the monotone is faithful) and only if the
state in question is a resource state. From the definition of
the monotones, it also follows that it is impossible to obtain
a resource state by C acting on another resource state with a
smaller monotone. In this sense, a monotone of a state ρ
quantifies the diversity of the states that can be generated
from ρ by using C.
As a concrete example, let us explain the entanglement

and the related notions, which will be more familiar to the
reader in the language of the resource theory [42–45]. In the
resource theory of entanglement, the role of C is played by
the set of operations which consists of local operations and
classical communication (LOCC) as operations to solve
quantum entanglement of states. The free state S corre-
sponds to the set of separable density matrices. Conversely,
the resource states are the entangled states. A physical
quantity with the properties of the monotone in the resource
theory of entanglement is called an entanglement monotone
[46,47]. The entanglement entropy is a typical example of
the entanglement monotones for the pure states.
In the context of magic, the set of operations C

corresponds to the stabilizer protocols, and the free state
S corresponds to STAB (2.17). The stabilizer protocol is
the set of operations that consists of the Clifford group and
some additional operations (composition of any stabilizer

state; projection measurement on a single site into any of
the computational basis jki; a partial trace of a single site)
[35]. The image of the stabilizer protocol acting on a set of
states is, in general, smaller than the initial set, while the
image of STAB is itself. These properties suggest that we
can consider the stabilizer protocol and STAB as the
elements of the resource theory [35,44]. A monotone of
a given resource state indicates how many states can be
generated by the stabilizer operations on this state. It also
quantifies how many copies of the given resource state jψi
are required to generate a fixed target resource state jϕi
(with a large monotone) by C. This is a kind of efficiency of
the universal quantum computation realized by the stabi-
lizer operations together with the resource state jψi, called
stabilizer formalism [35]. In [35], the monotone and the
resource states of the stabilizer operations are called the
magic monotone and the magic states. Mana and RoM are
examples of the magic monotone.

III. HIGHER-SPIN GENERALIZED ISING MODEL

As an example of the qudit system with adjustable
quantum chaoticity, we consider the higher-spin general-
ized Ising model with the open and periodic boundary
conditions [31]:

H ¼

8>>><
>>>:

2ffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ þ 1Þp �

−
P

L−1
n¼1 G

ðnÞ
z Gðnþ1Þ

z −
P

L
n¼1ðhxGðnÞ

x þ hzG
ðnÞ
z Þ

	
ðopenÞ

2ffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ þ 1Þp �

−
P

L−1
n¼1 G

ðnÞ
z Gðnþ1Þ

z −GðLÞ
z Gð1Þ

z −
P

L
n¼1ðhxGðnÞ

x þ hzG
ðnÞ
z Þ

	
ðperiodicÞ;

ð3:1Þ

where GðnÞ
i are given as

GðnÞ
i ¼

XL
n¼1

⊗ 1 ⊗ � � � ⊗ 1Gi
n
⊗ 1 ⊗ 1 ⊗ � � � ⊗ 1

L
; ð3:2Þ

with Gi being the 2J þ 1 dimensional representation of SUð2Þ generators. If we choose the eigenstates of Gz,
fjj ¼ Ji; jj ¼ J − 1i;…; jj ¼ −Jig, as the basis of the single-site Hilbert space, then Gi takes the following form:

Gz ¼

0
BBBBB@

J

J − 1

. .
.

−J

1
CCCCCA; Gx ¼

1ffiffiffi
2

p

0
BBBBBB@

0 a0 0 � � � 0

a0 0 a1 0 � � � 0

0 a1 0 a2 0 � � � 0

. .
. . .

. . .
. . .

.

1
CCCCCCA
;

ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2J − iÞðiþ 1Þ

2

r
: ð3:3Þ
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A. Chaotic property

The model (3.1) is trivially integrable when hx ¼ 0,
while when hx ≠ 0 the chaotic property of this model varies
depending on the values of hx, hz (and also on J). There are
several different ways to characterize the chaoticity of
quantum many-body systems. Here, let us adopt, as a
diagnosis of quantum chaos, the nearest-neighbor spacing
distribution (NNSD) of the energy spectrum fEngdimH

n¼1

[48,49], which is the value distribution of fEn − En−1g
normalized by the average value of En − En−1 over n. It has
been observed that the NNSD of the energy spectrum
obtained by quantizing a classical integrable system obeys
the Poisson distribution [50], while the energy spectrum
obtained by quantizing a chaotic system shows a similar
NNSD to that of the random matrix theory (RMT) with the
ensemble determined by the time-reversal property of the
system [51]. This characterization has also been found to be
consistent with other characterizations using level statistics
such as the onset of the RMT-like linear growth (ramp) of
the spectral form factor and also with the characterization
by the growth exponent of the connected part of the out-of-
time-ordered correlator (quantum chaos exponent) [52],
provided that all of these quantities, in comparison, are well
defined [53,54].
To characterize the chaoticity of a system correctly by

using NNSD, we have to follow the following prescrip-
tions. First, if the system enjoys some discrete symmetry,
we have to split the full spectrum into the irreducible
sectors protected by the symmetry and define the level
spacing distribution by using only the energy levels within
each sector. Second, if the averaged eigenvalue density
ρ̄ðEÞ of each sector is not uniform, we have to perform
a redefinition of eigenvalues Ẽn ¼

R En
E0

ρ̄ðE0ÞdE0, called

unfolding [49], and define the level spacing as Ẽn − Ẽn−1
instead of En − En−1.
In the higher-spin generalized Ising model with open

boundary condition (3.1), there is reflection symmetry OP
which exchanges the ith site with the (L − i)th site. Hence
we have to split the energy spectrum into those of
reflection-even eigenstates OPjni ¼ jni and those of
reflection-odd eigenstatesOPjni ¼ −jni. This can be done,
for example, by deforming the Hamiltonian as

H → H þ ΛOP ð3:4Þ

with Λ any number sufficiently larger than the original
bandwidth, and collecting the energy levels around
E ∼�Λ. For the periodic case, there is also the translation
symmetry OT which changes the ith site into the
ððiþ 1Þ modLÞth site. Since OT does not commute with
OP, a sector labeled by the eigenvalue of OT does not
always split into the OP-protected sectors. However, the
OT-protected sector with OT ¼ 0 transforms to itself under
the reflection; hence this sector can be further decomposed

into the OP-protected subsectors.12 Lastly, when
we take the parameter hz to be zero, the Hamiltonian (both
the open and periodic boundary conditions) is invariant

under an additional transformation OY∶ ðGðnÞ
x ; GðnÞ

z Þ →
ðGðnÞ

x ;−GðnÞ
z Þ. The explicit expressions for the unitary

matrix OY that realizes this symmetry transformation for
J ¼ 1=2, 1 are the following:

OYðd¼2Þ¼
�
0 −i
i 0

�⊗L

; OYðd¼3Þ¼

0
B@
0 0 1

0 1 0

1 0 0

1
CA

⊗L

:

ð3:5Þ

This unitary matrix OY has eigenvalues �1 and commutes
with the geometrical symmetry transformations OP
and OT .
By unfolding each sector, we obtain NNSD as displayed

in Fig. 1. The results indicate that the higher-spin
generalized Ising model is chaotic for ðJ; hx; hzÞ ¼
ð1=2;−1.05; 0.5Þ and (1, 1, 0) [31,55], while the model
is integrable for ðJ; hx; hzÞ ¼ ð1=2; 1; 0Þ [55].

IV. TIME DEPENDENCE OF MANA AND ROM

The main aim of this paper is to elucidate how the
chaotic property emerges from the quantum nature of a
system through the notion of magic. For this purpose, we
study the time evolution of mana and RoM introduced in
the previous section for the chaotic and nonchaotic regimes
of the higher-spin generalized Ising model.
In this paper, we identify the eigenstates of Gi, jJi; jj ¼

J − 1i;…; jj ¼ −Ji with the computational basis jki in
(2.1) as jki ¼ jj ¼ J þ 1 − ki, and choose the stabilizer
state jSi as the initial state (2.17) and evolve it under the
Hamiltonian of the system: e−iHtjSi. For simplicity,13 we
choose jx ¼ ω−1i ⊗ jx ¼ 1i⊗ðL−2Þ ⊗ jx ¼ ω−1i, where
jx ¼ ωni is the eigenstate of x (2.1) with eigenvalue ωn,
as the initial stabilizer pure state jSi. We abbreviate this
state as jxðd − 1Þx0 � � � x0xðd − 1Þi. In Secs. IVA and IV
B, we display the results of the analysis. In Sec. IV C, we
list the observations and their interpretations.

A. Mana

In Figs. 2 and 3, we display the results of mana for
the generalized higher spin Ising model (3.1) with J ¼ 1

12When L is even, this also applies to the OT ¼ −1 sector.
13We choose a state that respects the reflection symmetry that

exists for any choice of ðJ; hx; hzÞ to make the computation
easier. At the same time, we avoid a state that reflects any of the
enhanced global symmetry T, U that appears only when the
system is periodic or when hx ¼ 0 so that the comparison of the
results for the different chaotic models (open, open with
d ¼ 3; hx ¼ 0, closed, closed with d ¼ 3; hx ¼ 0) would be more
reasonable.
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FIG. 2. Top left: time evolution of mana Mðe−iHtjSihSjeiHtÞ with J ¼ 1, ðhx; hzÞ ¼ ð−1.05; 0.5Þ, and
jSi ¼ jx ¼ ω−1i ⊗ jx ¼ ω0i⊗ðL−2Þ ⊗ jx ¼ ω−1i. Top right: maximum value and the time average of Mðe−iHtjSihSjeiHtÞ for
100 < t < 105. Bottom: time evolution of mana for hx ¼ −1.05; hz ¼ 0.5 with a periodic boundary condition and for hx ¼ 1, hz ¼ 0
with open and periodic boundary conditions.

FIG. 1. NNSD of the higher-spin generalized Ising model with open and periodic boundary conditions (3.1). Here, u in the horizontal
axis represents the values of Ẽn − Ẽn−1 normalized by the average over the subsector in concern. Each histogram is drawn by first
computing the level spacings of the unfolded spectrum, normalizing in each sector separately, and then combining the results of all the
subsectors. We chose the background magnetic fields as hx ¼ −1.05; hz ¼ 0.5 and hx ¼ 1, hz ¼ 0.
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(i.e., qudits with d ¼ 3) in the chaotic regime ðhx; hzÞ ¼
ð−1.05; 0.5Þ and (1, 0) and in the integrable regime
ðhx; hzÞ ¼ ð0; 2Þ and ð0; ffiffiffi

2
p Þ.

In the chaotic regime ðhx; hzÞ ¼ ð−1.05; 0.5Þ; ð1; 0Þ, we
find that mana increases monotonically at early times and
then oscillates erratically around some nonzero value. In
particular, we observe that the minima of the oscillation are
well separated from zero, the initial value of mana. We
confirm that these behaviors are universal for a generic
choice of jSi ∈ fjSig and that they do not depend on
whether the boundary condition is open or periodic (see
Appendix A). As the number of sites L increases, the
maximum value of the oscillation also increases while the
magnitude of the error becomes more and more suppressed.
We also observe that the maximum value is very close to
L logð5=3Þ, the lower bound on the optimal upper bound
M0ð3; LÞ on mana of the pure states (2.27). Since the
window forM0ð3; LÞ (2.27) is narrow, this observation can
also be rephrased such that the late-time maximum value
almost saturates the actual optimal upper bound, although
the precise value of M0ð3; LÞ is still undetermined.

Here, purely based on the results of the numerical
analysis, we propose, for finite d (d ¼ 3), that the late-
time maximum of mana almost saturates the optimal upper
bound. Note that for a chaotic system with d ≫ 1 that
enjoys Haar randomness, there is a different argument to
justify the same statement as follows. Let us assume that
mana becomes almost independent of the choice of the
initial state at late times as we observed for d ¼ 3. Then, we
would be able to evaluate the late-time mana of a single
state as an average over the Haar random ensemble,

Mðe−iHtjψihψ jeiHtÞ ≈ hMðjψihψ jÞiHaar; ð4:1Þ

where hfðjψiÞiHaar is defined as N
RP

i
jαij2¼1Q

i
ijdαij2

2
fðjψi ¼ P

i αijiiÞ with fjiig an orthonormal basis
and N the normalization constant. The right-hand side of
(4.1) is calculated for d ≫ 1 [36] and is found to be
hMðjψihψ jÞiHaar ≈ ðL=2Þðlogd − log

ffiffiffiffiffiffiffiffi
π=2

p Þ. Since this
can be approximated in the large d limit by ðL=2Þ logd,
i.e., the largest possible value for the optimal upper bound

FIG. 3. Top left: time evolution of mana Mðe−iHtjSihSjeiHtÞ with J ¼ 1, ðhx; hzÞ ¼ ð0; 2Þ, and jSi ¼ jx ¼ ω−1i ⊗
jx ¼ ω0i⊗ðL−2Þ ⊗ jx ¼ ω−1i. Top right: same plot for ðhx; hzÞ ¼ ð0; ffiffiffi

2
p Þ. Bottom left and bottom right: same plots for the periodic

boundary condition.
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M0ðd; LÞ (2.25), we conclude that the late-time mana
saturates M0ðd; LÞ.
In the integrable regime ðhx; hzÞ ¼ ð0; 2Þ, we find that

mana behaves periodically in time and returns to the initial
value repeatedly. We also study an integrable regime with
irrational coupling ðhx; hzÞ ¼ ð0; ffiffiffi

2
p Þ and find a similar

behavior, although its time evolution is not completely
periodic in this case. These results suggest that one can
distinguish chaotic systems from integrable systems
using mana.

B. Robustness of magic

In the previous section, we found that under chaotic
dynamics, the state evolves from a stabilizer state, which
can be efficiently simulated on a classical computer, to a
state with an almost maximal value of mana. This fact is
independent of the boundary conditions and suggests that
under chaotic dynamics, except for exceptional states such
as energy eigenstates, almost all states evolve to the
most difficult state to simulate on a classical computer.
To make sure that this correctly reflects the property of
magic in the chaotic regime, rather than the particular
property of mana, we study another magic measure,
robustness of magic.
Let us consider the time evolution of RoM (2.28) of the

state ρ ¼ e−iHtjSihSjeiHt. The definition of the RoM
involves the optimization over the space spanned by all
of the stabilizer pure states. Since the number of stabilizer
pure states increases quickly with respect to the number of
sites L and the dimension of the single-site Hilbert space d
as jfjSigj ¼ dL

Q
L
n¼1ðdn þ 1Þ (2.16), the computation of

RoM is difficult compared to mana for the same values
of d and L. On the other hand, one advantage of studying
RoM is that it can also be defined when d is in contrast
to mana.

In Figs. 4–6, we display the results of the higher-spin
generalized Ising model (3.1) for ðhx; hzÞ ¼ ð−1.05; 0.5Þ;
ð1; 0Þ; ð0; ffiffiffi

2
p Þ with J ¼ 1=2, 1. We find that, at least for

ðhx; hzÞ ¼ ð−1.05; 0.5Þ (chaotic regime) and ðhx; hzÞ ¼
ð0; ffiffiffi

2
p Þ (integrable regime), the time evolution of RoM

exhibits similar behaviors as mana:
(i) For the chaotic case, RoM monotonically increases

at early times, and it oscillates between the maxi-
mum value and the nonzero minimum value at late
times. The maximal value of RoM becomes larger as
L increases.

(ii) For the integrable case with ðhx; hzÞ ¼ ð0; ffiffiffi
2

p Þ,
RoM repeatedly comes close to zero in a short time.

(iii) RoM in the chaotic regime exhibits the same
behavior for the open and the periodic boundary
conditions. We also study the other choices of the
initial stabilizer state and find similar results except
for some exceptional cases. One case is that the
initial state is an eigenstate of H, which does not
evolve in time and always gives zero RoM. Another
case is when the stabilizer pure state belongs to a
sector protected by symmetry that consists only of
two energy eigenstates. In this case, RoM behaves
periodically, with the period given by the difference
of the two energy eigenvalues (the same phenome-
non can also be seen for mana).

For ðJ; hx; hzÞ ¼ ð1; 1; 0Þ, we find a qualitatively similar
behavior of RoM in the case with ðJ; hx; hzÞ ¼
ð1;−1.05; 0.5Þ, which is consistent with the fact that the
system is chaotic in both parameter regimes. On the other
hand, for ðJ; hx; hzÞ ¼ ð1=2; 1; 0Þ with L ¼ 3 and the
periodic boundary condition, we do not find a significant
difference in the behavior of RoM from that for
ðJ; hx; hzÞ ¼ ð1=2;−1.05; 0.5Þ, although the system is
integrable in the former case. We expect that this is a
finite L artifact because we also found that the behavior of

FIG. 4. In both the right and left panels, we show the time evolution of the RoM in the chaotic region. In the left panel, we take the
parameters ðJ; hx; hzÞ to be ð1=2;−1.05; 0.5Þ, while in the right panel, we take the parameters ðJ; hx; hzÞ to be ð1;−1.05; 0.5Þ.
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RoM for ðJ; hx; hzÞ ¼ ð1=2; 1; 0Þ and L ¼ 3 with the
periodic boundary condition is different from that for
ðJ; hx; hzÞ ¼ ð1=2; 1; 0Þ and L ¼ 3 with the open boundary
condition, where RoM approaches zero as in the other
integrable cases.

C. Observations and possible interpretations

We have seen the time dependence of mana and RoM in
the chaotic and integrable regimes in the higher-spin
generalized Ising model. Both quantities behave similarly,
suggesting that they correctly capture how magic, the
difficulty for a classical computer to simulate the state,
evolves in time. However, we only computed them in the
systems with such small degrees of freedom that there
would be some subtleties in the interpretation of our results.

Nevertheless, in this section, we try to describe what can be
observed from the numerical plots shown above and some
possible interpretations that can be read from them.

1. Observations

Here we briefly summarize some observations for the
plots displayed in the previous section.

(i) Initial growth of mana
Here, we briefly discuss how the initial growth of

the exponential of mana depends on the initial
stabilizer pure states and the dynamics. Please see
Appendix B for the details of the discussion. In the
initial time region, t ≈ 0, we observe that the initial
growth of eMðρðtÞÞ is approximated by the linear
function of t:

FIG. 6. Evolution of RoM in generalized higher-spin Ising model in the integrable regime, ðhx; hzÞ ¼ ð0; ffiffiffi
2

p Þ. In both the right and
left panels, we show the time evolution of the RoM in the integrable region. In the left panel, we take the parameters ðJ; hx; hzÞ to be
ð1=2; 0; ffiffiffi

2
p Þ, while in the right panel, we take the parameters ðJ; hx; hzÞ to be ð1; 0; ffiffiffi

2
p Þ.

FIG. 5. Evolution of RoM in the higher-spin generalized Ising model with ðJ; hx; hzÞ ¼ ð1=2; 1; 0Þ (left) and ðJ; hx; hzÞ ¼ ð1; 1; 0Þ
(right).
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eMðρðtÞÞ ¼ 1þ t
dL

X
a⃗

jhSj½H;Aa⃗�jSij þOðt2Þ: ð4:2Þ

Thus, the coefficient of t in (4.2) is determined by
the expectation value of dAa⃗ðtÞ

dt jt¼0, where
Aa⃗ðtÞ ¼ e−iHtAa⃗eiHt. Therefore, the initial growth
of eMðρðtÞÞ depends on the initial stabilizer states and
the Hamiltonian.

(ii) Chaos and magic
In the previous section, we numerically studied

the time dependence of mana and RoM in the
chaotic and the integrable regimes of the higher-
spin generalized Ising model. We observed that the
curves showing the time dependence of mana and
RoM in the chaotic regime initially rise rapidly, then
gradually slow down with time, and finally saturate
to certain values. They behave similarly independent
of the choices of the initial states and the boundary
conditions except for some special cases. In par-
ticular, at late times, mana stops varying once it
reaches the maximum that scales linearly in the
number of sites with the coefficient almost coincid-
ing with the optimal upper bound on mana for a
single qudit system. In other words, at late times,
mana almost saturates the optimal upper bound for
the full L site qudit system.
On the other hand, mana and RoM in the

integrable regime behave quite differently from
the chaotic regime. They behave periodically with
time and repeatedly transition between the states
with large values and the ones with small values of
mana and RoM and never converge to certain values.
Their behavior strongly depends on the choices of
the initial state and the boundary condition. The
typical minimum values of mana and RoM at
sufficiently late times are smaller than the chaotic
regime.

2. Possible interpretations

(i) Maximally magical state as typical state
In a chaotic system, one can expect that almost all

the states reach the typical states, which at least share
the common features probed by some restricted set
of physical observables. As we have seen in the
above section, mana and RoM in the chaotic regime
behave independently of the choices of the initial
states and the boundary conditions. In this sense, at
late times, almost all the states approach the typical
states, which share the common feature from the
perspective of magic. Moreover, at late times, mana
almost saturates the optimal upper bound. This
indicates the following statement: Typical states in
the chaotic systems are almost maximally magical,
at least, as probed by mana and RoM. This is one of

the main findings of this paper. As described above,
we also observe that in the integrable regime, mana
and RoM behave periodically. This indicates that the
states never settle down to the maximally magical
state, in contrast to the chaotic regime, periodically
transitioning between highly magical and less mag-
ical states.

(ii) Growth of the number of magic gates
In the plots described above, we can observe that

at early times, mana and RoM grow rapidly in time
and gradually slow down as time evolves. There
might be some subtleties and finite L artifacts in our
analyses, but if this is the case, it suggests that the
number of magic gates required to construct a new
time-evolved quantum state already almost saturates
in the early stage of time evolution.

V. MAGIC IN HOLOGRAPHY

As we described in the Introduction, our original
motivation was to understand the role of “quantumness”
of the boundary nongravitational system in the emergence
of classical spacetime geometry in the context of holog-
raphy. The holographic duals to the entanglement entropy
and computational complexity were proposed in the liter-
ature. They revealed intriguing connections between the
quantum nature of the conformal field theories and the
properties of spacetime geometry in anti–de Sitter space.
In the previous section, we numerically analyzed mana

and RoM in the chaotic system with small degrees of
freedom, which does not have a classical gravity dual. We
expect that the behaviors of mana and RoM contain some
artifacts due to the smallness in the degrees of freedom of
the system. Therefore, it is difficult to accurately estimate
their behavior in the holographic systems, i.e., chaotic
systems with large degrees of freedom. Here, we only
mention a few possibilities.14 To make the discussion
concrete, let us consider the holographic conformal field
theories and focus on mana in the so-called (quenched)
thermofield double state:

jTFDðtÞi ¼ N e
−ðitþβÞðH1þH2Þ

2

X
Ea

jEai1 ⊗ jEai2; ð5:1Þ

defined in the doubled Hilbert space H ¼ H1 ⊗ H2. Here
jEaii is an eigenstate of HamiltonianHi with eigenvalue Ea
in Hilbert spaceHi, β is the inverse temperature, andN is a
normalization constant N 2 ¼ ðPEa

e−βEaÞ−1.

14Some of the readers might be concerned about whether mana
and RoM can be defined in the holographic systems, i.e.,
continuum field theories without a clear notion of “qubits.” In
this section, we leave this issue as an interesting future direction
and simply assume that mana and RoM are well defined in the
holographic systems.
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A. Upper bound on mana

Let us consider a chaotic discrete system with dimension
d of local Hilbert space at each lattice site and the system
size 2L. If we assume15 d ≫ 1, we find, as commented in
Sec. IVA, that mana of any state at late times would almost
saturate Jensen’s inequality: MðtÞ ≈ L log d. Notice that
the right-hand side gives the thermal entropy Sthermal of
the system. We expect that mana also satisfies this bound
in the holographic systems. In particular, in a holographic
two-dimensional conformal field theory, we have

MðtÞ ≤ Sthermal ¼
cπL
3β

ð5:2Þ

with the central charge c of the conformal field theory,
which would be saturated at late times.

B. Growth of mana

Growth of mana will give us important information
about the geometrical structure in the anti–de Sitter space
dual to the state (5.1). It is conjectured that the gravity dual
to the state (5.1) is a wormhole connecting two outside
regions, each of which is described by Hi of the dual
quantum system. Therefore, if mana is properly defined in
the holographic systems, its growth can capture the time
dependence of some geometrical property of the wormhole.
We discuss several possibilities in the growth of mana in

the holographic systems:
(1) Mana grows fast at early times and gradually slows

down.
In the numerical analyses of the higher-spin

generalized Ising model, we observe that mana
(and RoM) grow rapidly at early times and gradually
slow down as time evolves. There are ambiguities
caused by the smallness in the degrees of freedom of
the system, and the time dependence of mana in the
holographic system is unclear. One of the most
natural guesses is that it shows the same behavior
observed in the higher-spin generalized Ising model:
Mana first grows rapidly, gradually slows down, and
asymptotically approaches its maximal value.
One of the most simple characteristics of the

wormhole geometry dual to the thermofield double
state (5.1) is its size, which grows linearly in time.
This time dependence can be captured by entangle-
ment entropy at the early stage of the time evolution

and by computational complexity even at later
stages.
If mana in the holographic systems indeed be-

haves as described above, this is in contrast to the
time dependence of the size of the wormhole
geometry dual to (5.1). This suggests that the
gravitational counterpart of magic, if it exists, is
not simply a measure of the size of the wormhole, in
contrast to the case of entanglement entropy and
computational complexity.

(2) Mana grows linearly in time until it saturates the
bound.
While the growth of mana in the higher-spin

generalized Ising model shows a nontrivial curve as
explained above, in the early-time region it can be
well approximated by a linear function as, in
general, any smooth curves. Thus, one can imagine
another scenario, where only the linearly growing
regime in the system with small degrees of freedom
is amplified, and the slowing-down regime is sup-
pressed as we increase the degrees of freedom in the
system. If this is the case, mana in the holographic
system grows linearly asMðtÞ ∼ atþ b and captures
the linear growth in the size of the wormhole in time
up to the time when it saturates the upper bound
(5.2). In particular, one can estimate that the growth
of mana stops at most polynomial times in Sthermal,
assuming that a and b scale most in the polynomial
of Sthermal, much earlier than the saturation time of
the computational complexity. Let us remind our-
selves that while the computational complexity
counts all the gates equally, magic only counts the
magic gates that cannot be efficiently simulated on a
classical computer. Therefore, if mana follows the
linear growth discussed above, it suggests that after a
sufficiently long time, t≳ Snthermal, the state largely
deviates from the one that can be efficiently simu-
lated on a classical computer. Here, n is an integer.

(3) Exponential of mana grows linearly in time until it
saturates the bound.
The third possibility is that the exponential of

mana, not mana itself, grows linearly in time as
eMðtÞ ∼ atþ b. This means the nonstabilizerness of
the density matrix increases linearly in time because
the mana is related to the logarithmic function of the
density matrix as in (2.22). Assuming that a is, at
most, given by the polynomial of Sthermal and
eSthermal ≫ b in the limit L ≫ β, we roughly estimate
the saturation time as

tsaturation ∼ eSthermal : ð5:3Þ

This is the same order as the saturation time of the
computational complexity.

15This assumption is justified once we identify the qudit
system with a holographic two-dimensional conformal field
theory with central charge c ≫ 1 at finite temperature β (nor-
malized by the UV cutoff scale) through d ¼ eπc=ð3βÞ by
identifying the thermal entropy of both systems as L log d ¼
cπL
3β (L on the right-hand side is the one-dimensional volume
divided by the UV cutoff, which corresponds to the number of
lattice sites).
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1. Numerical supporting evidence

The assumption eMðtÞ ≈ atþ b is also supported by the
numerical results for the spin system. Note that the initial
states we have used in the numerical analysis are different
from the thermofield double state (5.1). Nevertheless, here
we assume that the behavior of mana is also qualitatively
the same when the initial state is the thermofield
double state. As displayed in Fig. 7, we observe that
eMðρ¼e−iHtjSihSjeiHtÞ grows linearly at early times, eM − 1 ≈ at
with a some constant. Here, the early-time growth of the
exponential of mana is different from the initial growth in
Sec. IV C. The early-time growth of the exponential of
mana is in the time interval 0.05 ≤ t ≤ 0.2 for L ¼ 2 and
0.1 ≤ t ≤ 0.2 for L ¼ 3, 4, 5, while the initial time growth
is at t ≈ 0. Since at late times, mana oscillates erratically
around some nonzero value, it would be natural to define
the saturation time of mana for the higher-spin generalized
Ising model as

tsaturation ¼
emaxt>100½Mðρ¼e−iHtjSihSjeiHtÞ� − 1

a
; ð5:4Þ

where maxt>10½Mðρ ¼ e−iHtjSihSjeiHtÞ� is the maximum
value of mana at late times. In Figs. 7 and 8, we display the
results of the fitting at early times and the L dependence of
tsaturation obtained. We find that as the number of sites L
increases, both the early-time growth rate a and the
saturation time tsaturation increase. We further observe that
as the number of sites L is increased, a scales as a ∼ L2.16

Combining this result with the observation that the late-
time maximum maxt>10½Mðρ ¼ e−iHtjSihSjeiHtÞ� grows

linearly in L (see Fig. 2), it follows that the saturation
time scales exponentially in L. Note that there are several
subtleties in our analysis in the higher-spin generalized
Ising model. First, since our analysis is limited to the small
system size L ≤ 5, it is not clear whether the L dependence
of the growth coefficient aðLÞ is really a polynomial in L.
Also, even if the polynomial scaling is correct, the physical
interpretation of the order of the polynomial and the
coefficients of the polynomial are not clear. Second, it is
not clear whether our result depends on the choice of the
initial stabilizer pure state jSi: Although we have observed
that the late-time maximum ofMðe−iHtjSihSjeiHtÞ is almost
independent of the choice of jSi, for the growth coefficient
aðLÞ it is still not clear at L ¼ 4, where we have the results
for a moderate variety of jSi, whether aðLÞ tends to be
independent of jSi as L increases. It would be an important
future direction to clarify these points.

2. Numerical supporting evidence:
Stabilizer Rényi entropy

As the size of the system increases, the early-time
behavior and saturation time of magic should become less
dependent on finite size effects. However, it is difficult to
study numerically the time evolution of mana in larger
systems. Therefore, instead of mana, we consider here
another magic monotone, the stabilizer Rényi entropy [28],
which is defined for qubit systems (d ¼ 2) and can be
numerically computed on systems of larger sizes. We
expect the stabilizer Rényi entropy to capture the early-
time property of magic of the pure states.
For a pure state jψi, the stabilizer Rényi entropyM2ðjψiÞ

is defined as

M2ðjψiÞ ¼ − log
X
P∈P̃

ðΞPðjψiÞÞ2 − L log 2; ð5:5Þ

FIG. 7. Left: time evolution of eM − 1. Right: rate of early-time linear growth of eM − 1 obtained by fitting the data in 0.05 ≤ t ≤ 0.2
for L ¼ 2 and 0.1 ≤ t ≤ 0.2 for L ¼ 3, 4, 5.

16Note that the values of a may depend on the choice of the
initial stabilizer pure state jSi. Here we have chosen a particular
set of stabilizer pure states that depend on L in a simple way.
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where17 P̃ is the Pauli group divided by the overall phase:
P̃ ¼ f1; z; x; izxg⊗L with x, z given in (2.1), and

ΞPðjψiÞ ¼
1

2L
ðhψ jPjψiÞ2: ð5:7Þ

This M2ðjψiÞ satisfies the same properties as mana
for d ≥ 3: M2ðjψiÞ ¼ M2ðUjψiÞ for any pure state jψi
and Clifford gate U ∈ Cd¼2; M2ðjψiÞ ¼ 0 if and only if
jψi ∈ fjSig (2.16); hence M2ðjψiÞ can be used as a magic
monotone. Also note that M2ðjψiÞ is much easier to
compute than robustness of magic (2.28) since M2ðjψiÞ
does not involve any optimization procedure.
We analyze the time evolution ofM2ðe−iHtjSiÞ, where jSi

is one of the stabilizer pure states, which we have chosen as
jSi ¼ jx ¼ −1i ⊗ jx ¼ 1i⊗ðL−2Þ ⊗ jx ¼ −1i, for the open
Ising model (3.1) at a chaotic point ðhx; hzÞ ¼ ð−1.05; 0.5Þ
and two integrable points ðhx; hzÞ ¼ ð0; ffiffiffi

2
p Þ; ð ffiffiffi

2
p

; 0Þ. As a
result, we obtain Fig. 9. In the chaotic case, M2ðe−iHtjSiÞ

grows monotonically at early times and oscillates at
late times around some finite value proportional to L.
We also find that as L increases, the magnitude of the
late-time fluctuation of M2 is more suppressed. On the
other hand, in both of the integrable cases we find that M2

comes back to M2 ≈ 0, the initial value, even at late times.
Hence, our results suggest that the magic can distinguish
the time evolution in chaotic systems from the time
evolution in integrable systems, which is not clear in the
analysis of robustness of magic due to the restriction
to the small system size L. Thus, the stabilizer Rényi
entropy can capture the same properties of magic as mana
and RoM.
As we did for mana in Sec. V, we may also estimate

the saturation time of M2ðe−iHtjSiÞ at chaotic points
as follows. We find that18 at an early-time interval,

0.7 ≤ t ≤ 1,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eM2ðe−iHtjSiÞ − 1

p
grows linearly in t,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eM2ðe−iHtjSiÞ − 1
p

≈ a0ðLÞt, which we use to define the
saturation time of M2 as

t0saturation ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
emaxt>100½M2ðe−iHtjSiÞ� − 1

p
a0

: ð5:8Þ

FIG. 8. First four panels: comparison betweenM and its maximum value at late times (t > 100) (dashed green line) with the early-time
fitting with eM − 1 ¼ at (orange line). Last panel: L dependence of the saturation time estimated by the early-time linear growth
(vertical dashed lines in the other panels).

17We can also consider the following generalization [28]:

M2ðjψiÞ ¼ ð1 − αÞ−1 log
X
P∈P̃

ðΞPðjψiÞÞα − L log 2: ð5:6Þ

However, in this paper we focus on the case α ¼ 2 for simplicity.

18Here we consider
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eM2 − 1

p
instead of eM2 − 1 by taking into

account the fact that when we consider a state slightly deviated
from a stabilizer pure state, the effect of deviation inM2 vanishes
at the first order.
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In Fig. 10we display a0 obtained by fitting forL ¼ 2; 3;…; 7.
We observe that a0 scales in L as a0ðLÞ ∼ L.19

Combining this with the scaling of the late-time value
M2 ∼ L, we conclude that t0saturation grows exponentially in
L. The current analysis provides additional [and stronger
compared to the analysis of mana where L ≤ 5 (see
Sec. (5.4) and below)] evidence that magic keeps growing
even after the system thermalizes (which occurs at t ∼ L)
when the system size is sufficiently large. In the context of
holography, our results suggest that magic of states might
reflect some nontrivial information of the black hole
interiors in the dual geometry.

3. Early-time growth and nonstabilizerness

As in (2.22) and (5.5), both mana and stabilizer Rényi
entropy quantify the nonstabilizerness of the quantum state.

In particular, when the deviation of the state from the
stabilizer states is small, one can show that these monot-
ones capture the deviation from the stabilizer state at the
first and second orders, respectively. Therefore, the early-

time evolution of eMðρÞ − 1 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eM2ðρÞ − 1

p
and the late-

time values of the quantities discussed above suggest that
the nonstabilizerness of the state grows linearly in time and
saturates at an exponentially large time in the system size.

VI. DISCUSSIONS AND FUTURE DIRECTIONS

In this work, we studied the time dependence of the two
measures of magic, mana and RoM, in the higher-spin
generalized Ising model in the integrable and chaotic
regimes. We chose stabilizer states, which can be efficiently
simulated on a classical computer, as initial states, and
considered their time evolution under the Hamiltonian of
the system. We found that in the chaotic regime, both mana
and RoM increase monotonically and saturate after a
sufficiently late time to some nonzero value independent

FIG. 9. Top: stabilizer Rényi entropy M2ðe−iHtjSiÞ (top left) and its late-time values (top right) of the open Ising model (3.1) with
ðhx; hzÞ ¼ ð−1.05; 0.5Þ for various values of L. Bottom: comparison of stabilizer Rényi entropy M2ðe−iHtjSiÞ at a chaotic point
ðhx; hzÞ ¼ ð−1.05; 0.5Þ and integrable points ðhx; hzÞ ¼ ð ffiffiffi

2
p

; 0Þ; ð0; ffiffiffi
2

p Þ.

19Note that the values of a0 may depend on the choice of the
initial stabilizer pure state jSi. Here we have chosen a particular
set of stabilizer pure states that depend on L in a simple way.
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of the choices of an initial state and a boundary condition.
In particular, mana at late times almost coincides with the
optimal upper bound for a single-site system times the
number of sites. This suggests that mana at late times
almost saturates the optimal upper bound on mana for the
entire Hilbert space. On the other hand, in the integrable
regime, mana and RoM behave periodically in time, and the
state transitions between low-magic and high-magic states.
Our study suggests that magic of a quantum state is one of
the key elements for the emergence of chaotic properties.
In this section, we list several further discussions and

future directions.
(i) Mana in a thermal state

In this paper, we only focused on magic for a pure
state. Here we make a brief comment on magic for a
thermal state. Let us take the system of L sites,
which has d degrees of freedom of the Hilbert space
on each site; i.e., the dimension of the Hilbert space
is dL. We expect that the density matrix of a thermal
state approximately takes the form

ρthermal ≈
1

dL
1; ð6:1Þ

where 1 is the dL × dL identity matrix. Computed
from this density matrix, the Rényi entanglement
entropy becomes independent of the replica index
n. Jensen’s inequality would suggest that mana is
always zero. It would be intriguing to explore its
physical interpretation.

(ii) Mana in a mixed state
Here we comment on the time evolution of mana

for the mixed states in (2.17). Although mana is not a
faithful magic monotone for mixed states, we think it
isworth discussing the relation between the growth of
magic and the entropy of the state. In the unitary

nonequilibrium process, nth Rényi entropy is inde-
pendent of time for any replica number n, while mana
varies in time. The upper bound of mana is given by
(2.23). In other words, the entropy of themixed states
inhibits the value of mana from growing in time.

(iii) Mana for a subregion
Mana studied in this paper is defined through the

density matrix of a quantum state. We can simply
generalize it tomana for a subregion using the reduced
density matrix. Let us consider a state defined on L
sites and divide the system into A with lA sites and B
with the remaining sites. We also assume that the size
dependence of the Rényi entanglement entropy fol-
lows the Page curve [56,57]; i.e., the subsystem size

dependence of the Rényi entanglement entropy Sð2ÞA
for the region A is given by

Sð2ÞA ¼
(
lA log d

L
2
> lA

ðL − lAÞ log d L > lA > L
2
:

ð6:2Þ

This suggests that the upper bound for the subsystem
generalization of mana MA defined by the reduced
density matrix ρA is given by

MA ≤

(
0 0 < lA < L

2

lA − L
2

L
2
< lA < L:

ð6:3Þ

It is worth noting that the subregion generalization of
manaMA is always 0 for a small subregion0 < l < L

2
.

It is known that the entanglement entropy in a thermo-
field double state in a two-dimensional holographic
conformal field theory on a compact spacetime [58]
and a chaotic chain [59] follows the Page curve at

FIG. 10. Left: time evolution of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eM2 − 1

p
. Right: rate of early-time linear growth of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eM2 − 1

p
obtained by fitting the data in the time

interval 0.7 ≤ t ≤ 1.
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sufficiently late times, and we expect the subregion
generalization of mana will satisfy (6.3).20

An interesting future direction is to find the gravity dual
of mana and RoM. It would be interesting to find the
geometrical meaning of the maximally magical states,
which would be realized in the holographic systems.
In our paper, we performed numerical computations for

mana and RoM, but there would be some subtleties due to
the small system size. It would be interesting to study them
for larger systems. Such a direction is important to find
their gravity dual.
It is important to define mana and RoM in a continuous

quantum field theory and study their time dependence.
In Sec. II B we observed that under chaotic dynamics,

any state evolves to some state jψðtÞi whose mana is
MðjψðtÞihψðtÞjÞ ≈ LM0ðd; 1Þ, where L is the number of
sites, d is the dimension of the single-site Hilbert space, and
M0ðd; 1Þ is the optimal upper bound on mana of the single-
site system, at least for d ¼ 3. One possible choice of state
to reproduce the same amount of mana is

U ⊗
L

i¼1
jmii; ð6:4Þ

with each jmii being one of the states in the single-site
system whose mana saturates M ¼ M0ðd; 1Þ, and U some
element of the Clifford group Cd of the L-site system. Such
single-site states jmi are known concretely for d ¼ 3, 5
[35,37]. It would be interesting to study whether the late-
time state can be expressed in the form (6.4),21 or more
generally, whether the state at early times where mana is
still growing can also be expressed in a similar form:

UðtÞð⊗lðtÞ
i jmii ⊗ jSiÞ with lðtÞ ≈Mðjψihψ jÞ=M0ðd; 1Þ

and jSi some stabilizer state in the L − lðtÞ-site system.
Conversely, it would also be interesting to study whether
dynamics under which any state evolves to an almost
maximally magical state is always strongly chaotic.
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APPENDIX A: INITIAL-STATE DEPENDENCE
OF MANA AND ROM

In this appendix, we display the results on the depend-
ence of manaMðρÞ and RoMðρÞ for ρ ¼ e−iHtjSihSjeiHt on
the choice of the initial state jSi. For simplicity, we display
only the numerically realized values of the maximum and
minimum at late times (100 < t < 105). We also omit the
results for the trivially integrable (hx ¼ 0) cases. In Tables I
and II, we list the results for mana with j ¼ 1, L ¼ 4, where
we have selected only part of the stabilizer states for jSi
among the full set of stabilizer pure states, which consists
of 7439040 (2.16), while in Figs. 11 and 12, we display the

TABLE I. Observed maximum and minimum values of
Mðe−iHtjSihSjeiHtÞ for L ¼ 4, ðj; hx; hzÞ ¼ ð1;−1.05; 0.5Þ with
t > 100. As the initial states jSi, we have chosen those in the
form jI1n1i ⊗ jI2n2i ⊗ � � � jILnLi with jIni the eigenstate of I
with eigenvalue ωn (I ¼ x, z; n ¼ 0; 1;…; d), which we have
abbreviated as jI1n1I2n2 � � � ILnLi.

hx ¼ −1.05;
hz ¼ 0.5, open

hx ¼ −1.05;
hz ¼ 0.5, periodic

jSi
Maxt>100

½M�
Mint>100

½M�
Maxt>100

½M�
Mint>100

½M�
jx0x0x0x0i 1.94848 1.5446 1.9677 1.35928
jx0x1x1x0i 1.98867 1.92726 1.98738 1.90887
jx0x2x2x0i 1.98872 1.94041 1.98788 1.88011
jx0z0z0x0i 1.98775 1.94232 1.98697 1.93669
jx0z1z1x0i 1.98389 1.8928 1.98385 1.84364
jx0z2z2x0i 1.98663 1.8807 1.98492 1.84096
jx1x0x0x1i 1.98809 1.93112 1.98738 1.90887
jx1x1x1x1i 1.98658 1.83597 1.99177 1.71701
jx1x2x2x1i 1.98586 1.90739 1.98814 1.87717
jx1z0z0x1i 1.9799 1.83753 1.98052 1.85992
jx1z1z1x1i 1.98999 1.93231 1.9873 1.92717
jx1z2z2x1i 1.9897 1.9217 1.99008 1.91503
jx2x0x0x2i 1.98636 1.94038 1.98788 1.88011
jx2x1x1x2i 1.98448 1.92106 1.98814 1.87717
jx2x2x2x2i 1.98384 1.87289 1.9886 1.71676
jx2z0z0x2i 1.97987 1.82827 1.98082 1.85984
jx2z1z1x2i 1.98799 1.93234 1.99067 1.9296
jx2z2z2x2i 1.99014 1.91262 1.99007 1.91344
jz0x0x0z0i 1.98726 1.93525 1.98697 1.93669
jz0x1x1z0i 1.9862 1.91971 1.98052 1.85992
jz0x2x2z0i 1.98632 1.92497 1.98082 1.85984
jz1x0x0z1i 1.98368 1.86783 1.98385 1.84364
jz1x1x1z1i 1.98894 1.94228 1.9873 1.92717
jz1x2x2z1i 1.98769 1.94325 1.99067 1.9296
jz2x0x0z2i 1.97872 1.71465 1.98492 1.84096
jz2x1x1z2i 1.9875 1.92687 1.99008 1.91503
jz2x2x2z2i 1.98956 1.91078 1.99007 1.91344

20Since the time evolution of the Rényi entanglement entropy
in a two-dimensional holographic conformal field theory depends
on the Rényi index, a correction to (6.3) may be necessary.

21Note that the state ⊗L
i¼1 jmii does not have any entangle-

ment. If a late-time state is of the form (6.4), the large
entanglement of the state, which is a characteristic of chaotic
dynamics, should be carried by the choice of U.
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results for RoM with j ¼ 1=2; L ¼ 3 and j ¼ 1, L ¼ 2 for
all stabilizer states jSi.

APPENDIX B: INITIAL TIME BEHAVIOR
OF MANA

In this section we display some analysis on the initial
time linear growth of mana Mðe−iHtjSihSjeiHtÞ which we
observed in Sec. V. First we observe that a stabilizer pure
state jSi ¼ j0i⊗L and the phase space point operators have
the following properties22:

Aa⃗jSi ¼ jSi for some dL choices of a⃗: ðB1Þ

AhSjAa⃗jSi ¼ 0 for all other d2L − dL choices of a⃗: ðB2Þ

Now let us consider the initial time approximation of
eMðρðtÞÞ with ρðtÞ ¼ e−iHtjSihSjeiHt. At the second order in
the small t expansion, ρðtÞ is given by

ρðtÞ ¼ jSihSj − it½H; jSihSj� þOðt2Þ: ðB3Þ

Then, eMðρðtÞÞ at the second order of the small t expansion is
given by

eMðρðtÞÞ ¼ 1

dL
X
a⃗

jhSjAa⃗jSi þ ithSj½H;Aa⃗�jSij þOðt2Þ:

ðB4Þ

Thus, in the small t expansion, the time evolution of eMðρðtÞÞ
is determined by the time evolution of phase space point
operators. By using the above observation, we can rewrite
this as

eMðρðtÞÞ ¼ 1þ asmall ttþOðt2Þ; ðB5Þ

with

asmall t ¼
1

dL
X
a⃗

jhSj½H;Aa⃗�jSij: ðB6Þ

We can obtain a relatively simple pair of upper and lower
bounds of asmall t. For this purpose we use the following
inequality:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

jcij2
s

≤
Xn
i¼1

jcij ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
Xn
i¼1

jcij2
s

; ðB7Þ

which holds for any complex numbers c1;…; cn. Here the
first inequality is obvious, while the second inequality
follows from the concavity of the function fðxÞ ¼ ffiffiffi

x
p

.
Applying (B7) to asmall t in (B6), we obtain

aðlowerÞsmall t ≤ asmall t ≤ dLaðlowerÞsmall t ; ðB8Þ

with

aðlowerÞsmall t ¼ 1

dL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
a⃗

jhSj½H;Aa⃗�jSij2
r

: ðB9Þ

By using the identity
P

a⃗ðAa⃗ÞijðAa⃗Þkl ¼ dLδilδjk, which
follows since fAa⃗g is an orthonormal basis set, we can

simplify aðlowerÞsmall t as

aðlowerÞsmall t ¼ d−
L
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðhSjH2jSi − ðhSjHjSiÞ2Þ

q
: ðB10Þ

TABLE II. Observed maximum and minimum values of
Mðe−iHtjSihSjeiHtÞ for L ¼ 4, ðj; hx; hzÞ ¼ ð1; 1; 0Þ with
t > 100.

hx ¼ 1, hz ¼ 0, open hx ¼ 1, hz ¼ 0, periodic

jSi
Maxt>100

½M�
Mint>100

½M�
Maxt>100

½M�
Mint>100

½M�
jx0x0x0x0i 1.95063 1.19597 1.97313 1.02994
jx0x1x1x0i 1.98697 1.85128 1.98538 1.80405
jx0x2x2x0i 1.98697 1.85128 1.98538 1.80405
jx0z0z0x0i 1.97238 1.74603 1.97888 1.65442
jx0z1z1x0i 1.99427 1.73786 1.99098 1.63055
jx0z2z2x0i 1.97238 1.74603 1.97888 1.65442
jx1x0x0x1i 1.98562 1.92734 1.98538 1.80405
jx1x1x1x1i 1.98471 1.68569 1.99113 1.47506
jx1x2x2x1i 1.98424 1.85524 1.98713 1.54085
jx1z0z0x1i 1.98772 1.93549 1.98578 1.8906
jx1z1z1x1i 1.98519 1.88945 1.98748 1.91064
jx1z2z2x1i 1.99302 1.94148 1.98737 1.90967
jx2x0x0x2i 1.98562 1.92734 1.98538 1.80405
jx2x1x1x2i 1.98424 1.85524 1.98713 1.54085
jx2x2x2x2i 1.98471 1.68569 1.99113 1.47506
jx2z0z0x2i 1.99302 1.94148 1.98737 1.90967
jx2z1z1x2i 1.98519 1.88945 1.98748 1.91064
jx2z2z2x2i 1.98772 1.93549 1.98578 1.8906
jz0x0x0z0i 1.98424 1.78507 1.97888 1.65442
jz0x1x1z0i 1.98727 1.91742 1.98578 1.8906
jz0x2x2z0i 1.98719 1.91027 1.98737 1.90967
jz1x0x0z1i 1.99068 1.77276 1.99098 1.63055
jz1x1x1z1i 1.98859 1.90417 1.98748 1.91064
jz1x2x2z1i 1.98859 1.90417 1.98748 1.91064
jz2x0x0z2i 1.98424 1.78507 1.97888 1.65442
jz2x1x1z2i 1.98719 1.91027 1.98737 1.90967
jz2x2x2z2i 1.98727 1.91742 1.98578 1.8906

22For jSi ¼ j0i⊗L we can show by direct calculations that
(B2) holds where the first dL choices of a⃗ are
fðða1; 0Þ; ða2; 0Þ;…; ðaL; 0ÞÞg. We have confirmed (B2) also
holds with all the other stabilizer pure states jSi for d ¼ 3; L ¼ 1,
2 and with a large number of stabilizer pure states for d ¼ 3,
L ¼ 3.
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Hence we obtain

d−
L
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðhSjH2jSi − ðhSjHjSiÞ2Þ

q
≤ asmall t

≤ d
L
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðhSjH2jSi − ðhSjHjSiÞ2Þ

q
: ðB11Þ

Note that the upper and lower bounds of asmall t are much
easier to evaluate than asmall t itself.
However, at least for the chaotic Ising model with

d ¼ 3; L ¼ 2, 3, we find that neither the lower bound
nor the upper bound is close to the actual value of asmall t.
Moreover, for the same model we find that asmall t itself is
not close to the slope of the wide linear growth regime
considered in Sec. V either (except for L ¼ 3; see Fig. 13).

Indeed, the small t expansion in this section is based on the
assumption that eM − 1 ≪ 1 and hence may not be reliable
in the regime where mana approaches an exponentially
large late time value. It would be interesting to study
whether there is a chaotic system where these situations are
different.

APPENDIX C: COMPARISON BETWEEN
ENTANGLEMENT AND MAGIC MONOTONES

In this section we compare the magic of the time-
evolved states e−iHtjSi with the entanglement of the
same states in the chaotic parameter regime
ðhx; hzÞ ¼ ð−1.05; 0.5Þ. As a measure of the entangle-
ment, here we adopt the entanglement entropy SA with A

FIG. 11. Observed maximum and minimum values of RoMðe−iHtjSihSjeiHtÞ for L ¼ 3, ðj; hx; hzÞ ¼ ð1=2;−1.05; 0.5Þ and
ðj; hx; hzÞ ¼ ð1=2; 1; 0Þ with t > 100. The horizontal axis indicates that the ith stabilizer pure state among all 1080 stabilizer pure
states is chosen as the initial state jSi.
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FIG. 12. Observed maximum and minimum values of RoMðe−iHtjSihSjeiHtÞ for L ¼ 2, ðj; hx; hzÞ ¼ ð1;−1.05; 0.5Þ and ðj; hx; hzÞ ¼
ð1; 1; 0Þ with t > 100. The horizontal axis indicates that the ith stabilizer pure state among all 360 stabilizer pure states is chosen as the
initial state jSi.

FIG. 13. Comparison between the leading coefficientasmall t of the initial time expansion (B9), the simpler upper and lower bounds ofasmall t,
and the actual values of mana for the higher-spin generalized open Ising model (3.1) with ðJ; hx; hzÞ ¼ ð1;−1.05; 0.5Þ and L ¼ 2, 3, 4, 5.
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chosen as the first l sites of the spin chain (1 ≤ l ≤ ½L
2
�).

We are particularly interested in the cases where L is large;
hence, here we consider only mana for J ¼ 1 (d ¼ 3) and
the stabilizer Rényi entropy for J ¼ 1=2 (d ¼ 2), which
are tractable for relatively larger L compared with the
robustness of magic, as the measures of magic. We also
focus only on the spin chains with the open boundary
condition for simplicity.
When the initial stabilizer state is chosen as

jSi ¼ jx ¼ ω−1i ⊗ jx ¼ 1i⊗ðL−2Þ ⊗ jx ¼ ω−1i, we obtain
Figs. 14 and 15. From these results we find that the
behaviors of the magic monotones are slightly different
from the behavior of the entanglement entropy.

Interestingly, we also observe that the magic monotone
keeps increasing even after the entanglement entropy
saturates.23

FIG. 14. Comparison between mana and the entanglement entropy for jSi ¼ jx ¼ ω−1i ⊗ jx ¼ 1i⊗ðL−2Þ ⊗ jx ¼ ω−1i, in the chaotic
regime ðhx; hzÞ ¼ ð−1.05; 0.5Þ.

FIG. 15. Comparison between the stabilizer Rényi entropy and the entanglement entropy for jSi ¼ jx ¼ −1i ⊗ jx ¼ 1i⊗ðL−2Þ ⊗
jx ¼ −1i, in the chaotic regime ðhx; hzÞ ¼ ð−1.05; 0.5Þ.

23Note, however, that this postscrambling growth of magic is
observed to take place in a different time region (1 ≲ t≲ 10 for
mana with L ¼ 4, 5 and 1 ≲ t≲ 100 for the stabilizer Rényi
entropy with L ¼ 6, 7) from the time region we focused on to
estimate the saturation time of magic (0.1 ≤ t ≤ 0.2 for mana and
0.7 ≤ t ≤ 1 for the stabilizer Rényi entropy) in Sec. V. We hope to
revisit the postscrambling behavior of the magic monotones,
together with a more reasonable estimation of the saturation time,
in future analyses.
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APPENDIX D: TIME EVOLUTION OF MAGIC
FROM HIGHLY ENTANGLED STABILIZER

STATE

In Secs. IV and V, we studied the time evolution of the
magic monotones from a tensor product stabilizer pure
state and found that the behavior of the magic monotones
in the chaotic regime is qualitatively different from
the behavior in the integrable regime. Note, however,
that the behavior of the entanglement entropy is also
qualitatively different in the chaotic regime and in the

integrable regime for this setup: The entanglement
entropy grows to the maximum value SA ∼ jAj log d only
when the system is chaotic. Therefore, from the results in
this setup, it is not clear whether the difference of the
behavior of magic really reflects the chaoticity of the
Hamiltonian or whether it just reflects the entanglement
property of the state. In this appendix, in order to separate
the behavior of the magic monotones from the entangle-
ment, we study the time evolution from the following
initial state:

jSi ¼
( jBi1;L ⊗ jBi2;L−1 ⊗ � � � ⊗ jBiL

2
;L
2
þ1 L∶ even

jBi1;L ⊗ jBi2;L−1 ⊗ � � � ⊗ jBi½L
2
�;½L

2
�þ2 ⊗ jx ¼ 1i½L

2
�þ1 L∶ odd;

ðD1Þ

where jBii;j ¼ 1ffiffiffiffiffiffiffiffi
2Jþ1

p
P

2J
n¼0 jx ¼ ωnii ⊗ jx ¼ ωnij is a Bell pair between the ith and jth sites. For example, for

J ¼ 1=2; L ¼ 4, Eq. (D1) reduces to

jSi ¼ 1

2
ðjx ¼ 1i ⊗ jx ¼ 1i ⊗ jx ¼ 1i ⊗ jx ¼ 1i þ jx ¼ 1i ⊗ jx ¼ −1i ⊗ jx ¼ −1i ⊗ jx ¼ 1i

þjx ¼ −1i ⊗ jx ¼ 1i ⊗ jx ¼ 1i ⊗ jx ¼ −1i þ jx ¼ −1i ⊗ jx ¼ −1i ⊗ jx ¼ −1i ⊗ jx ¼ −1iÞ: ðD2Þ

Note that jSi in (D1) is a stabilizer pure state, although it is maximally entangled between A ¼ f1; 2;…; ½L
2
�g and its

complement. In this setup we obtain the results displayed in Figs. 16 and 17. We find that mana in the chaotic regime
deviates from mana in the integrable regime, and at late times, we find that the integrable case shows a smaller saturation
value and larger fluctuation compared with the chaotic case. We find the same discrepancy between the stabilizer Rényi
entropy in the chaotic regime and the stabilizer Rényi entropy in both of the integrable regimes when t is not too small (say,
t≳ 0.3). These results suggest that magic indeed distinguishes a chaotic dynamics from an integrable dynamics in a
different manner than the entanglement does.

FIG. 16. ManaMðe−iHtjSiÞ in the chaotic regime and integrable regime for jSi being the Bell pair state (D1). Note that the apparently
small fluctuation of eM − 1 in the integrable regime at late times is simply due to the small number of discrete data points. For
comparison, we also display the entanglement entropy Sf1;2g in the chaotic regime. Here, values of eM − 1 are indicated with the left tick
marks while the values of Sf1;2g are indicated with the right tick marks.
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