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A big open problem in AdS3 × S3 × T4 holographic duality is to compute the conformal field theory
(CFT) data of the dual theory. In this direction in [B. Eden, D. l. Plat, and A. Sfondrini, J. High Energy
Phys. 08 (2021) 049] it was introduced the hexagonalization framework in the AdS3 context. It allows the
computation of the structure constants of the CFT2 dual in the planar limit nonperturbatively, however in
[B. Eden, D. l. Plat, and A. Sfondrini, J. High Energy Phys. 08 (2021) 049] it was introduced only the
asymptotic part of the hexagon valid for correlators with asymptotically large bridge lengths. In this work
we complete this picture by computing the so called mirror corrections that allow to describe structure
constants for finite bridge lengths and as a by-product we also prove that the half-BPS operators in the
theory do not receive these corrections. We end up by giving the first steps on using hexagonalization to
compute n-point functions in the AdS3 × S3 × T4 holographic duality.
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I. INTRODUCTION

The use of quantum integrability for the AdS5 × S5

holographic duality spans over a decade of success now.
It led to the establishment of the gauge-gravity duality as a
concrete tool to the analysis of strongly coupled quantum
field theories. It allowed the computation of the spectrum of
single trace operators in N ¼ 4 super Yang-Mills and later
to the analysis at finite coupling of the structure constants
and n-point correlation functions in this theory [1–5]. One
of the possible paths to analyze now would be how to make
use of these techniques in less supersymmetric back-
grounds like for example the cases of AdS4=CFT3 and
AdS3=CFT2 dualities.
In this work we will analyze the case of AdS3=CFT2 or

more specifically the AdS3 × S3 × T4 background. This
background is integrable and the spectral problem has been
analyzed indepth [6–12].Therearesomeparticularpoints that
make AdS3=CFT2 special and worth analyzing. First of all,
the string theory in this background allows the presence of
Neveu-Schwarz flux (NSNS) and Ramond-Ramond flux
(RR) which yields two parameters in the integrable theory
that are, respectively, κ andh [7]. For thepureRRcase (κ ¼ 0)
the integrability remains similar to the AdS5 × S5 scenario.
However, for the pure NSNS case (h ¼ 0) we have a
generalization of the flat space superstrings’ S-matrix. In this

exceptional case the string theory is exactly given by a
quantum integrable spin chain and the Thermodynamic
Bethe Ansatz (TBA) is solved in closed form [11] and the
model can be also solved byworldsheet CFT techniques [13].
In this work we focus on the pure RR case that

although similar to AdS5 × S5 integrability it has important
differences to it. First we have four supermultiplets in this
model. There are two massive and two massless multiplets.
The latter ones are the main distinction to AdS5 × S5

integrability. Their existence makes the comparison with
the string theory a little tricky and introduces novel features
to the integrable structure. For example, usually the
algebraic Bethe ansatz (ABA) yields the spectrum of
asymptotically large operators. Finite length corrections
are given by the so called wrapping corrections that are
suppressed for large operators. However here this is not
exactly true because massless modes’ wrapping corrections
to the spectrum enters at the same order of the ABA [14].
Nonetheless quantum integrability can be applied to
analyze the spectral problem in this background and more
recently even a quantum spectral curve formalism, to
compute the spectrum of finite length operators, was
developed [15,16]. However here the story still is not
complete since the massless modes still elusive in this
formalism. For pure RR or NSNS flux the spectral problem
is well developed, however for the mixed flux it remains an
open problem due to the fact that the dressing phases for the
S-matrices are unknown in this case [7,17,18].
Given the analysis of the spectral problem in terms of the

ABA one can wonder what is the dual CFT2 whose
spectrum it describes. From symmetry arguments what is
known is that the theory has N ¼ ð4; 4Þ supersymmetry
and suð2ÞL ⊕ suð2ÞR R-charge. A big open question in
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AdS3 × S3 × T4 duality is what is the dual CFT2 for generic
mixed flux. Since it is not known for these cases any
computation of its CFT data would be highly desirable
since it would allow access to this unknown theory. Not
everything is lost since it was proved that for unit NSNS
flux (κ ¼ 1 and h ¼ 0) the dual CFT2 is exactly the
symmetric product orbifold of T4 [19]. Then in general
it is expected that the dual CFT2 is a deformation of this
model. For pure NSNS theories and κ ≥ 2 some proposals
are given in [20,21], however the subject stills open to
debate. For mixed flux and pure RR flux points in the
moduli space the honest answer is that we do not know
what is the dual CFT2. Some proposals for the pure RR case
are in [22,23].
To attack the problem of computing structure constants

using integrability we have the hexagonalization formal-
ism. In [24] the authors introduced hexagonalization in
AdS3 × S3 × T4 background for the mixed flux case.
However it was introduced only the asymptotic part of
the hexagon which computes structure constants for very
large bridge lengths. Thus it remained open the problem of
corrections for finite length bridges. These are essential to
complete the framework and to compute n-point correlation
functions. These corrections are the so called mirror
corrections.
In this work we attack the problem of defining mirror

corrections in AdS3 × S3 × T4 hexagonalization, thus com-
pleting the scheme introduced in [24]. More precisely we
introduce the mirror corrections and analyze their coupling
dependence. We also prove that all the half-BPS states
(chiral ring) do not receive wrapping corrections which is a
nontrivial fact in this model due to the structure of the chiral
ring. Also we provide a first step on computing n-point
correlation functions for the pure RR CFT2 dual in AdS3 ×
S3 × T4 holographic duality and discuss problems one may
face when computing the four point function by hexagon-
alization in this background.
This paper is organized as follows. In Sec. II we review

the integrability setup in AdS3 × S3 × T4. Section III we
construct the mirror corrections and establish their coupling
dependence. In Sec. IV we prove that the chiral ring in this
theory does not receive mirror corrections and in Sec. V we
make some comments on how to compute four point
functions in this background. We end up in Sec. VI by
pointing out possible future directions that would be worth
analyzing. For the appendices we leave some technical
details.

II. INTEGRABILITY IN AdS3 × S3 × T4

The hexagonalization in AdS3 × S3 × T4 works in
remarkably similar way to its higher dimensional pair.
The idea consists in interpreting the structure constants at
the planar level as a world sheet with the topology of a
pair of pants and then split it into two hexagon form factors.

The operators are given by excited states in the associated
spin chain. Then the excitations are distributed in many
ways in the two hexagon form factors when the cutting is
made and thus we have to sum over all partitions of
magnons into two sets for each operator.
Let us describe the integrability setup in AdS3 × S3 × T4

more concretely. For this background the isometries are
psuð1; 1j2Þ⊕2 and after lightcone gauge fixing the sym-
metry algebra is given by psuð1j1Þ⊕4

c:e: centrally extended.
This is supplemented by uð1Þ⊕4 from the T4. Therefore the
spectral problem is solved by a psuð1; 1j2Þ⊕2 spin chain
with the magnon’s S-matrix fixed by the reduced algebra
psuð1j1Þ⊕4

c:e: such that as usual totally fixes the S-matrix
for theories with mixed and pure RR fluxes [25]. The full
S-matrix for mixed flux is given in [24]. Here we will
choose states without momentum and winding in the four
torus, therefore uð1Þ⊕4 is enhanced to suð2Þ• ⊕ suð2Þ∘.
The supercharges carry an index α ¼ 1, 2 of suð2Þ• and the
massless excitations come in two multiplets with each one
having an index _α ¼ 1, 2 of suð2Þ∘. We will work in the
pure RR limit which consists in taking κ ¼ 0 and arbitrary
h in the expressions of [24]. The main reason is that in this
limit is where we have a hexagonalization proposal and
more control over integrability. For example for the pure
RR regime there is proposals in [17] for the S-matrix
dressing factors that are necessary to define the hexagon-
alization scalar factors at finite coupling.
The excitations carry a uð1Þ charge M that is quantized

in the pure RR model and classifies the four supermultip-
lets. ForM ¼ 1 we have the left (L) multiplet with Y being
the S3 mode, Z the AdS3 mode, and the superpartners Ψα.
The other massive multiplet with M ¼ −1 is the right (R)
multiplet with the respective excitations Ỹ, Z̃, and Ψ̃α.
These L and R labels comes from the fact that the chargeM
is given by

M ¼ L0 − L̃0 − J3 þ J̃3; ð1Þ

where fL0; L̃0g are the left and right dilatation operators of
the conformal group and fJ3; J̃3g the related R-charge
generators. Then the sign of M would be linked to the
chirality in the dual CFT2. The remaining excitations are
two multiplets of massless modes (M ¼ 0) consisting of
fermions χ _α, the T4 bosons T _αα, and the fermions χ̃ _α. For
jMj ≥ 2 the states are then bound states of these jMj ¼ 1
fundamental magnons. The spectrum of fundamental par-
ticles in showed in Fig. 1. As usual these excitations can be
split into a tensor product of states in psuð1j1Þ⊕2

c:e: as
detailed in [24].
For the massive modes integrability in the pure RR limit

works out in a very similar way to AdS5 × S5. However for
the massless modes there are some distinctions. The first
one is the kinematics of the mirror theory. Consider the
dispersion relation of a single magnon with momentum p
in the pure RR limit
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Eðp;MÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 4h2 sinðp=2Þ2

q
: ð2Þ

As usual we can introduce the Zhukovsky variables xðuÞ in
terms of a spectral parameter and analyze the kinematics
with respect to it. Then the energy and momentum become
rational functions of the Zhukovsky variables. For massive
particles a mirror transformation is an analytic continuation
in the spectral parameter u which has the effect of trans-
forming the Zhukovsky variables. But for massless modes
it appears that no simple transformation on the Zhukovsky
variables is possible. The kinematics of the mirror theory is
central to the definition of the mirror correction in the
next section, therefore in the Appendix A we detailed its
construction for massive and massless modes.
Another difference of this background is the set of

half-BPS states. It is clear that for the massless modes at
zero momentum there is no cost in energy for adding them.
This is not new, usually zero momentum magnons in
the spin chain corresponds to a descendant state after a
symmetry transformation. This is not the case when we add
massless fermions at p ¼ 0. These are not descendants and
their insertions yield 16 possible families of half-BPS
(Bogomol'nyi-Prasad-Sommerfield) operators that are
denominated the chiral ring [8]. This is in sharp contrast
to AdS5 × S5 where the half-BPS operators are classified
only by their orbital R-charge. Nonetheless the scaling
dimension and structure constants of the chiral ring remain
protected. The chiral ring is detailed in Sec. IV.
After this detour in the integrable setup let us come back

to hexagonalization. The rules for gluing the form factors
are simple for large bridges connecting the operators.
In this case the we just multiply the hexagon form factors
for each partition. If the bridges are finite one has to correct
the prescription by adding mirror corrections. How to
do this in the context of AdS3 × S3 × T4 is what we
discuss in the next section.

III. ADDING MIRROR CORRECTIONS

In [24] it was described only the asymptotic part of the
AdS3 × S3 × T4 hexagon. There are two types of wrapping
corrections one has to add to have the complete picture.
The first is due to finite size bridges and the second is due to

finite size operators [3,26,27]. It is the former that we
describe here how to insert in AdS3 hexagon framework.
For the latter we note that it certainly appears just like in the
AdS5 case as poles that have to be regularize as a mirror
magnon circles one excited operator. However it may be
more useful to pursuit it after one has a more appropriate
control over the TBA for this background, more knowledge
about the prescription to compute the dressing phases and
control over the dual CFT analysis to have data to compare.
The wrapping corrections are added in the hexagon

picture by introducing a complete pair of states of mirror
particles in each cut of the hexagon. Then these states are
added to each one of the hexagons and we sum over the
flavors and bound state numbers of the inserted particles.
Unlike the AdS5 case there are three sets of particles that
one must insert, left and right multiplets, and massless
particles. Only the former can make bound states with
bound state number Q and Q̄, respectively. The general
form of the massive mirror corrections for a single particle
insertion are

X∞
Q¼1

Z
R

du
2π

μQðuγÞe−ẼQðuÞlintLQðuγjfuigÞ

þ
X∞
Q̄¼1

Z
R

du
2π

μQ̄ðuγÞe−ẼQ̄ðuÞlintRQ̄ðuγjfuigÞ; ð3Þ

and for massless mirror corrections

Z
juj≥2

du
2π

μ∘ðuÞe−Ẽ∘ðuÞlint∘ðujfuigÞ; ð4Þ

where l is the associated bridge length, Ẽ� is the mirror
energy, and μ�ðuγÞ the mirror measure of the insertion.
Note that uγ denotes a mirror transformation and u2γ a
crossing transformation following the usual notation as in
[3]. The mirror dynamics and bound states of the model are
described in Appendices A and B, respectively. Then there
are two ingredients to find: the mirror measure and the
integrand.
Using the one particle hexagon normalizations of [24]

the measure is defined then as

1

μAðvÞ
¼ resu→vhhjĀu2γAvi: ð5Þ

Where A is any particle flavor and Ā the crossed particle.
There are some differences from the AdS5 measure. First
there are four supermultiplets, then in principle one has four
measures. But we assume that the matrix elements are blind
to suð2Þ∘, this makes the measure of massless super-
multiplets equal. Also using the L/R-symmetry we equate
the left and right associated measures. Thus in the end we
have two independent measures to compute [28].

FIG. 1. Multiplets of fundamental excitations in pure RR
AdS3 × S3 × T4. Here for simplicity we omitted the supercharges
that link the states, these can be seen in [24]. Note that the bound
states also split into left (M ≥ 2) and right multiplets (M ≤ −2)
that in organize in the exact same way as the fundamental ones.
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For the massive part of the spectrum of fundamental
particles the measure is given by [29]

1

μðvÞ ¼ resu→v
xþu
x−u

hhjỸu2γYvi ¼
xþv
x−v

resu→vARLðu2γ; vÞ: ð6Þ

Where we added a momentum factor that comes from
crossing and is related to the spin chain frame choice [30].
From this definition and the mirror kinematics one can
derive the measure for the massive modes (in the mirror
region):

μaðuγÞ ¼
x½þa�
u x½−a�u

h
�
1 − x½þa�

u x½−a�v

�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

�
x½−a�u

�
2
��

1 −
�
x½þa�
u

�
2
�r
: ð7Þ

Where a is the bound state number. To go from funda-
mental particles to bound states one can use fusion as in
AdS5 or simply change the shift in the Zhukovsky variables
to �a. This works because the only difference from
fundamental to bound states in the AdS3 is the mass since
both transform in the same representation. The massless
particles’ measure is computed similarly. For it we have:

1

μ∘ðvÞ
¼ resu→vihhjχ̃ _A

u2γ χ
_B
v i ¼ resu→vD∘∘ðu2γ; vÞ: ð8Þ

Here there are no momentum factor for crossing since the
crossed particles are fermionic. Then:

μ∘ðuÞ ¼ −
ðxuÞ2

ð1 − ðxuÞ2Þ2
: ð9Þ

Which is significantly distinct from the massive measure.
As seen in Appendix A to go to the mirror region we just
change the range of u. So the form of μ∘ðuÞ remains the
same for the mirror measure.
There are some significant facts that we can highlight

from these expressions. First of all μaðuγÞ can be seen as the
square root of the AdS5 measure. Also μ∘ðuÞ is the massless
limit of μaðuÞ and not of its mirror transformed version (up
to the 1=h factor). This makes sense since there is no mirror
transformation in the Zhukovsky variables for massless
particles. At last but not least, following the weak coupling
expressions in Appendix C, one has that the mirror
corrections for a bridge of length l given by the measure
and energy propagating factors (l-dependent part of the
integrand) are like

Massive particles : Oðh1þ2lÞ;
Massless particles : Oðh0Þ;

which differs significantly from the AdS5 case since there
all loop corrections come in even powers of the integra-
bility coupling. In Sec. V we explain how our results are
compatible with the OPE.
Since the measure has been dealt with we turn now to the

integrand. Following [3] we can write it as the transfer
matrix of psuð1j1Þ2. Consider for example a single mirror
particle insertion. After the sum over flavors of the mirror
particle we obtain

int�QðuγjfuigÞ ¼ Aasymptotic

Y
j

h
��j
Q;1ðuγ; ujÞΔ̂�

QðuγjfuigÞ;

ð10Þ

Where Aasymptotic is the asymptotic piece of the hexagon,
h��j is the hexagon scalar factor for the appropriate
representation �, and Δ̂�

Q is the eigenvalue of the transfer
matrix. From this rewriting in terms of transfer matrices, we
can check that the wrapping corrections for massless modes
vanish. The main argument is that the two massless
multiplets are equal, however they come with opposite
statistics and therefore they cancel. The eigenvalues of the
transfer matrices are given in Appendix D.
We can also compute the integrand when we insert

multiple mirror particle corrections as in [31]. Indeed by
using braiding unitarity for the S-matrix we note that for
each pair of mirror insertions we must consider a factor like
hðuγ; vγÞhðvγ; uγÞ. Combining this and Yang-Baxter equa-
tion we get a product of transfer matrices. An example of a
mirror integrand with multiple L-particles is

intLQn
ðfuγngjfuigÞ

¼Aasymptotic

Y
k

Y
j

h
L�j
Qk;1

ðuγk;ujÞ

×
Y
k≠j

hLLQk;Qj
ðuγk;uγjÞhLLQj;Qk

ðuγj;uγkÞ
Y
k

Δ̂L
Qk
ðuγkjfuigÞ: ð11Þ

The integrand with distinct multiplets and particle content
can easily be generalized. A final point that we want to
make is that even though the massless corrections vanish
for the structure constant they could play a role in the
four point function hexagonalization as we will explain
in Sec. V.

IV. WRAPPING CORRECTIONS
AND THE CHIRAL RING

The simplest structure constants to compute are the ones
involving only half-BPS operators. Unlike in the AdS5 case
we have a more involved set of half-BPS operators with
nontrivial structure constants. In N ¼ 4 SYM the highest
weight of a half-BPS multiplet is completely specified only
by the R-charge, however here we have 16 possible families
of half-BPS operators. The reason for this is that amount of
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preserved supersymmetry is much smaller than in the AdS5
case. As proved in [32,33] the chiral ring of theN ¼ ð4; 4Þ
supersymmetric dual CFT2 has protected structure con-
stants. So they yield a good laboratory to test the hexagon
computations.
Let us describe these operators in more detail. From the

point of view of integrability we construct this chiral ring
by adding massless fermionic excitations with null
momenta in the original half-BPS vacuum j0i. There are
four massless fermions χ _A and χ̃ _A that we can add and these
furnish the previously mentioned 16 families of the chiral
ring. The correspondence between the families of half-BPS
operators and zero momentum fermion insertions is
described in Fig. 2.
Since the structure constants of the chiral ring are

protected one expect that the wrapping corrections to
vanish, at least for massive mirror particles. Here we will
prove that in fact they vanish for all mirror insertions. The
proof is similar to the cancellation of wrapping corrections
in the TBA of half-BPS states [8].
First we need to see the effect of adding these massless

fermions at zero momentum. By analyzing the psuð1j1Þ⊕4
c:e:

symmetry one can see that the massless multiplets are
annihilated by the algebra for zero momentum particles
[24]. This is true also for the subalgebra psuð1j1Þ⊕2

c:e:, which
is the one that plays a role in the mirror corrections as a
transfer matrix. This vanishing implies that null momentum
massless particles transform as a singlet and thus scatter
purely by transmission with another states. Then the
hexagon form factor with these particles have their con-
tribution factorized. Let X∘ be some fermion at zero
momentum. Therefore

hhjX∘A1ðp1Þ � � �AnðpnÞi
¼

Y
j

S∘Aj
ðpjÞhhjA1ðp1Þ � � �AnðpnÞi: ð12Þ

Where S∘Aj
ðpjÞ is a phase factor that depends on the flavor

and momentum of the scattered particle Aj and which
massless fermion was added. If there are more than one
massless fermion at zero momentum, the hexagon form
factor factorizes into a phase too. However now this phase

is a product of the phases S∘Aj
ðpjÞ times the hexagon of

only the massless zero momentum fermions insertions as
denoted in Fig. 3. The hexagon with only massless
fermions at zero momenta demands a more careful treat-
ment as detailed in [24], but the full hexagon form factor
factorizes nonetheless [34].
Now that massless fermions can be added in the hexagon

in a simple way we can look at the cancellation of wrapping
corrections. We note that the phase S∘Aj

ðpjÞ is actually
independent of the flavor of the scattered particles, in fact it
depends only on the momentum pj and the multiplet where
the particle lies. The explicit form of these S-matrices is
given in Appendix E. Therefore when a massive mirror
magnon is inserted one has that

Δ̂�
aðuγjfuigÞ¼

Y
j

S∘ðpjÞΔ̂�
aðuγj∅Þ¼ 0 if �¼L;R: ð13Þ

Then all mirror corrections when L and R mirror particles
are on top of the half-BPS states vanish. As said before, for
massless mirror modes the wrapping corrections always
vanish so we disregard them. With this we conclude that all
half-BPS three point functions do not receive wrapping
corrections and are given only by the asymptotic hexagon
prescription.

FIG. 2. All 16 families of half-BPS states created on top of a vacuum of length j. Note that all massless fermions are inserted with their
respective zero momentum limit and the subscripts denote their scaling dimension and R-charge, respectively.

FIG. 3. Factorization of the hexagon form factor with the
insertion of fermionic massless modes at zero momentum. On the
left we have an example of a hexagon form factor with massless
fermions at null momenta (in red) and some other insertions (in
blue). Since these fermions transform as singlets their scattering
with the other modes (yellow dots) is pure transmission. Then the
hexagon factorizes as a product of phases and the corresponding
hexagon form factors.
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V. SPECULATIONS ON FOUR
POINT FUNCTIONS

Given now that the mirror corrections to hexagonaliza-
tion are known one could try to bootstrap the n-point
functions as it was done for N ¼ 4 SYM in [5,36]. This
would be a very strong result since no alternative exists to
compute correlators for the theory dual to the background
with pure RR flux. As said before for pure NSNS flux and
κ ¼ 1 it is known that the CFT2 dual is the symmetric
product orbifold SymNðT4Þ. Correlation functions in this
model were computed by using a differential equation
method in [37]. Also diagram techniques to compute these
were introduced in [38] and these are similar to the large-N
t’Hooft expansion in matrix models.
With this success story for pure NSNS backgrounds we

will try to bootstrap four point functions for the pure RR
model. Before proceeding we should establish some facts
of the CFT2 first. The dual of type IIB syperstrings in
AdS3 × S3 × T4 has N ¼ ð4; 4Þ superconformal sym-
metry. The operators in this theory are classified by
suð2ÞL ⊕ suð2ÞR R-charge. A general operator is denoted
by Oðx; x̄jy; ȳÞ where fx; x̄g are their position in holomor-
phic variables and fy; ȳg their polarizations in S3 [39,40].
We can decompose them in modes with definite ðJ3; J̃3Þ
magnetic charges:

Oðx; x̄jy; ȳÞ¼
XJ
m¼−J

XJ̄
m̄¼−J̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cJ;mcJ̄;m̄

p
yJ−mȳJ̄−m̄

Om;m̄ðx; x̄Þ with ca;b ¼
�

2a

aþb

�
: ð14Þ

Where ðJ; J̄Þ are the total left and right R-charges and
ðm; m̄Þ are the magnetic charges. Here y ¼ 0 picks the
highest weight state and y ¼ ∞ the lowest weight state, for
example. To pick descendant states we can apply deriva-
tives in y and ȳ.
We will be interested in the four point function of half-

BPS operators with identical dimensions that are dual to the
j0i state in the chiral ring. Since there are no excitations, the
correlator will be given purely by the wrapping corrections
contribution. We define the conformal and R-charge cross-
ratios as

η ¼ x12x34
x13x24

η̄ ¼ x̄12x̄34
x̄13x̄24

ð15Þ

α ¼ y12y34
y13y24

ᾱ ¼ ȳ12ȳ34
ȳ13ȳ24

: ð16Þ

Then this four point function of scalars with dimension Δ
can be written as

Gðxi; yiÞ ¼
�
y12ȳ12
x12x̄12

y34ȳ34
x34x̄34

�
Δ
Gðη; η̄; α; ᾱÞ: ð17Þ

Where it is the computation of the invariant Gðη; η̄; α; ᾱÞ
that we are interested in.
The correlator must satisfy some consistency properties.

The first of them is that the correlator must be invariant
under η ↔ η̄ and α ↔ ᾱ permutations. The fact that we
have a CFT2 demands that both exchanges must be made
together to have invariance, unlike in higher dimensions.
Another requirement is that it must satisfy the super-
conformal Ward identities [40,41]:

ð∂η þ ∂αÞGðη; η̄; α; ᾱÞjη¼α ¼ 0; ð18Þ

ð∂η̄ þ ∂ᾱÞGðη; η̄; α; ᾱÞjη̄¼ᾱ ¼ 0: ð19Þ

A four point function that satisfy these can be split in the
general form

Gðη; η̄; α; ᾱÞ ¼ C þ ðη − αÞSðη; αÞ þ ðη̄ − ᾱÞSðη̄; ᾱÞ
þ ðη − αÞðη̄ − ᾱÞHðη; η̄; α; ᾱÞ: ð20Þ

Where C is a constant, Sðη; αÞ is related to short multiplets
of the superalgebra, and Hðη; η̄; α; ᾱÞ is related to long
multiplets. Therefore whatever is the correlator one finds it
musts satisfy these two requisites for consistency. These are
necessary but not sufficient conditions.
The hexagonalization of four point functions works in a

similar way to the structure constant one. Basically theworld
sheet corresponding to the correlator is cut into four hex-
agonal patches as described in Fig. 4. The rules for gluing
these suffer a small modification from before. Since there are
now hexagons with distinct operators in their physical edges
we cannot put all of them in the canonical frame at the same

FIG. 4. Hexagonalization of a four point function and the
related skeleton graph and hexagon decomposition. Here we
consider a specific hexagonalization cutting of a four point
function. On the left we have the four point function where it
is the dashed lines that we cut it. In the left we have all the four
hexagons that decompose the four point function such that we
must identify and then glue all edges that have the same greek
letter label. Also related to this specific cutting we have the
skeleton graph on the bottom left.
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time. Thus there is a weightWij in all bridges ij related to the
factor one gains from gluing an hexagon in the canonical
frame and another one that is polarized. More details can be
seen in [5] in the context of AdS5 × S5.
There are many ways to cut the four point correlator into

hexagons. The usual prescription is to associate a specific
cutting to a skeleton graph and then sum over all skeleton
graphs. Where these are the graphs coming from con-
tracting the correlators at weak coupling. Then one could
propose as in [5] that the correlator are given by

Gðxi; yiÞ ¼
X
Γ

�Y
ðijÞ

d
Lij

ij

�

×

�X
ψ ðijÞ

Z
dμψ ij

ðuijÞWψ ij

Y
ðijkÞ

HðijkÞ

�
; ð21Þ

where Γ is the set of all skeleton graphs, HðijkÞ is hexagon
contribution with mirror particles inserted corresponding to
face ðijkÞ, and dμψ ij

the associated measure to the mirror
particle. An example of a relation between a specific
hexagonalization of the four point function and the related
skeleton graph is given in Fig. 4. Note that each skeleton
comes with a weight that is just the contribution of the
skeleton graph in perturbation theory. A conservative
proposal for a 2D CFT would be

dij ¼
yij
xij

ȳij
x̄ij

: ð22Þ

Which is just the contraction of scalar fields of R-charges
J3 ¼ J̃3 ¼ 1=2 and dimension Δ ¼ 1. For the moment we
assume that this prescription of assigning skeleton graphs is
also valid here in AdS3 × S3 × T4. The validity of this
assumption will be discussed in the end in the concluding
remarks (Sec. VI).
We have thatWψ is the eigenvalue of the rotation matrix

between a canonical and noncanonical hexagon. Following
the analysis of [5] we put the hexagon containing operators
O1, O3, and O4 at the canonical configuration in Fig. 4
which implies that

η ¼ x2η̄ ¼ x̄2 and α ¼ y2ᾱ ¼ ȳ2: ð23Þ

Then the change of frame is given by the dilation operators
fL0; L̃0g for fη; η̄g and R-charges fJ3; J̃3g for fα; ᾱg. The
weight is just the holomorphic and antiholomorphic scal-
ings and their sphere counterparts:

Wψ ¼ e−L0 log ηe−L̃0 log η̄eJ3 log αeJ̃3 log ᾱ: ð24Þ

This is the weight we acquire one gluing the edge 1–4 in
Fig. 4. For other edges we simply exchange the operator
indices in (15) and (16) to obtain the appropriate weight for

that edge. We can rewrite this in terms of more adequate
variables that are the energy E and massM of the magnons

E ¼ L0 þ L̃0 − J3 − J̃3; ð25Þ

M ¼ L0 − L̃0 − J3 þ J̃3: ð26Þ

So the weight acquires a convenient form for us:

Wψ ¼ e−
E
2
logðηη̄Þe−M

2
logðη=η̄ÞeJ3 logðα=ηÞeJ̃3 logðᾱ=η̄Þ: ð27Þ

This is the desired weight for the four point functions. Note
that this derivation is based on symmetry alone and does
not depend on the correctness or not of the skeleton
prescription. It assumes a similar form as in N ¼ 4
SYMwhere the R-charge term mixes the sphere and spatial
cross-ratios.
Given all of this one could try to compute the first

correction at orderOðhÞ for the four point functions of half-
BPS operators. This happens when we insert a single
massive mirror magnon. In the course of the computation
three problems arise. The first problem occurs when
computing the integrand for the mirror correction. As
argued before the sum over flavors turn into a transfer
matrix. However for four point functions this transfer
matrix is twisted due to the insertion of Wψ weights.
Indeed consider the insertion of a L mirror magnon in the
edge 1–4 of length l, its contribution is

X∞
Q¼1

Z
∞

−∞

du
2π

μQðuγÞe−ẼQle−
EQ
2
logðηη̄Þe−

Q
2
logðη=η̄Þ

× TrQðð−1ÞFe2J3 logðα=ηÞe2J̃3 logðᾱ=η̄ÞÞ: ð28Þ

Where we have both the physical (EQ) and mirror (ẼQ)
energies in this expression, ð−1ÞF is the fermion number
operator, and the trace is taken over all states in the bound
state supermultiplet of mass Q. Note that here we are
considering the four point function without any excitations,
that is why we have this simple trace.
How to compute this transfer matrix is more an art than

science. If one consider the excitations in the string frame
we have that they do not carry R-charge, because due to the
lightcone gauge fixing the string length (or R-charge) is
fixed. Then this trace vanishes due to supersymmetry,
which is undesired. However working in the spin chain
frame one has that the excitations carry R-charge and in fact
we have a dynamical spin chain that changes length when
acting with the supercharges. To deal with these length
changing effects in the states in [42] it was introduced the
so called Z-markers that delete or add units of R-charge.
Now for the computation of n-point correlation functions in
AdS5 × S5 from hexagonalization it appears that the same
Z-markers are necessary. In [5] the authors showed that
without assigning Z-markers to mirror states one could not
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reproduce the 1-loop box integral that appeared from
perturbation theory. Turns out that this assignment is ad hoc
and there is no reason, up to now, for why it works [36,43].
Since we do not have perturbative data such a procedure is
not possible for us. In summary the hexagon formalism is
some sort of hybrid between the string and spin chain
frames and understanding it better in the N ¼ 4 SYM
would allows us to analyze its effect on our setup.
The second problem is the singularity structure of the

correlator. Let us for the moment ignore the Z-marker
conundrum. For one mirror particle theOðhÞ correction for
L-particles can be computed using the weak coupling
expansion of Appendix C. Then we have that the integral
part is simply

−
Z

∞

−∞

du
2π

h
2ðu2 þQ2=4Þ e

−iu logðηη̄Þ; ð29Þ

which can be computed by residue and yields after the sum
over bound states

h
2
log

�
1 −

1

η̄

�
: ð30Þ

This can be found assuming that whatever the Z-marker
prescription gives it is Q-independent. For R-particles it is
the same but with conjugated variables. Since we are in a
2D theory it is expected that the correlators possess
singularities like logðηη̄Þ in perturbation theory due to
the ðηη̄ÞΔ term in the 2D conformal block expansion [44].
This could be true here only after one joins the L and R
contributions, however there is the problem of the unde-
termined Z-marker prescription when doing this.
Nonetheless it is consistent that the first mirror correction
is of order OðhÞ since this would correspond to the
massless modes’ anomalous dimensions that are of the
same order.
The third problem is the massless modes. One can see

that unless the Z-marker prescription for the two massless
multiplets differs all the massless mirror corrections would
vanish. Just like in the structure constant case. This would
be desirable since otherwise we would have an infinite
number of mirror corrections that enters at orderOðh0Þ. But
at the moment there is no way to settle which option would
be correct.

VI. CONCLUSION

In this work we analyzed in more detail the hexagon-
alization of the pure RR limit of AdS3 × S3 × T4 duality.
Given the framework introduced in [24] we computed
mirror corrections and showed how they cancel for the
chiral ring structure constants that are protected. We
analyzed the coupling dependence of the mirror corrections

and how to define them in terms of psuð1j1Þ⊕2
c:e: transfer

matrices. This complements the program initiated in [24] to
compute structure constants by hexagonalization. Also we
gave the first step into computing four point functions in the
dual CFT2. Which at the moment there is no alternative way
to compute them. In this context we defined the weights
Wψ and showed what are the problems faced in the
computation that should be overcome.
Integrability in the AdS3=CFT2 duality is less explored

than the AdS5 × S5 case and due to this there are many
directions to follow. One of them that is directly related to
this work is the pure NSNS hexagonalization. In [24] the
hexagon framework was introduced only for mixed or pure
RR fluxes. The extension of our computations to mixed
flux is direct. It amounts to redefine the Zhukovsky
variables and slightly change crossing rules. However in
these backgrounds the dressing phases of the S-matrices are
unknown and thus the hexagon framework is less under-
stood. That is why we stick with the pure RR limit for now.
For the pure NSNS regime the hexagons cannot be defined.
The reason for this is that the central charge of the
symmetry algebra of the hexagon vanishes. Then even
the two particle hexagon is not fixed by symmetry. The
same happens to the pure NSNS S-matrix, which was
guessed and then checked to be correct. Nonetheless the
spectral problem and CFT2 dual are much simpler in this
background and there are a lot of data to compare. This is a
direction we are exploring now.
In the four point computation we presented three

problems that appeared: ambiguity of the Z-marker pre-
scription, the analytic structure, and the role of the massless
modes. One possible origin for these problems is that the
initial assumption that the skeleton graphs are given just by
Wick contractions may be wrong. One evidence for this is
that for the SymNðT4Þ the correlators are given by covering
surfaces and not Wick contractions [22,39]. How to change
this prescription to accomodate these facts is not clear. One
first should understand how the pure RR CFT2 is a
deformation of SymNðT4Þ. This is another direction that
we are exploring. After this is done a way to check if the
result is correct is to do the OPE decomposition of the four
point correlator and then extract the CFT data as it was
done for N ¼ 4 SYM in [45]. Then one compares the
result with the data from ABA and hexagonalization.
Integrability is very powerful but not all-powerful. In the

context of AdS=CFT its use is a mix of well established
techniques from other contexts and a lot of physical
intuition to make the correct prescriptions. Due to this it
must always be tested against data to be corrected and
enhanced. One of the main problems of AdS3 × S3 × T4

duality is the lack of perturbative data for the dual CFT2 at
generic fluxes. One should better understand it in order to
amend the problems we detailed here and make progress in
these matters.
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APPENDIX A: CROSSING AND MIRROR
TRANSFORMATIONS

In this section we discuss mirror and crossing trans-
formations in this model. Due to the inclusion of massless
modes this slightly differs from the AdS5=CFT4 case. This
discussion follows the TBA recently analyzed in [12]. Let
us consider first the Zhukovsky variables defined by:

xðuÞ ¼ uþ i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − u2

p

2
: ðA1Þ

Then we have the shifted variables:

x½�a�ðuÞ ¼ x

�
u� ia

h

�
: ðA2Þ

For fundamental massive particles one uses a ¼ 1 and for
massless a → 0. Here one chooses the branches of the
Zhukovsky variables to have jx�ðuÞj ≥ 1 and jxðuÞj ¼ 1
for physical particles. This restricts u ∈ R for massive
states and u ∈ ½−2; 2� for massless states.
This parametrization is a good choice since at weak

coupling it yields

x�ðuÞ ¼ u� i=2
h

−
h

u� i=2
−

h3

ðu� i=2Þ3 þOðh5Þ: ðA3Þ

Which is the same weak coupling expansion as in [8] for
the spin chain analysis of the model. To obtain this
expansion we have to redefine the spectral parameter
u → 2u=h and the coupling h → 2h. For the massless
particles we chose xðuÞ with no coupling dependence or
rescaling, it is just the limit a → 0 of Eq. (A1). Another
possible choice of parametrization for massless particles is
x directly, which would mean that the physical region is the
unit circle in the complex plane.
Let us consider the analytical structure in the u-plane

induced by this parametrization. Note that as usual xðuÞ has
two long cuts starting at u ¼ �2. When one crosses this cut
xðuÞ → 1=xðuÞ. The analytical structure is shown in Fig. 5
[46]. The energy and momentum for massive modes are
given by

EðuÞ ¼ h
2i

�
xþ −

1

xþ
− x− þ 1

x−

�
; ðA4Þ

pðuÞ ¼ 1

i
log

�
xþ

x−

�
: ðA5Þ

To obtain the energy and momentum for bound states we
just do x� → x½�Q�. In the physical region is easy to see that
energy is positive and momentum real and periodic
−π < p < π. So given the analytical structure we note
that both quantities have two sets of long cuts, a lower one
induced by xþ and an upper one by x−. As usual when we
cross both cuts we do a crossing transformation where
E → −E and p → −p. So crossing for massive particles is
implemented.
The same analysis can be done for massless particles. We

denote their Zhukovsky variables by

xþ∘ ðuÞ ¼ xðuÞ and x−∘ ðuÞ ¼
1

xðuÞ : ðA6Þ

So they satisfy the constraint xþ∘ ðuÞx−∘ ðuÞ ¼ 1 and then all
functions of the massless Zhukovsky variables can be
expressed only in terms of xðuÞ. Thus the energy and
momentum are simply the a → 0 limit of the massive ones:

EðuÞ ¼ h
i

�
x −

1

x

�
and pðuÞ ¼ 1

i
logðx2Þ: ðA7Þ

In the physical region, energy is non-negative and momen-
tum is periodic as expected. For the analytic structure we
note that in the massless limit the cuts on x½þa� and x½−a�
combine and there is only two long cuts at juj ≥ 2. When
these are crossed we do a crossing transformation.
Therefore the full rule for crossing transformation is

FIG. 5. Analytical structure of the Zhukovsky variables in the
u-plane. Here we have the x� branch cuts that go out to infinity.
In the right (blue) we have a path that denotes the analytic
continuation that corresponds to crossing. In the left (green) we
have a path corresponding to a mirror transformation. Note that
the branch cuts are separated by i and that in the massless limit of
the Zhukovsky variables they collide and yield a single
branch cut.
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Crossing : xþ →
1

xþ
; x− →

1

x−
; x →

1

x
:

Up to now we have the same as in AdS5=CFT4 case.
Now the mirror kinematics. This is a transformation such

that E → ip̃ and p → iẼ where Ẽ and p̃ are the mirror
energy and mirror momentum, respectively. The mirror
energy must be positive, but the mirror momentum is real
and nonperiodic. For massive particles the mirror kinemat-
ics can be found by crossing only the lower xþ cut.
Therefore

ẼðuÞ ¼ log ðxþx−Þ; ðA8Þ

p̃ðuÞ ¼ −
h
2

�
1

xþ
− xþ − x− þ 1

x−

�
: ðA9Þ

For u ∈ R these satisfy the physical requirements. Then
mirror kinematics here works just like in AdS5 case.
However for massless particles since both cuts merge it

does not appear that there is a half crossing transformation.
Nonetheless one can analytic continue E and p to another
region where the kinematics is the one for the mirror theory.
Indeed given

ẼðuÞ ¼ − logðx2Þ; ðA10Þ

p̃ðuÞ ¼ −h
�
x −

1

x

�
; ðA11Þ

the region where these satisfy the physical requirements is
juj ≥ 2. But with the care that we are below the cuts, since
this is the region where Ẽ is positive. So the mirror
transformation here is

Mirror : xþ →
1

xþ
for M ≥ 1;

u ∈ ½−2; 2� → uþ i0−; juj ≥ 2 for M ¼ 0:

This is the mirror kinematics we used for the wrapping
corrections.

APPENDIX B: BOUND STATES IN AdS3=CFT2

In this appendix we describe the bound states in this
background and how the fusion works. A bound state of n
particles is formed when a composite state has energy and
momentum of each constituent arranged in a way that it
transforms in a single particle representation of psuð1j1Þ⊕4

c:e:.
As detailed in [47,48] the bound states can be composed only
of L or R particles. Two particle representations build of L-R
or massless-massless or L/R-massless excitations do not
make an appropriate one particle representation of the
superalgebra for any set of momenta. A nice fact of
AdS3=CFT2 is that the bound states in this model transform

in the same representation of the fundamental particles,
unlike the AdS5=CFT4 case.
Given n fundamental particles we can built a bound state

by fusion. Consider the following set of rapidities

uðnÞj ¼ uþ i
ðnþ 1 − 2jÞ

2
; where j ¼ 1;…; n: ðB1Þ

Then the tensor product of n fundamental particles where

each one has rapidity uðnÞj behaves as a single particle. The
bound state has uð1Þ chargeM ¼ n orM ¼ −n for L and R
particles, respectively. By summing the energies and
momentum of the constituents we obtain EQðuÞ and pQðuÞ.
Instead of energy and momentum we can also fuse the

scalar factors of the hexagon following the procedure of
[5]. Unlike the AdS5 case, now we have multiple hexagon
scalar factors hLL, hRR, hLR, hRL, h�∘, h∘�, h∘∘ where � ¼ L
or � ¼ R. This happens because now we have four super-
multiplets interacting. Thus let us first establish some
properties of these scalar factors. From L=R-symmetry
we have the identities:

hLL ¼ hRR and hRL ¼
ffiffiffiffiffiffiffiffiffiffiffi
x−px−q
xþp xþq

s
1 − xþp xþq
1 − x−px−q

hLR: ðB2Þ

Also we have that

hL∘ðp; qÞh∘Lðq; pÞ ¼ hR∘ðp; qÞh∘Rðq; pÞ

¼ xþp − xq
x−p − xq

1 − x−pxq
1 − xþp xq

: ðB3Þ

Then we define four classes of independent scalar factors

h••≡hLL; h̃••≡hLR; h•∘� ≡h�∘; h∘•� ≡h∘�; ðB4Þ
where � ¼ L, R. Note that here we do not have h•∘L ¼ h•∘R or
h∘•L ¼ h∘•R . These are genuinely distinct.
The fusion formula for these scalar factors is simple to

define and we find:

h••Q1Q2
ðu; vÞ ¼

YQ1

m¼1

YQ2

n¼1

h••ðuðQ1Þ
m ; vðQ2Þ

n Þ: ðB5Þ

h̃••QQ̄ðu; vÞ ¼
YQ
m¼1

YQ̄
n¼1

h̃••ðuðQÞ
m ; vðQ̄Þ

n Þ: ðB6Þ

hRLQQ̄ðu; vÞ ¼
YQ
m¼1

YQ̄
n¼1

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−ðuðQÞ

m Þx−ðvðQ̄Þ
n Þ

xþðuðQÞ
m ÞxþðvðQ̄Þ

n Þ

vuut

×
1 − xþðuðQÞ

m ÞxþðvðQ̄Þ
n Þ

1 − x−ðuðQÞ
m Þx−ðvðQ̄Þ

n Þ

1
CAh̃••QQ̄ðu; vÞ: ðB7Þ
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h•∘�;Qðu; vÞ ¼
YQ
m¼1

h•∘� ðuðQÞ
m ; vÞ: ðB8Þ

h∘•�;Qðu; vÞ ¼
YQ
n¼1

h∘•� ðu; vðQÞ
n Þ: ðB9Þ

Similar fusion formulas could be found for the dressing
factors of the S-matrix. These are useful to compute higher
orders in the h-expansion for structure constants or corre-
lation functions.

APPENDIX C: WEAK COUPLING EXPRESSIONS

Here we compile the weak coupling expression of some
useful quantities. For the measure:

μQðuÞ¼
1

2Q
−

Q
4ðu2þQ2=4Þ2h

2þ Qð3Q2−32u2Þ
16ðu2þQ2=4Þ4h

4

−
Qð5Q4−160Q2u2þ384u4Þ

32ðu2þQ2=4Þ6 h6þOðh6Þ; ðC1Þ

μQðuγÞ ¼ −
h

2ðu2 þQ2=4Þ þ
ðQ2 − 8u2Þ

4ðu2 þQ2=4Þ3 h
3

−
ð3Q4 − 80Q2u2 þ 128u4Þ

16ðu2 þQ2=4Þ5 h5 þOðh7Þ; ðC2Þ

μ∘ðuÞ ¼
1

4 − u2
: ðC3Þ

For the energy and momentum in the physical region:

EQðuÞ ¼ Qþ 2Q
u2 þQ2=4

h2 −
QðQ2 − 12u2Þ
2ðu2 þQ2=4Þ3 h

4

þQðQ4 − 40Q2u2 þ 80u4Þ
4ðu2 þQ2=4Þ5 h6 þOðh7Þ; ðC4Þ

eipQðuÞ ¼ uþ iQ=2
u− iQ=2

þ 2iQu
ðu2þQ2=4Þðu− iQ=2Þ2h

2

−
Quð3iQ2þ4Qu−12iu2Þ
2ðu2þQ2=4Þ3ðu− iQ=2Þ2h

4þOðh5Þ; ðC5Þ

E∘ðuÞ ¼ h
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − u2

p
; ðC6Þ

eip∘ðuÞ ¼ u2 − 2þ iu
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − u2

p

2
: ðC7Þ

Now in the mirror kinematics we have:

e−ẼQðuÞ ¼ h2

u2 þQ2=4
−

ðQ2 − 4u2Þ
2ðu2 þQ2=4Þ3 h

4

þ ð5Q4 − 88Q2u2 þ 80u4Þ
16ðu2 þQ2=4Þ5 h6 þOðh7Þ; ðC8Þ

p̃QðuÞ ¼ 2u −
4u

u2 þQ2=4
h2 þ ð3Q2u − 4u3Þ

ðu2 þQ2=4Þ3 h
4

−
ð5Q4u − 40Q2u3 þ 16u5Þ

2ðu2 þQ2=4Þ5 h6 þOðh7Þ: ðC9Þ

For massless mirror particles we just do the analytic
continuation in u and obtain similar expressions to this.

APPENDIX D: TRANSFER MATRICES
IN AdS3=CFT2

In this appendix we write the transfer matrix eigenvalues
Δ̂� in terms of the psuð1j1Þ⊕2

c:e: S-matrix elements given in
[49]. These are

Δ̂LðujfujgÞ¼
YKL

j¼1

ALL
u;uj

YKR

j¼1

CLR
u;uj

YK∘

j¼1

AL∘
u;uj

− ð−1ÞKR

YKL

j¼1

DLL
u;uj

YKR

j¼1

ELR
u;uj

YK∘

j¼1

DL∘
u;uj ; ðD1Þ

Δ̂RðujfujgÞ ¼ ð−1ÞKRþ1
YKL

j¼1

DRL
u;uj

YKR

j¼1

FRR
u;uj

YK∘

j¼1

DR∘
u;uj

þ
YKL

j¼1

ARL
u;uj

YKR

j¼1

BRR
u;uj

YK∘

j¼1

AR∘
u;uj ; ðD2Þ

Δ̂∘ðujfujgÞ ¼ 0: ðD3Þ

For massless modes the transfer matrix vanishes since the
two massless multiplets in psuð1j1Þ2c:e: are equal but come
with opposite statistics for the excitations [24]. Also to find
the transfer matrices for bound states Δ�

a we just change
x�ðuÞ → x½�a�ðuÞ in the S-matrix elements.

APPENDIX E: PHASE FACTORS FOR ZERO
MOMENTUM MASSLESS FERMIONS

SCATTERING

In this appendix we compute the phase factors S∘AðpÞ.
We prove that they are flavor independent for each
multiplet and also that the S-matrices are indeed pure
transmission. In this section we will use the momentum
parametrization of the Zhukovsky variables. For the mass-
less particles this is simply:

xðpÞ ¼ eip=2sgnðpÞ: ðE1Þ
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Then the zero momentum limit is either xð0�Þ ¼ �1
depending if we approach from positive or negative
momentum.
The massless fermions can be written in terms of

psuð1j1Þ2c:e: excitations. Indeed:

jχ1i ¼ jϕB∘ ⊗ ϕF∘ i jχ2i ¼ jϕF∘ ⊗ ϕB∘ i
jχ̃1i ¼ jφF∘ ⊗ φB∘ i jχ̃2i ¼ jφB∘ ⊗ φF∘ i; ðE2Þ

where ϕ�∘ and φ�∘ denote highest and lowest states of the
psuð1j1Þ⊕2

c:e: superalgebra, respectively. For more details
see [24]. Therefore in the hexagon computation involving
massless zero momentum fermions one has to include the
following psuð1j1Þ2c:e: excitations:

ϕF∘ ð0þÞ; φB∘ ð0þÞ; ϕB∘ ð0−Þ; and φF∘ ð0−Þ; ðE3Þ

where the zero momentum limit for each excitation is
chosen in a way that each state have the appropriate
chirality.
Let XðL;RÞ be a particle in a massive L/R-multiplet. Their

scattering with the zero momentum insertions can be
computed by just doing the appropriate zero momentum
limit on each S-matrix element. Using the S-matrices in
[24] we find:

SjϕB∘X
ðL;RÞ
p i ¼ jXðL;RÞ

p ϕB∘ i; ðE4Þ

SjϕF∘ X
ðL;RÞ
p i ¼ ð−1ÞjXðL;RÞjjXðL;RÞ

p ϕF∘ i; ðE5Þ

SjφF∘ Xpi ¼
8<
:

ð−1ÞjXðLÞjeip=2 1þx−p
1þxþp

jXðLÞ
p φF∘ i

ð−1ÞjXðRÞje−ip=2 1þxþp
1þx−p

jXðRÞ
p φF∘ i

; ðE6Þ

SjφB∘Xpi ¼
8<
:

eip=2 1−x−p
1−xþp

jXðLÞ
p φB∘ i

e−ip=2 1−xþp
1−x−p

jXðRÞ
p φB∘ i

: ðE7Þ

With jXj ¼ 0 or jXj ¼ 1 if X is a boson or a fermion,
respectively. Also the massless particles have the null
momenta taken as in Eq. (E3). For massless particles X∘
we find:

SjϕB∘X∘
pi ¼ jX∘

pϕ
B∘ i; ðE8Þ

SjϕF∘ X∘
pi ¼ ð−1ÞjX∘jjX∘

pϕ
F∘ i; ðE9Þ

SjφF∘ X∘
pi ¼ ð−1ÞjX∘jeip=2

1þ 1=xp
1þ xp

jX∘
pφ

F∘ i; ðE10Þ

SjφB∘X∘
pi ¼ eip=2

1 − 1=xp
1 − xp

jX∘
pφ

B∘ i: ðE11Þ

Clearly these S-matrices are pure transmission and flavor
independent as expected.

[1] N. Beisert et al., Review of AdS=CFT integrability: An
overview, Lett. Math. Phys. 99, 3 (2012).

[2] N. Gromov, V. Kazakov, S. Leurent, and D. Volin, Quantum
Spectral Curve for Planar N ¼ 4 Super-Yang-Mills Theory,
Phys. Rev. Lett. 112, 011602 (2014).

[3] B. Basso, S. Komatsu, and P. Vieira, Structure constants and
integrable bootstrap in planar N ¼ 4 SYM theory, arXiv:
1505.06745.

[4] B. Eden and A. Sfondrini, Tessellating cushions: Four-point
functions in N ¼ 4 SYM, J. High Energy Phys. 10 (2017)
098.

[5] T. Fleury and S. Komatsu, Hexagonalization of correlation
functions, J. High Energy Phys. 01 (2017) 130.

[6] A. Sfondrini, Towards integrability for AdS3=CFT2, J. Phys.
A 48, 023001 (2015).

[7] T. Lloyd, O. Ohlsson Sax, A. Sfondrini, and B. Stefański,
Jr., The complete worldsheet S matrix of superstrings on
AdS3 × S3 × T4 with mixed three-form flux, Nucl. Phys.
B891, 570 (2015).

[8] M. Baggio, O. Ohlsson Sax, A. Sfondrini, B. Stefański, and
A. Torrielli, Protected string spectrum in AdS3=CFT2 from

worldsheet integrability, J. High Energy Phys. 04 (2017)
091.

[9] R. Borsato, O. Ohlsson Sax, A. Sfondrini, B. Stefański,
A. Torrielli, and O. Ohlsson Sax, On the dressing factors,
Bethe equations and Yangian symmetry of strings on
AdS3 × S3 × T4, J. Phys. A 50, 024004 (2017).

[10] A. Cagnazzo and K. Zarembo, B-field in AdS(3)/CFT(2)
Correspondence and Integrability, J. High Energy Phys. 11
(2012) 133; 04 (2013) 003(E).

[11] A. Dei and A. Sfondrini, Integrable spin chain for stringy
Wess-Zumino-Witten models, J. High Energy Phys. 07
(2018) 109.

[12] S. Frolov and A. Sfondrini, Mirror thermodynamic Bethe
ansatz for AdS3/CFT2, J. High Energy Phys. 03 (2022)
138.

[13] J. M. Maldacena and H. Ooguri, Strings in AdS(3) and
SL(2,R) WZW model 1.: The spectrum, J. Math. Phys. 42,
2929 (2001).

[14] M. C. Abbott and I. Aniceto, Massless Lüscher terms and
the limitations of the AdS3 asymptotic Bethe ansatz, Phys.
Rev. D 93, 106006 (2016).

MATHEUS FABRI PHYS. REV. D 106, 126008 (2022)

126008-12

https://doi.org/10.1007/s11005-011-0529-2
https://doi.org/10.1103/PhysRevLett.112.011602
https://arXiv.org/abs/1505.06745
https://arXiv.org/abs/1505.06745
https://doi.org/10.1007/JHEP10(2017)098
https://doi.org/10.1007/JHEP10(2017)098
https://doi.org/10.1007/JHEP01(2017)130
https://doi.org/10.1088/1751-8113/48/2/023001
https://doi.org/10.1088/1751-8113/48/2/023001
https://doi.org/10.1016/j.nuclphysb.2014.12.019
https://doi.org/10.1016/j.nuclphysb.2014.12.019
https://doi.org/10.1007/JHEP04(2017)091
https://doi.org/10.1007/JHEP04(2017)091
https://doi.org/10.1088/1751-8121/50/2/024004
https://doi.org/10.1007/JHEP11(2012)133
https://doi.org/10.1007/JHEP11(2012)133
https://doi.org/10.1007/JHEP04(2013)003
https://doi.org/10.1007/JHEP07(2018)109
https://doi.org/10.1007/JHEP07(2018)109
https://doi.org/10.1007/JHEP03(2022)138
https://doi.org/10.1007/JHEP03(2022)138
https://doi.org/10.1063/1.1377273
https://doi.org/10.1063/1.1377273
https://doi.org/10.1103/PhysRevD.93.106006
https://doi.org/10.1103/PhysRevD.93.106006
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