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This study investigates the quantumness of gravity under the setup of the atomic interferometry from the
viewpoint of mass-energy equivalence. We evaluated interference visibility considering a particle with
internal energy levels in a harmonic trapping potential. As per the result, for a spatially superposed
gravitational source mass, interference visibility exhibits collapse and revival behavior, which implies that
an initial separable internal state evolves to the entangled state with respect to the degrees of freedom of the
center of mass, the internal energy levels, and the external source state. In particular, it does not exhibit
revival behavior when gravity is treated as a quantum interaction, while it revives with a finite period for a
semiclassical treatment of gravity. We also examined the temporal behavior of entanglement negativity and
found that the nonrevival behavior of visibility reflects the creation of the entanglement between the
internal energy state and the external source state which is uniquely induced by the quantum interaction of
gravity in accordance with the weak equivalence principle.
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I. INTRODUCTION

The unification of gravity and quantum theory is one of
the most challenging subjects in modern physics because
the experiment to test quantum gravity has not been
realized thus far. Nevertheless, there are several experi-
ments that focus on the quantum aspect of a particle
under the classical external gravitational field to examine
the relation between quantum mechanics and classical
gravity [1]. For example, in the Colella-Overhauser-
Werner (COW) experiment [2], the difference in gravita-
tional potential causes the phase difference of a quantum
particle and leads to gravity-induced quantum interference.
This phenomenon was confirmed in the experiment using a
neutron interferometer [3].
As a further development of quantum experiments under

classical gravity, the authors of paper [4] discuss the
decoherence mechanism of a quantum particle with internal
(INT) degrees of freedom using mass-energy equivalence.
Herein, the particle with the INT degrees of freedom is
characterized by two systems: center of mass (CM) system
and INT system. According to mass-energy equivalence,
the particle acquires a different mass depending on the INT
energy levels. Therefore, the dynamical variables of the
CM and the INT systems entangle via special relativistic
and gravitational couplings, which is known as universal

gravitational decoherence. As a result, when atomic inter-
ferometry is considered, the interference visibility of the
INT state exhibits collapse and revival behavior. Although
time dilation due to classical gravity in a quantum clock
system is recently measured in a feasible laboratory experi-
ment [5], universal gravitational decoherence has not been
confirmed yet. In addition, details regarding the entangle-
ment behavior have been studied in [6,7], and the gravi-
tational decoherence in the Ramsey interferometry is also
discussed by Haustein et al. [8].
Although the COW experiment [2] and the gravitational

decoherence introduced by Pikovski et al. [4] treat the
quantum system under classical external gravity, they focus
on the quantum aspects of the probe particle rather than
the quantumness of gravity. Recently, as the first step to
tackle the quantumness of gravity, ideas based on quantum
information have been proposed to test the quantumness of
low-energy Newtonian gravity in tabletop experiments.
These ideas are referred to as the Bose-Marletto-Vedral
(BMV) proposal [9–11], and are based on the principle of
quantum information theory, which states that local oper-
ations and classical communication (LOCC) cannot create
entanglement between two systems [12]. Based on this
principle, gravity can be clarified as a quantum interaction
or not by detecting the creation of gravity-induced entan-
glement. The BMV proposal received a lot of attention, and
has stimulated many other related proposals [13–15]. In
interferometry experiments, the creation of entanglement
between the probe and the environment is reflected in
the quantum decoherence of the probe system [16–18].
Carney et al. [19] explored the quantum gravity-induced
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decoherence in a hybrid system that comprised a massive
oscillator and a source mass particle in cat state, while some
comments on this paper are discussed in [20] that LOCC
with stochastic noise in the system can also reproduce the
decoherence.
We note here that the purpose of the BMV proposal and

other related proposals is to confirm if gravity produces
quantum entanglement in the nonrelativistic scale. These
proposals just assume that the Newtonian gravitational
potential is treated as a two-body operator between gravi-
tational sources, which is the consequence of the quantum
field theory to explain the gravitational force by exchanging
gravitons. Even though gravity-induced entanglement does
not lead to the quantization of the gravitational field
immediately, it is worth a try to explore as the first step
to investigating quantum gravity for the following two
reasons. First, it may be possible to detect gravity-induced
entanglement in the near future as another way to approach
the quantum feature of gravity based on the recent progress
in the quantum experiments of macroscopic objects. For
instance, since we need to treat the Planck energy scale
under strong gravity, such as nearby the blackhole, to detect
graviton, it is challenging to obtain direct evidence of
graviton with terrestrial colliders. On the other hand,
gravity-induced entanglement is expected to be the new
direction to confirm the quantumness of gravity by focus-
ing on the gravity of the Planck mass object in the tabletop
experiment, although it cannot support the existence of
graviton directly. Second, testing the gravity-induced
entanglement in the nonrelativistic scale gives a valuable
clue to the Newtonian limit of quantum gravity. Respecting
the above, we will investigate gravity-induced quantum
entanglement, which we refer to as the quantumness of
gravity throughout this paper.
In this study, we propose a new approach to capture the

quantumness of gravity in the Ramsey interferometry from
the point of view of mass-energy equivalence. We assumed
that a probe particle with two energy levels as the INT
degrees of freedom is trapped in the harmonic oscillator
potential, and feels external gravity, which mass source is
in a cat state. Based on this setup, we aim to detect the
interference visibility of the probe particle in Ramsey
interferometry and calculate it for two cases; when the
external gravity produces the entanglement between the
probe particle system and the gravitational mass source
system, or not. To perform a specific calculation, we
adopt a particular form of gravitational interaction. For
the former case, we assume the first quantization of
Newtonian gravity in Eq. (17), which contains operators
of both the particle and the source system and produces
quantum entanglement between them. For the latter case,
we assume the semiclassical gravity[21–23] which will be
introduced in Eq. (22). Herein, semiclassical means that the
gravitational mass source is quantized, but gravity remains
fundamentally classical. As a result, we will show that the

quantumness of gravity is reflected as a nonrevival behav-
ior of the interference visibility, and that it is related to the
creation of genuine tripartite system entanglement. We will
also see that under the leading order approximation with
respect to the separation of the source, this nonrevival
behavior does not appear for other quantum interactions
such as the electromagnetic Coulomb interaction respecting
the weak equivalence principle; our proposal successfully
captures quantum nature unique to gravity.
The structure of the remainder of this paper is as follows.

In Sec. II, we will briefly review the Ramsey interference
[24]. In Sec. III, we explore a particle with INT degrees of
freedom in an external gravitational field. In Sec. IV we
introduce the experimental setup, calculate the transition
probability in Ramsey interference following Haustein el
al. [8], and reveal the behavior of the interference visibility
under quantum superposition of gravitational source. In
Sec. V, we estimate the creation of entanglement by
calculating the entanglement negativity. Section VI, we
discuss the results of the study and explore the comparison
of quantized gravity and other quantum interactions.
Section VII presents a summary of this study. The unit
of ℏ ¼ 1 was adopted throughout the study.

II. RAMSEY INTERFEROMETRY

In this section, we briefly review the concept of Ramsey
interferometry [24–26]. Considering a particle (atom) with
two internal energy levels, the Hamiltonian of the particle
can be expressed as

Ĥ ¼
X
j¼0;1

ĤjjEjihEjj; hEjjEki ¼ δjk; ð1Þ

where jEji denotes the jth internal energy eigenstate, and
Ĥj denotes the CM Hamiltonian of the particle associated
with the jth internal energy level. The evolution operator of
the total state is expressed as

ÛðtÞ ¼ exp ½−iĤt� ¼
X
j

ÛjðtÞjEjihEjj; ð2Þ

where Ûj ¼ exp ð−iĤjtÞ is the evolution operator of
the particle state with the jth internal energy level. The
Ramsey interferometry is performed as per the following
steps (Fig. 1):

Step 0: Prepare the initial state of the particle with the
internal energy E0:

jΨð0Þi ¼ jψð0Þi ⊗ jE0i; ð3Þ

where jψð0Þi denotes the initial CM state.
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Step 1: Apply a π=2-pulse to take the initial state into a
superposition of two internal energy eigenstates1:

jΨ0ð0Þi ¼ jψð0Þi ⊗ ðjE0i þ jE1iÞ=
ffiffiffi
2

p
: ð4Þ

Step 2: Evolve the superposed state jΨ0ð0Þi with the
evolution operator mentioned in Eq. (2) up to time t:

jΨðtÞi ¼ ÛðtÞjΨ0ð0Þi ¼ ðÛ0ðtÞjψð0Þi ⊗ jE0i
þ Û1ðtÞjψð0Þi ⊗ jE1iÞ=

ffiffiffi
2

p
: ð5Þ

Step 3: Apply the π=2-pulse again to make the INT state
as jE0i→ ðjE0iþjE1iÞ=

ffiffiffi
2

p
, jE1i→ðjE0i−jE1iÞ=

ffiffiffi
2

p
:

jΨ0ðtÞi ¼ 1

2
½Û0ðtÞjψð0Þi ⊗ ðjE0i þ jE1iÞ

þ Û1ðtÞjψð0Þi ⊗ ðjE0i − jE1iÞ�

¼ 1

2
½ðÛ0ðtÞ þ Û1ðtÞÞjψð0Þi ⊗ jE0i

þ ðÛ0ðtÞ − Û1ðtÞÞjψð0Þi ⊗ jE1i�: ð6Þ

Step 4: Measure the occupation probability of the lower
energy eigenstate jE0i:

PðtÞ ¼ 1

4
hψð0ÞjðÛ†

0 þ Û†
1ÞðÛ0 þ Û1Þjψð0Þi

¼ 1

2
ð1þ Re½hψð0ÞjÛ†

0ðtÞÛ1ðtÞjψð0Þi�Þ

¼ 1

2
ð1þ Re½hψ0ðtÞjψ1ðtÞi�Þ: ð7Þ

Herein, jψ iðtÞi≡ Ûijψð0Þi. Expressing hψ0ðtÞjψ1ðtÞi ¼
jVðtÞjeiΘðtÞ with real functions jVj and Θ, the occupation
probability is expressed as

PðtÞ ¼ 1

2
ð1þ jVðtÞj cosΘðtÞÞ: ð8Þ

Herein, jVðtÞj is the interference visibility, which contains
information regarding the internal energy levels of the
particle. For example, if Hi ¼ Ei, then ÛjðtÞ ¼ e−iEjt and
PðtÞ ¼ 1

2
ð1þ cosðΔEtÞÞ, ΔE ¼ E1 − E0. By measuring

this probability as the function of time, we can determine
an energy gap of this system. In this case, the interference
visibility is equal to one.

III. PARTICLE WITH INTERNAL STATES IN THE
EXTERNAL GRAVITATIONAL FIELD

We consider a particle with INT degrees of freedom in
the external gravitational field. When the particle is moving
slowly in a weak gravitational field, any internal energy
contributes to the total rest mass of the particle respecting
the mass-energy equivalence as follows:

m̂ ¼ m0Î þ ĤINT=c2. ð9Þ

Here, m0 is the rest mass for the CM system, HINT is the
Hamiltonian for the INT system, and they satisfy
HINT ≪ m0c2. Let us assume the particle to have two
internal energy levels, namely E0 ¼ 0 and E1 ¼ E. Then
by substituting

ĤINT ¼
X
j¼0;1

EjjEjihEjj; ð10Þ

the total rest mass of the particle is given as

m̂ ¼ m0Î þ
1

c2
X
j¼0;1

EjjEjihEjj;

Î ¼
X
j¼0;1

jEjihEjj: ð11Þ

The total state of the particle system is described by the CM
system and the INT system. The CM system is charac-
terized by its position x and conjugate momentum p. The
INT system is characterized by its energy eigenstate jEji.
Considering a weak external gravitational field, the metric
is given by

ds2 ¼ −ð1þ 2ΦðxÞ=c2Þdt2 þ ð1 − 2ΦðxÞ=c2Þdx2; ð12Þ

where ΦðxÞ is the gravitational potential with jΦj=c2 ≪ 1.
In general, the Hamiltonian of a free-falling particle with its
mass m on the background spacetime is

FIG. 1. Schematic representation of Ramsey interferometry
using a superposed particle with different internal energy levels.
After evolution, information on the INT state is obtained from the
interference visibility.

1Identical to applying the Hadamard gate H ¼ 1ffiffi
2

p
h
1 1

1 −1

i
to

a qubit state.
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H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g00ðm2c4 þ c2gijpipjÞ

q
:

This time, since we consider the particle whose mass
depends on the internal energy level as in (11), and assume
that the system is on a less relativistic scale, we obtain

H ≈HCM þ ð1þ Γðx; pÞ=c2ÞHINT;

Γðx; pÞ ≔ −
p2

2m2
0

þΦðxÞ ð13Þ

as a lowest order approximation in Taylor expansion of
1=c2 ≪ 1 and HINT=ðm0c2Þ ≪ 1. Here, HCM is the CM
Hamiltonian whose explicit form is

HCM ¼ m0 þ
p2

2m0

þm0ΦðxÞ; ð14Þ

HINT is the INT Hamiltonian given in (10), and Γ is the red-
shift factor. We take a unit of c ¼ 1 in the following.
Using Eq. (13), if the particle is trapped in a harmonic

potential with the stiffness constant k, the total Hamiltonian
can be written as follows [8]:

Ĥ ¼ m̂þ p̂2

2m̂
þ m̂ Φ̂ðx̂Þ þ k

2
x̂2

¼
X
j¼0;1

�
mj þ

p̂2

2mj
þmjΦ̂ðx̂Þ þmjω

2
j

2
x̂2
�
⊗ jEjihEjj

¼
X
j¼0;1

Ĥj ⊗ jEjihEjj; ð15Þ

where ωj ¼ ðk=mjÞ1=2. Note that the internal energy level
E0, E1 are eigenvalues ofHINT, and they have nothing to do
with an infinite number of energy eigenvalues ofHCM since
the INT and CM systems are orthogonal. To see that the
particle system consists of two independent systems, CM
and INT, explicitly, we can rewrite Eq. (15) as

Ĥ ¼
X
j¼0;1

�X∞
n¼0

ðmj þ ℏωjðnþ 1=2ÞÞjnjihnjj
�
⊗ jEjihEjj;

ð16Þ

where n labels the energy eigenvalues of the CM system,
and jnji is the nth eigenstate of the CM system for Ĥj.
Figure 2 displays the setup for the external gravitational

potential Φ̂, which form depends on whether gravity creates
the quantum entanglement or not. The gravitational source
mass is placed at dþ X̂. In Sec. IV we will consider that the
gravitational source is spacially superposed at X ¼ �β.
We first focus on the case when gravity produces the

quantum entanglement between the particle and the gravi-
tational source systems. We will consider a specific form of

the Newtonian potential which contains both the operators
of the particle and the gravitational source systems, which
we call quantized Newtonian gravity (QG) throughout
the text. Note that quantized Newtonian gravity does not
immediately imply the Newtonian limit of quantum gravity
theory, but we adopt it as a particular gravitational
interaction that produces entanglement. The QG potential
is given as

Φ̂ ¼ −GM
dþ X̂ − x̂

≈ −
GM
d

�
1þ x̂ − X̂

d
þ
�
x̂ − X̂
d

�
2
�

ð17Þ

¼ −AðX̂Þ − BðX̂Þx̂ − Cx̂2; ð18Þ

where

AðX̂Þ ≔ GM
d

�
1 −

X̂
d
þ X̂2

d2

�
; BðX̂Þ ≔ GM

d2

�
1 −

2X̂
d

�
;

C ≔
GM
d3

: ð19Þ

In the second equality of Eq. (17), we performed Taylor
expansion for d≫ jhX̂nij, jhx̂nijðn¼0;1;2;…Þ. Therefore,
the Hamiltonian is

ĤQG ¼
X
j¼0;1

�
EjðX̂Þ þ

p̂2

2mj
þmjω

2
j

2
ðx̂−ΔjðX̂ÞÞ2

�
jEjihEjj;

ð20Þ

where

EjðX̂Þ ≔ mj

�
1 − AðX̂Þ − B2ðX̂Þ

2ω2
j

�
; ΔjðX̂Þ ≔ BðX̂Þ=ω2

j :

ð21Þ

Herein, we redefined a shifted angular frequency as ω2
j−

C → ω2
j . EjðX̂Þ represents the offset of the total energy of

the CM system with the jth INT state, andΔjðX̂Þ represents
the shift in the harmonic potential due to the weak external
gravitational field.

FIG. 2. Setup for the proposed method. The gravitational
source is placed at X ¼ �β as a quantum mechanically super-
posed state (cat state), and a trapped particle with internal energy
levels interacts with it.
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The information of source position X̂ is included in EjðX̂Þ
and ΔjðX̂Þ, which indicates the entanglement between the
CM system x̂ and the gravitational source (S) system X̂.
Moreover, since the INT system also couples with the CM
system and S system as well, the total system is in a tripartite
entangled state. In particular, the entanglement between
the INT system and S system is uniquely induced by the
gravitational coupling m̂ Φ̂ðx̂; X̂Þ; No other quantum inter-
action can create this entanglement since they do not couple
to the mass m̂ due to the weak equivalence principle. Further
discussion will be given in Sec. VI. Figure 3 displays a
schematic representation of the potential of Hamiltonian Ĥj.
Shifts of the vertex height and the symmetry axis of the
potential depend on INT states and this behavior is caused by
the coupling between the CM system and INT system via the
weak external gravitational field. Section IV will discuss that
these shifts of the potential result in collapse and revival of
interferometric visibility, which can be interpreted as the
universal decoherence of the INT state via external gravi-
tational field [4,6].
In the semiclassical treatment of gravity, hereafter

referred to as classical gravity (CG), Φ̂ is replaced by
the expectation value concerning the state of the gravita-
tional source hΦ̂iS ¼ hφSjΦ̂jφSi which does not create
quantum entanglement between the particle and the gravi-
tational source systems, unlike the QG case. Therefore, for
d ≫ jhX̂niSj, jhx̂nijðn ¼ 0; 1; 2;…Þ, the gravitational
potential is approximately given by

Φ̂ ¼
	

−GM
dþ X̂ − x̂



S

≈ −
GM
d

�
1þ x̂ − hX̂iS

d
þ x̂2 − 2hX̂iSx̂þ hX̂2iS

d2

�
ð22Þ

¼ −A − Bx̂ − Cx̂2; ð23Þ

where

A ≔
GM
d

�
1 −

hX̂iS
d

þ hX̂2iS
d2

�
;

B ≔
GM
d2

�
1 −

2hX̂iS
d

�
; C ≔

GM
d3

: ð24Þ

Therefore, the corresponding Hamiltonian becomes

ĤCG ¼
X
j¼0;1

�
Ej þ

p̂2

2mj
þmjω

2
j

2
ðx̂ − ΔjÞ2

�
jEjihEjj; ð25Þ

where

Ej ¼ mj

�
1 − A −

B2

2ω2
j

�
; Δj ¼ B=ω2

j : ð26Þ

In the CG case, CM and INT can entangle through
relativistic and classical gravitational couplings, while
INT and S cannot entangle.
Next, we introduce the annihilation operator for the CM

system for later use,

âj;X̂ ¼
ffiffiffiffiffiffiffiffiffiffiffi
mjωj

2

r �
x̂þ i

p̂
mjωj

− ΔjðX̂Þ
�
: ð27Þ

Therefore, the Hamiltonian for the QG case becomes

ĤQGðX̂Þ ¼
X
j¼0;1

�
EjðX̂Þ þ ωj

�
âj;X̂

† âj;X̂ þ 1

2

��
jEjihEjj:

ð28Þ

The Hamiltonian of the CG case is obtained by replacing
the functions of X̂ with the expectation value for the S state,
fðX̂Þ → hfðX̂ÞiS, in Eq. (28).

IV. EVOLUTION OF THE PARTICLE STATE
AND VISIBILITY

In this section, we evaluate the interference visibility. We
assume that the gravitational source state is in superposition
of two Gaussian states (See Fig. 2),

jφSi ¼
1ffiffiffiffi
N

p ðjφ−βi þ jφþβiÞ;

φ�βðXÞ ¼ hXjφ�βi ¼
�

1

πσ2

�
1=4

e−ðX∓βÞ2=ð2σ2Þ;

N ¼ 2ð1þ e−β
2=σ2Þ; ð29Þ

where β is the separation of the cat state and σ is the width
of each Gaussian state. The evolution operator associated
with the jth INT state can be expressed as

FIG. 3. Schematic representation of the potential for CM
degrees of freedom. Blue curve: the potential of Ĥ0. Red curve:
the potential of Ĥ1. Shifts in the symmetry axis and the vertex
height of the potential are caused by the differences Δ1ðXÞ −
Δ0ðXÞ and E1ðXÞ − Ê0ðXÞ. The difference in the vertex height
depends on the location of the gravitational source X.
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e−iEjðX̂Þte−iωjðâj;X̂† âj;X̂þ1=2Þt ¼ e−iEjðX̂ÞtÛj;X̂ðtÞ; ð30Þ

where Ûj;X̂ðtÞ ¼ e−iĥjðX̂Þt is the evolution operator with the

harmonic oscillator Hamiltonian ĥjðX̂Þ≔ωjðâ†
j;X̂

âj;X̂þ1=2Þ.
As the initial state of the CM system, we prepare the ground
state of ĥ0ðX ¼ 0Þ as

ψ iniðxÞ ¼
�a0
π

�
1=4

exp
h
−
a0
2
ðx − Δ0ð0ÞÞ2

i
; a0 ¼ m0ω0:

ð31Þ

Therefore, the time evolution of the total state associated with
the jth INT state becomes

jΨjðtÞi ¼ e−iEjðX̂ÞtÛj;X̂ðtÞjψ inii ⊗ jφSi

¼
Z

dXφSðXÞe−iEjðXÞtjψ j;XðtÞi ⊗ jXi; ð32Þ

Here, we defined jψ j;XðtÞi ≔ Ûj;XðtÞjψ inii. Introducing the
propagator of the harmonics oscillator, we obtain

Kj;Xðx; t; y; 0Þ ≔ hxjÛj;XðtÞjyi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aj
2πi sinðωjtÞ

r
exp

�
iaj

2 sinðωjtÞ
n
ððx − ΔjðXÞÞ2 þ ðy − ΔjðXÞÞ2Þ cosðωjtÞ

− 2ðx − ΔjðXÞÞðy − ΔjðXÞÞ
o�

; ð33Þ

and the wave function of the CM state can be explicitly calculated as [27]

ψ j;Xðx; tÞ ¼ hxjÛj;XðtÞjψ inii ¼
Z

dyhxjÛj;XðtÞjyihyjψ inii ¼
Z

dyKj;Xðx; t; y; 0Þψ iniðyÞ

¼
�a0
π

�
1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aj

aj cosðωjtÞ þ ia0 sinðωjtÞ
r

exp

�
−

a2j
2a0

Rj;Xðt; xÞ þ iIj;Xðt; xÞ
1þ ða2j=a20 − 1Þcos2ðωjtÞ

�
; ð34Þ

where aj ≔ mjωj and

Rj;Xðt; xÞ ≔ ½ðx − ΔjðXÞÞ − ðΔ0ðXÞ − ΔjðXÞÞ cosðωjtÞ�2; ð35Þ

Ij;Xðt; xÞ ≔ − sinðωjtÞ
�
a0
aj

n
ððx − ΔjðXÞÞ2 þ ðΔ0ðXÞ − ΔjðXÞÞ2Þ cosðωjtÞ − 2ðx − ΔjðXÞÞðΔ0ðXÞ − ΔjðXÞÞ

o

−
aj
a0

ðx − ΔjðXÞÞ2 cosðωjtÞ
�
: ð36Þ

To obtain the transition probability Eq. (7), we should evaluate

hΨ0ðtÞjΨ1ðtÞi ¼
Z

dXjφSðXÞj2e−iðE1ðXÞ−E0ðXÞÞthψ0;XðtÞjjψ1;XðtÞi: ð37Þ

The source state is assumed to be prepared as Eq. (29) to
reveal quantum superposition on gravity, and has no
dynamics for simplicity of treatment. Furthermore, the S
system is regarded as a two-level state with X ¼ �β.
Therefore, Eq. (32) reduces to the following expression,

jΨjðtÞi ≈
1ffiffiffiffi
N

p
X
s¼�β

e−iEjðsÞtjψ j;sðtÞi ⊗ jφsi: ð38Þ

Herein, we made the assumption that ψ j;Xðt; xÞ and e−iEjðXÞt
in Eq. (32) do not change rapidly with respect to X within

the width σ of the Gaussian function in φSðXÞ. Each
assumption requires the following condition respectively,

aj

�
GM
ω2d3

�
2

≪
1

σ2
;

GmjM

d3
t ≪

1

σ2
: ð39Þ

The former inequality is satisfied when the Gaussian
dispersion of the CM system and the source system are
in the same order, and the displacement of the CM state is
relatively small compared to d: GM

ω2d3 ∼ Δj=d ≪ 1. The latter
inequality gives the upper bound of the valid time range t
for the form of the state expressed in Eq. (38). Then
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Eq. (37) is approximately given as a summation of four
terms,

hΨ0ðtÞjΨ1ðtÞi ≈
1

N

X
s1;s2¼�β

hφs1 jφs2ie−iðE1ðs2Þ−E0ðs1ÞÞt

× hψ0;s1ðtÞjjψ1;s2ðtÞi: ð40Þ

Figure 4 depicts a schematic picture of the Ramsey
interferometry under quantum gravity (QG). Since the
CM state depends not only on the INT energy level Ei
but also the gravitational source position X ¼ �β, its time
evolution is given by a superposition of four different
worldline branches (Additional details regarding the states
involved in the interference visibility are given in the
Appendix).
For the CG case, the Ramsey interferometry is derived

analogously by replacing the functions of X̂ with the
expectation value of fðX̂Þ → hfðX̂ÞiS. Then, Eq. (37)
can be expressed as

hΨ0ðtÞjΨ1ðtÞi ¼ e−iðE1−E0Þthψ0ðtÞjψ1ðtÞi; ð41Þ

where Ej is as per in Eq. (26), and jψ jðtÞi ≔ e−iĥjtjψ inii is
the time evolved CM state with the harmonics oscillator
Hamiltonian for CG ĥj ≔ hĥjðX̂ÞiS. The Ramsey interfer-
ometry under CG is depicted in Fig. 1. We see that the time
evolution of the CM system is given by a superposition of
two worldline branches concerning the INT energy levels
E0 or E1.
Although it is possible to derive an explicit but compli-

cated formula of Eq. (40) using a straightforward calculation
of the Gaussian integral, we only present the plotting results
in subsequent figures (Figs. 5, 6, 7, and 11). Instead, in the
following, we derive an approximate analytical form of
Eq. (37) by focusing only up to the leading term of the
Taylor expansion of the gravitational potential expressed in

Eq. (18), which helps our qualitative understanding of
gravity-induced decoherence. If we neglect the subleading
terms of the Taylor expansion parameters x=d and X=d in
(18), Eq. (19) can be expressed as

AðX̂Þ → GM
d

�
1 −

X̂
d

�
; BðX̂Þ → GM

d2
; C → 1:

ð42Þ

Herein, the X̂ dependence only appears in EjðX̂Þ, and the
coupling of the CM system operator x̂ and the S system
operator X̂ disappears as ΔjðX̂Þ → Δj. Although the BMV
proposal [9,10] focuses on the entanglement between the
CM system and S system, this study aims to investigate the
entanglement between the INT system and S system, which
is uniquely induced by gravitational coupling due to the
weak equivalence principle. (Further details will be revisited
in Sec. VI.) Therefore, this approximation is enough to
capture the crucial effect of the quantumness of gravity in
our setup of the Ramsey interferometry.
Since ĥj does not depend on X̂ for now, the X integration

in Eq. (37) can be simplified to

hΨ0ðtÞjΨ1ðtÞi ¼ hψ0ðtÞjψ1ðtÞi

×
Z

dXjφSðXÞj2e−iðE1ðXÞ−E0ðXÞÞt: ð43Þ

Evaluating the inner product of CM states hψ0ðtÞjψ1ðtÞi
with (42), we obtain

hψ0ðtÞjψ1ðtÞi ¼
Z

dxψ�
0ðt; xÞψ1ðt; xÞ≕ jVCðtÞjeiΘCðtÞ;

ð44Þ

where

jVCðtÞj ¼
�

4a0a1
4a0a1cos2ðω1tÞ þ ða0 þ a1Þ2sin2ðω1tÞ

�
1=4

× exp

�
−
2a0a21ðΔ0 − Δ1Þ2sin2ðω1t=2Þ
a20 þ a21 þ ða20 − a21Þ cosðω1tÞ

�
; ð45Þ

ΘCðtÞ ¼ −
a0a21ðΔ0 − Δ1Þ2 sinðω1tÞ

a20 þ a21 þ ða20 − a21Þ cosðω1tÞ
−
1

2
arg½e−iω0tð2a0=a1 cosðω1tÞ

þ ið1þ ða0=a1Þ2Þ sinðω1tÞÞ�: ð46Þ

It should be noted that VCðtÞ is a 2π=ω1 periodic function
in time t that reflects the oscillation of the CM state in the
harmonic oscillator potential. The X integration in Eq. (43)
reads to

FIG. 4. Schematic picture of Ramsey interferometry in the QG
case. Four different worldline branches are involved in interfer-
ence visibility.
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Z
dXjφSðXÞj2e−iðE1ðXÞ−E0ðXÞÞt ¼ jVQðtÞjeiΘEðtÞ; ð47Þ

where

jVQðtÞj ¼
2

N
exp

�
−
�
GME
2d

σ

d
t

�
2
�

×

 cos
�
GME
d

β

d
t

�
þ e−β

2=σ2
; ð48Þ

ΘEðtÞ ¼ −ðE1ð0Þ − E0ð0ÞÞt: ð49Þ

Finally, when we treat up to the leading term of x=d, X=d,
the analytic expression of Eq. (37) is given by

hΨ0ðtÞjΨ1ðtÞi ¼ jVCðtÞVQðtÞjeiðΘCðtÞþΘEðtÞÞ ðQGcaseÞ;
ð50Þ

where the time-dependent functions jVCj;ΘC; jVQj;ΘE

are given in Eqs. (45), (46), (48), and (49), respectively.
For the CG case, the treatment can be applied by replacing
X̂ → hXi ¼ 0, which reduces the X integration in Eq. (47)
to 1, and we get the final expression for the inner product as

hΨ0ðtÞjΨ1ðtÞi ¼ jVCðtÞjeiðΘCðtÞþΘEðtÞÞ ðCGcaseÞ: ð51Þ

Let us discuss some properties of interference for
different treatments of gravity based on Eqs. (50) and
(51) in the following.
First, when there is no external gravitational source

(G ¼ 0 and Δ0 ¼ Δ1 ¼ 0), the probability oscillates with a
period determined by the energy gap of the INT system
E1 − E0 ¼ E. The envelope of the oscillation is determined
by visibility jVCðtÞj, whose time period π=ω1 reflects the
evolution of the squeezed state, as seen Eq. (46) (and also in
the Appendix). The decoherence arises from the entangle-
ment between the CM system and INT systems induced by

the kinetic term. In other words, a particle with a different
energy level evolves along a different branch of world line
with a different proper times due to the special relativistic
redshift, as seen in Fig. 1, which results in universal
decoherence [4].
For the CG case,the visibility factor jVCðtÞj contains two

typical periods: (i) π=ω1, which corresponds to the period
of squeezed state, and (ii) 2π=ω1, which corresponds to the
period of coherent state originated from the interaction of
the CM state with the external CG [8] (see also the
Appendix). Each periodic decoherence behavior in CG
occurs due to the entanglement between the CM and the
INT systems induced by the kinetic term, and the semi-
classical gravitational interaction; the later refers to uni-
versal decoherence caused by a gravitational redshift [4]. In
the left panel of Fig. 5, we show the time dependence of the
probability PðtÞ under CG with a green solid line, which
is obtained by evaluating Eq. (41). It exhibits oscillation
with a period ≈2π=ðE1 − E0Þ, which roughly corresponds
to the energy gap of the INT system with relativistic
and gravitational corrections. The dashed lines denote its
envelope ð1þ jVCðtÞjÞ=2, and parameters are chosen as
ðm3

0=kÞ1=2¼10, ðm0=m1Þ1=2¼0.5, Gm0M=ðkd3Þ ¼ 0.015,

m1=4
0 d¼10, β=d ¼ 0.01, σ=d ¼ 0.001. The visibility again

exhibits revival behavior with the 2π=ω1 period, thereby
reflecting semi-classical gravity induced entanglement.
Next, we conduct an in-depth evaluation of the visibility

of the QG case in detail as the main result of this study
and clarify the effect of the quantum superposition of
the gravitational source on the visibility of the Ramsey
interferometry. As an effect of the quantumness of gravity,
the visibility additionally contains jVQðtÞj. Furthermore, a
modulation with a longer period appears in the visibility
due to the following reasons: (i) the exponential factor in
jVQðtÞj of Eq. (48) causes the temporal decay of coherence.
It contains the gravitational coupling between the source
mass and the INT energy gap and vanishes for σ → 0. This

FIG. 5. Probability PðtÞ of the CG case (left panel) and QG case (right panel). Solid line: time dependence of the probability PðtÞ.
Dashed line: the envelope of PðtÞ, which is 1

2
ð1þ jVðtÞjÞ.
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indicates the entanglement induced by the quantum gravi-
tational interaction between the INT system and the
Gaussian dispersion of the S system. Since its decoherence

time scale is given by t ∼
�
GME
2d

σ
d

�
−1
, the system decoheres

more rapidly for larger σ. (ii) The product of two kinds of
periodic functions, namely the cosine function in VQðtÞ and
the function VCðtÞ with a period 2π=ω1 causes a beat in
the visibility. The cosine function in VQðtÞ comes from the
gravitational coupling between the source mass and the
INT energy gap, and it vanishes for β → 0. This indicates
the entanglement induced by the quantum gravitational
interaction between the INT system and the distant cat
state. Since its decoherence time scale is given by

t ∼
�
GME
d

β
d

�
−1
, the system decoheres more rapidly for

larger β.
Decoherence effect (i) is caused by the Gaussian spread

of the source mass state, and causes nonrivival behavior of
the visibility. It is induced by the entanglement between the
INT state jEji and the Gaussian state

R
dXe−X

2=2σ2 jXi with
infinite rank. Decoherence effect (ii) is induced by the
entanglement between the INT state and the distant cat
state j � βi with rank 2. Therefore, the combination of the
INT state and the distant cat state subsystem mentioned
in (ii) is much easier to get entangled compared to the
combination of the INT state jEji and the Gaussian stateR
dXe−X

2=2σ2 jXi with infinite rank mentioned in (i). To
summarize, the quantumness of gravity is reflected in the
visibility as a nonrevival behavior of visibility (coherence),
which is induced by the entanglement between the INT
system and the S system as mentioned in Sec. III.
In the right panel of Fig. 5, we showed the time

dependence of the probability PðtÞ for the QG case with
a solid line, and its envelope ð1þ jVCðtÞVQðtÞjÞ=2 with a
dotted line. The parameters are set to ðm3

0=kÞ1=2 ¼ 10,

ðm0=m1Þ1=2 ¼ 0.5, Gm0M=ðkd3Þ ¼ 0.015, m1=4
0 d ¼ 10,

β=d ¼ 0.01, σ=d ¼ 0.001. The figure displays the beat
in the envelope of its oscillation, and unlike the CG case,
the visibility does not exhibit revival behavior. It should be
noted that the exponential decay in VQGðtÞ obtained in
Eq. (48) is not obvious here, since the exponential factor in
Eq. (37) is not dominant in the integral unless a time t
violates the condition expressed in Eq. (39).
Finally, the behavior of visibility is explored by compar-

ing the CG and QG cases displayed in Fig. 6. The blue and
red lines denote the CG case and QG case respectively.
The parameters are identical to those mentioned in Fig. 5.
As per the figure, the visibility of QG returns to nearly one
after a period of ðGMEβ=d2Þ−1, while its value decays
by exp ð−ðGMEσt=2d2Þ2Þ, as estimated in Eq. (48). To
summarize, the quantumness of gravity appears as a non-
revival behavior of interference visibility. Stronger
decoherence in QG compared to that in CG indicates the
entanglement sharing between the particle and S systems.

V. NEGATIVITY OF REDUCED
BIPARTITE STATES

In this section, we will evaluate the entanglement
between the CM, INT, and the gravitational source systems,
which provide a better understanding of the decoherence in
the Ramsey interference mentioned in Sec. IV. The state of
the total system is given by

jΨðtÞi ¼ 1ffiffiffi
2

p
X
j¼0;1

e−iEjðX̂ÞtjEji ⊗ jψ j;X̂ðtÞi ⊗ jφSi: ð52Þ

To see the entanglement structure during the collapse
and revival of coherence in Fig. 6, we assumed the same
approximation adopted in Sec. IV for Eq. (39). As
preparation, the CM states and the source Gaussian state
are rewritten as

2
6664
jC0i
jC1i
jC2i
jC3i

3
7775 ¼

2
6664
jCJ½0;0�i
jCJ½0;1�i
jCJ½1;0�i
jCJ½1;1�i

3
7775 ≔

2
6664
jψ0;−βi
jψ0;þβi
jψ1;−βi
jψ1;þβi

3
7775;

� jS0i
jS1i

�
≔

� jφ−βi
jφþβi

�
; ð53Þ

where we define a the function J½j;k�≔2jþk¼f0;1;2;3g,
and the offset of the total energy EJ½j;k� ≔ Ejðð2k − 1ÞβÞ.
The state of the total system is expressed as

jΨðtÞi ¼ 1ffiffiffiffiffiffiffi
2N

p
X
j¼0;1

X
k¼0;1

e−iEJ½j;k�tjEji ⊗ jCJ½j;k�i ⊗ jSki:

ð54Þ
Therefore, the density matrix of the total system is obtained as

FIG. 6. Visibility for the CG case (blue line) and the QG case
(red line). Owing to the decoherence effect induced by the spread
of the source state, the visibility of QG does not come back to
unity and does not show revival behavior.
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ρ ¼ jΨihΨj ¼ 1

2N

X
j1;j2

X
k1;k2

e−iðEJ½j1 ;k1 �−EJ½j2 ;k2 �ÞtjEj1ihEj2 j ⊗ jCJ½j1;k1�ihCJ½j2;k2�j ⊗ jSk1ihSk2 j: ð55Þ

We considered three different reduced bipartite states as follows:

ρINT∶CM ≔ TrSρ ¼ 1

2N

X
j1j2;k1k2

e−iðEJ½j1 ;k1 �−EJ½j2 ;k2 �ÞthSk2 jSk1ijEj1ihEj2 j ⊗ jCJ½j1;k1�ihCJ½j2;k2�j; ð56Þ

ρINT∶S ≔ TrCMρ ¼ 1

2N

X
j1j2;k1k2

e−iðEJ½j1 ;k1 �−EJ½j2 ;k2 �ÞthCJ½j2;k2�jCJ½j1;k1�ijEj1ihEj2 j ⊗ jSk1ihSk2 j; ð57Þ

ρCM∶S ≔ TrINTρ ¼ 1

2N

X
j;k1k2

e−iðEJ½j;k1 �−EJ½j;k2 �ÞtjSk1ihSk2 j ⊗ jCJ½j;k1�ihCJ½j;k2�j: ð58Þ

To evaluate the negativity for the reduced states, we introduced an orthonormal basis for the S state and the CM state. For
the source state, using the orthonormal basis fjskig; k ¼ f0; 1g, hsk1 jsk2i ¼ δk1k2 , we obtain

� jS0i
jS1i

�
¼ 1ffiffiffi

2
p

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ vS

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − vS

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ vS

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − vS

p
�� js0i

js1i

�
; vS ¼ hS0jS1i ¼ e−β

2=σ2 : ð59Þ

This relation is written using a 2 × 2 matrix S as jSki ¼
P

l¼0;1 Skljsli. For the CM state jCJ½j;k�i, the orthonormal basis
fjcJig; J ¼ f0; 1; 2; 3g; hcJ1 jcJ2i ¼ δJ1J2 is obtained using the Gram-Schmidt orthonormalization as follows:

2
6664
jC0i
jC1i
jC2i
jC3i

3
7775 ¼

2
6664

ffiffiffiffiffiffi
N0

p
0 0 0

hc0jψ1i
ffiffiffiffiffiffi
N1

p
0 0

hc0jψ2i hc1jψ2i
ffiffiffiffiffiffi
N2

p
0

hc0jψ3i hc1jψ3i hc2jψ3i
ffiffiffiffiffiffi
N3

p

3
7775
2
6664
jc0i
jc1i
jc2i
jc3i

3
7775; NJ ¼ 1 −

X
0≤K≤J−1

jhcKjψJij2: ð60Þ

Equivalently, the CM state can be expressed as jψJi ¼
P

K¼0;1;2;3 UJKjcKi using a 4 × 4matrix UJK . Therefore, the reduced
states are

ρINT∶CM ¼ 1

2N

X
j1j2;k1k2

e−iðEJ½j1 ;k1 �−EJ½j2 ;k2 �Þt
�X

l

S�k1lSk2l

�
jEj1ihEj2 j ⊗

X
K1K2

UJ½j1;k1�K1
U�
J½j2;k2�K2

jcK1
ihcK2

j; ð61Þ

ρINT∶S ¼
1

2N

X
j1j2;k1k2

e−iðEJ½j1 ;k1 �−EJ½j2 ;k2 �Þt
�X

K

U�
J½j1;k1�KUJ½j2;k2�K

�
jEj1ihEj2 j ⊗

X
l1l2

Sk1l1S
�
k2l2

jsl1
ihsl2 j; ð62Þ

ρCM∶S ¼ 1

2N

X
j;k1k2

e−iðEJ½j;k1 �−EJ½j;k2 �Þt
X
l1l2

Sk1l1Sk2l2 jsl1ihsl2
j ⊗

X
K1K2

UJ½j;k1�K1
U�
J½j;k2�K2

jcK1
ihcK2

j: ð63Þ

The entanglement negativity [28] for a bipartite state is
obtained as N ¼ P

λi<0 jλij where λi is the eigenvalue of
the partially transposed density matrix. Logarithmic neg-
ativity is defined by

NE ≔ log2ð2N þ 1Þ; ð64Þ

which quantifies the distillable number of Bell pairs.
Figure 7 displays the time dependence of the logarithmic

negativity NEðtÞ of the reduced bipartite states for the CG

and QG cases. The blue, red, and gray line denote
entanglement of the CM:INT system, the INT:S system,
and CM:S systems respectively. Each entanglement is
obtained by evaluating Eqs. (61), (62), and (63). The
parameters are identical to those used in Fig. 6, namely
ðm3

0=kÞ1=2¼10, ðm0=m1Þ1=2¼0.5, Gm0M=ðkd3Þ ¼ 0.015,

m1=4
0 d ¼ 10, β=d ¼ 0.01, σ=d ¼ 0.001. For the CG case,

the CM:INT entanglement emerges and disappears for
every 2π=ω1 period, and the CM:S and S:INT entangle-
ments remain zero. Comparing the CM:INT entanglement
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with the visibility in Fig. 6 reveals that they both oscillate
alternatively with the 2π=ω1 period. Therefore, the CM:
INT entanglement induced by the relativistic and classical
gravitational redshift is reflected in the revival of visibility
in the Ramsey interference. For the QG case, whole the
CM:INT, INT:S, and CM:S entanglements emerge as time
evolves. The CM:S entanglement is relatively smaller than
others, because the CM:S entanglement is obtained from
the second order of Taylor expansion in Eq. (18), whereas
the others originated from the first order. An important
effect of the quantumness of gravity appears in the INT:S
entanglement which dominates the CM:INT entanglement
alternatively during the time evolution. As the source state
jφ�βi reduces to a two-level state for σ → 0, the INT:S
entanglement can achieve nearly the maximal logarithmic
negativity value of one as the reduced state nearly evolves
to the Bell state. Moreover, the beat of the visibility in
Fig. 6 corresponds exactly to the envelope of the oscillation
of the INT:S entanglement. If the CM:S entanglement is
neglected, we can conclude that the nonrevival property of
the Ramsey interference exactly reflects the creation of the
INT:S entanglement revealing the quantumness of gravity.
As per Fig. 7, CM:S entanglement is negligible under the

condition that the Taylor expansion in Eq. (18) is validated.
Now, we again consider up to the first order of the Taylor

expansion in Eq. (18) to neglect the CM:S entanglement
and derive an explicit analytic form of negativity for three
different reduced bipartite states to achieve further quali-
tative understanding. In this approximation, since the
dependence of X only appears in Ej [See also (42)],
Eq. (52) becomes

jΨðtÞi ¼ 1ffiffiffi
2

p
X
j¼0;1

jEji ⊗ jC̃ji ⊗ jS̃ji; ð65Þ

where

jC̃ji ≔ jψ jðtÞi; jS̃ji ≔
Z

dXe−iEjðXÞtφSðXÞjXi: ð66Þ

In particular, in the qubit limit of the CM state and the
source state with hC̃jjC̃ki → δjk, hS̃jjS̃ki → δjk, we obtain
the Greenberger-Horne-Zeilinger (GHZ) state for the total
system as jΨGHZi ¼ ðj000i þ j111iÞ= ffiffiffi

2
p

. Therefore, the
existence of genuine tripartite entanglement for the CM-
INT-S state is confirmed. To evaluate the negativity for the
reduced states, orthonormal basis jcji for the CM state and
jsji for the S state, which satisfy hcjjcki ¼ hsjjski ¼ δjk
are introduced as follows:

� jC̃0i
jC̃1i

�
¼ 1ffiffiffi

2
p

�
eiθC=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ vC

p
eiθC=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − vC

p

e−iθC=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ vC

p
−e−iθC=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − vC

p
�� jc0i

jc1i

�
; vC ¼ jhC̃0jC̃1ij; θC ¼ arg ½hC̃0jC̃1i�; ð67Þ

� jS̃0i
jS̃1i

�
¼ 1ffiffiffi

2
p

�
eiθS=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ vS

p
eiθS=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − vS

p

e−iθS=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ vS

p
−e−iθS=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − vS

p
�� js0i

js1i

�
; vS ¼ jhS̃0jS̃1ij; θS ¼ arg ½hS̃0jS̃1i�: ð68Þ

Using the orthonormal basis fjE0i; jE1i; jc0i; jc1i; js0i; js1ig, the total state is expressed as

ρ ¼ jΨihΨj ¼ 1

8

�
NC ⊗ NS eiðθCþθSÞNCZ ⊗ NSZ

e−iðθCþθSÞZNC ⊗ ZNS ZNCZ ⊗ ZNSZ

�
; ð69Þ

FIG. 7. Logarithmic negativity of reduced bipartite states for CG case (left panel) and QG case (right panel). Bipartite subsystems are
denoted as CM:INT (blue line), INT:S (red line) and CM:S (gray line).
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where the 2 × 2 sub-matrices are defined by

NC ¼
"

1þ vC
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2C

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2C

p
1 − vC

#
; NS ¼

"
1þ vS

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2S

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2S

p
1 − vS

#
; Z ¼

�
1 0

0 −1

�
: ð70Þ

Therefore, the three different reduced bipartite states are

ρINT∶CM ¼ TrSρ ¼ 1

4

�
NC vSeiðθCþθSÞNCZ

vSe−iðθCþθSÞZNC ZNCZ

�
; ð71Þ

ρINT∶S ¼ TrCMρ ¼ 1

4

�
NS vceiðθCþθSÞNSZ

vce−iðθCþθSÞZNS ZNSZ

�
; ð72Þ

ρCM∶S ¼ TrINTρ ¼ 1

8
ðNC ⊗ NS þ ZNCZ ⊗ ZNSZÞ: ð73Þ

As per Eq. (73), ρCM∶S is separable from its structure. The
negativity for reduced bipartite states are

N ðρINT∶CMÞ ¼
1

4

�
−1þ vS þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ vSÞ2 − 4v2CvS

q �
; ð74Þ

N ðρINT∶SÞ ¼
1

4

�
−1þ vC þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ vCÞ2 − 4v2SvC

q �
; ð75Þ

N ðρCM∶SÞ ¼ 0: ð76Þ

Figure 8 displays the dependence of negativities
N ðρINT∶CMÞ, N ðρINT∶SÞ on vS and vC. For the CG case,
since the state is not dependent on X, we have vS ¼ 1.
Therefore, N ðρINT∶SÞ becomes zero, whereas N ðρINT∶CMÞ
varies between 0 and 1 depending on values of vC. For the
QG case, since vS oscillates between 0 and 1, N ðρINT∶CMÞ
oscillates between 0 and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2C

p
=2, whereas N ðρINT∶SÞ

oscillates between 0 and vC=2;N ðρINT∶CMÞ andN ðρINT∶SÞ

vary alternatively. This implies a monogamous relation of
quantum entanglement between the INT:CM systems and
INT:S systems, and confirms the existence of genuine
tripartite entanglement of the CM-INT-S system.
For the state expressed in Eq. (69), the negativity for the

bipartition INT∶CMþ S of the total state is

N ðρINT∶CMþSÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2Sv

2
C

q
; ð77Þ

and it obeys monogamy inequality [29] as follows:

N 2ðρINT∶CMÞ þN 2ðρINT∶SÞ ≤ N 2ðρINT∶CMþSÞ: ð78Þ

The difference between the sides of this inequality repre-
sents the residual entanglement which quantifies genuine
tripartite entanglement (right panel of Fig. 8). For the CG
case, since vS ¼ 1, there is no residual entanglement. For
the QG case, since vC ≠ 1 or vS ≠ 1, the value of residual

FIG. 8. Dependence of negativity on vS and vC for reduced bipartite states. Left panel: INT:CM. Middle panel: INT:S. Right panel:
residual entanglement, which quantifies genuine tripartite entanglement. For the CG case, since vS ¼ 1, N ðρINT∶SÞ is always zero, but
N ðρINT∶CMÞ ≠ 0 depending on the value of vC.
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entanglement is nonzero. The point vC ¼ vS ¼ 0 corre-
sponds to the maximally entangled GHZ state.
Finally, we evaluated the entanglement entropy in our

system. In Fig. 9, we depicted the time dependence of the
entanglement entropy between unipartite-bipartite systems.
The left panel shows the CG case, and the right panel
shows the QG case. The orange line shows CM:others
systems, the blue line shows INT:others systems and the
green line shows the S:others systems. Parameters are
chosen as the same as in Fig. 6, namely ðm3

0=kÞ1=2 ¼ 10,

ðm0=m1Þ1=2 ¼ 0.5, Gm0M=ðkd3Þ ¼ 0.015, m1=4
0 d ¼ 10,

β=d ¼ 0.01, σ=d ¼ 0.001. We see any entanglement
entropy is bounded by log 2 (gray dashed line), which
value involves the GHZ state. In the CG case, We can see
that the entanglement entropy of S:others systems vanishes.
This means that the source system is isolated from the
particle system due to the classical interaction. The entan-
glement entropy of CM:others and INT:others systems take
the same value since they both show the entanglement
shared between the CM system and the INT system. In the
QG case, we can see the entanglement is shared between

the whole 3 systems. Especially, the entanglement entropy
of INT:others and S:others almost reach the maximum
value log 2 when the visibility is at the minimum in Fig. 6.
This is because the INT system is represented by 2 qubits
and the S state is approximately represented by 2 qubits
which nearly reads to the maximally entangled state.

VI. DISCUSSION

In this section, we discuss the feasibility of detecting the
quantumness of gravity in our proposal. Let us suppose an
experiment being performed using an 27Alþ quantum clock
[30] with a probe laser wavelength λ¼2πℏc=E¼267 nm.
A coherent state of the mesoscopic mass source with
M ∼ 1ng may be realized in the near future. In addition,
the coherent state can be experimentally realized for
20 sec [31]. Apart from that, we assume d ¼ 200 μm, σ ¼
1 μm and β ¼ 10 μm to compare setups of the BMV
proposal [9–11]. Therefore, for a duration of coherence
time scale t, the fractional change of the decoherence factor
in jVQðtÞj of Eq. (48) can be estimated as

�
1

2ℏ
GME
d

σ

d
t

�
2

¼ 1.7 × 10−34
�

M
10 ng

�
2
�

λ

267 nm

�
−2
�

d
200 μm

�
−4
�

σ

1 μm

�
2
�

t
20 sec

�
2

; ð79Þ

�
1

ℏ
GME
d

β

d
t

�
2

¼ 6.8 × 10−32
�

M
10 ng

�
2
�

λ

267 nm

�
−2
�

d
200 μm

�
−4
�

β

10 μm

�
2
�

t
20 sec

�
2

: ð80Þ

After performing time Fourier transformation on the
probability PðtÞ obtained using the spectroscopy experi-
ments, the least necessary precision to detect the QG
effect in our proposal is approximately 10−32, which
is extremely small to be distinguished in the present
clock spectroscopy, whose observation uncertainty is
about 10−19 [30]. Let us discuss our result Eq. (80) in

comparison with visibility change obtained by the setup
of Carney et al. [19]. Carney et al. investigated entangle-
ment between a massive oscillator and a source mass
particle with a cat state, and evaluated the interference
visibility of the particle state. Their estimation of the time
change of the visibility due to quantum gravitational
interaction is

FIG. 9. Entanglement entropy between unipartite-bipartite systems for CG case (left panel) and QG case (right panel). Each line shows
CM:others systems (orange line), INT:others systems (blue line), and S:others systems (green line). The gray dashed line shows log 2;
the maximally entangled state.
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�
GMm
d

β

d
x0
d
t

�
2

∝ d−6; ð81Þ

where x0 is the spread of the ground state wave function
of the oscillator. For the optimal values of parameters in
their setup, the ratio provides a value of ∼10−28. Although
Eq. (80) exhibits a lower suppression factor d2 compared
to (81), the ratio E=m makes the visibility change smaller
compared to that in Eq. (81).
As a crucial issue of this study, we also discuss the

uniquenessofgravitycompared tootherquantuminteractions,
such as the electromagnetic Coulomb force. In our setup,
CG creates an entanglement only between the CM and INT
systems, whereas all subsystems share entanglement in the
QG case. It should be noted that, in particular, the entangle-
ment between the INTand S systems is uniquely induced by
thequantumnessofgravity, andnootherquantuminteractions
can establish this entanglement. This is because according to
the weak equivalence principle and the mass-energy equiv-
alence, only gravity can couple to the energy; other quantum
interactionsdonot have this property [4].Figure10depicts the
entanglement structure for different external forces, namely
CG,QG, andCoulomb force.To capture theuniqueness of the
quantumness of gravity, we should detect entanglement held
between the INT system and the S system.

For comparison, let us consider the case when the
Coulomb interaction is the external force instead of the
gravitational interaction. To focus on the connection of
mass-energy equivalence with entanglement here, we do
not consider a dipole-photon interaction which introduces
a direct coupling between the INT and S system.2 The
Coulomb interaction is given by

VCoulomb ¼
qQ

4πϵ0jdþ X̂ − x̂j ; ð82Þ

where q and Q are the electric charges of the oscillator
and the source, respectively. In comparison with the QG
interaction

VQG ¼ −
Gm̂M

jdþ X̂ − x̂j ; ð83Þ

the Coulomb interaction does not contain the INT operator
m̂ as a result of the weak equivalence principle. Then, it is
obvious that the Coulomb interaction does not produce the
entanglement between the INT and S systems as depicted
in Fig. 10. The Hamiltonian for the external Coulomb
interaction can be expressed as

ĤCoulombðX̂Þ ¼
X
j¼0;1

�
EjðX̂Þ þ

p̂2

2mj
þmjω

2
j

2

�
x̂ −

qBðX̂Þ
k

�
2
�
jEjihEjj; EjðX̂Þ ¼ mj − qAðX̂Þ − q2B2ðX̂Þ

2k
; ð84Þ

AðX̂Þ ¼ Q
4πϵ0d

�
1 −

X̂
d
þ X̂2

d2

�
;

BðX̂Þ ¼ Q
4πϵ0d2

�
1 −

2X̂
d

�
; C ¼ Q

4πϵ0d3
: ð85Þ

Unlike the gravity case, the symmetry axis of the trapping
potential is independent of the INT state, and the quantity
E1ðX̂Þ − E0ðX̂Þ is independent of X̂. As a result, the
visibility of the Coulomb force case exhibits a different
behavior compared to the CG and QG cases. Following the

CG QG Coulomb

CM

INT

S CM

INT

S CM

INT

S

FIG. 10. Entanglement structure for the CG, QG, and Coulomb interaction cases. Dotted lines represent the existence of couplings
between degrees of freedom, and possible pairs of subsystems sharing entanglement. For the QG case, the total system shares genuine
tripartite entanglement which cannot be reduced to bipartite entanglement between the reduced bipartite systems. For the quantum
Coulomb case, tripartite entanglement is reduced to bipartite entanglement between the reduced bipartite systems.

2Note that we have made an assumption in our setup that the
internal degrees of freedom of the particle are labeled only by the
energy levels, which results in the unique correspondence of
the INT:S entanglement and QG. Generally, the internal degrees
of freedom of an atom are labeled not only by energy level but
also by spin. In such cases, the dipole-photon interaction can also
create INT:S entanglement besides gravity. A general form of
the dipole-photon interaction is given by d̂ · Ê, where d̂ ¼
dþjE1ihE0j þ d−jE0ihE1j is the electric dipole moment operator
of the INT system, and Ê is the external electric field. When the
external electric field has the source (S) dependence as ÊðX̂Þ, this
interaction can provide the INT-S entanglement in the leading
order of expansion for the source separation.
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same procedure used to derive Eq. (50), we obtain the π=ω1

periodic visibility as

jhΨ0ðtÞjΨ1ðtÞij

¼
�

4a0a1
4a0a1cos2ðω1tÞ þ ða0 þ a1Þ2sin2ðω1tÞ

�
1=4

: ð86Þ

Here, the period 2π=ω1 of coherent state does not appear
since the displacement factor ΔðX̂Þ ≔ qBðX̂Þ=k ≈Q=d2 is
independent of the internal energy level. Therefore, up to
the leading order in Eq. (18), we conclude that the non-
revival behavior in visibility uniquely discriminates the
quantumness of gravity. The visibility is more likely to
exhibits revival behavior for the Coulomb interaction case
than the QG case since the former shares less entanglement
than the latter, as in Fig. 10. The left panel of Fig. 11
presents the behavior of the probability for the Coulomb
interaction by evaluating up to the second-order of Taylor
expansion in Eq. (18). The parameters are set to
ðm3

0=kÞ1=2¼10, ðm0=m1Þ1=2¼0.85, qQ=ð4πϵ0kd3Þ¼0.15,

m1=4
0 d¼10, β=d¼0.01, σ=d ¼ 0.001. As the figure shows,

the visibility exhibits a revival behavior with some longer
period than π=ω1 obtained by the first order approximation
in Eq. (86). This is because the visibility beats due to the
addition of two functions with periods 2π=ω0 and 2π=ω1,
reflecting the respective period of the coherent states
jΨ0ðtÞi and jΨ1ðtÞi as an effect of the external quantum
Coulomb force. In the first-order approximation, the
displacement effects of these coherent states are neglected.
Regarding the behavior of negativity, within the first-order
approximation, vS ¼ 1 results in N ðρINT∶SÞ ¼ 0 and pro-
vides a nonzero value of N ðρCM∶INTÞ with period π=ω1.
The quantumness of Coulomb force appears as a small
nonzero value ofN CM∶S, which can be revealed beyond the
first-order approximation, as per the right panel of Fig. 11.

Also, we briefly discuss the case where the harmonic
oscillator potential trapping the particle is proportional to
the probe mass [32]: 1

2
m̂ω2x̂2, where ω is a constant

parameter. Here, a shift of the potential due to the external
gravity becomes independent of the internal energy level,
and we obtain Δ1 ¼ Δ0 ≠ 0. Since the displacement effect
does not become obvious in the Ramsey interference,
jVCðtÞj reduces to a π=ω1 periodic function rather than
2π=ω1 periodic function. Therefore, the visibility revival
period becomes π=ω1 for the CG case, while it does not
exhibit revival for the QG case due to the quantumness of
gravity.
Finally, we comment on the relevance of the alternative

theories of gravity. Since our proposal are focusing only
on the nonrelativistic scale, it is difficult to distinguish
alternative theories of gravity when they reduce to the
Newtonian gravity in the Newtonian limit. To distinguish
them, we need experiment on the higher orders of 1=c2

expansion where the difference between alternative theories
appears. It may be interesting to discuss how the Ramsey
interference differs depending on alternative theories of
gravity by analyzing the higher-order expansions, although
the detection is technically difficult at present.

VII. SUMMARY

In this study, we investigated the quantumness of gravity
in the setup of the Ramsey interferometry. For the classical
external gravitational field, the interference visibility exhib-
its oscillatory behavior, and the coherence between the two
energy states exhibits collapse and revival behavior in time.
The decoherence behavior originated from the coupling
between the CM state and INT state due to the mass-energy
equivalence principle. On the other hand, when a gravita-
tional source is in quantum superposition, the visibility
exhibited additional oscillation with a longer period and
decay at a long time scale for the QG case, while it remains
2π=ω1 periodic in the CG case. For the zero spread of the

FIG. 11. Left panel: time dependence of the visibility VðtÞ for the Coulomb case. Right panel: logarithmic negativity for the Coulomb
case; Red line: bipartite INT:S subsystems. Blue line: bipartite INT:CM subsystem. Grayline: bipartite CM:S subsystem.
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source state, the time scale of decoherence was determined
as t ∼ ðGME

d
β
dÞ−1, which constrains the feasibility of the

experimental detection of the quantumness of gravity. In
addition, we found that the spread of the source wave
function provides another decoherence effect that is not
periodic in time depending on the variance of the source
Gaussian state σ.
Regarding the entanglement behavior, the initial sepa-

rable CM-INT-S system acquired genuine tripartite entan-
glement due to the quantumness of gravity. On the contrary,
the quantumness of the Coulomb force cannot acquire the
entanglement between the INT and S systems. This is
because the Coulomb interaction does not couple to mass-
energy of the INT state, unlike gravity, which obeys the
weak equivalence principle. Since the nonrevival feature
of the interference visibility reproduce the entanglement
between the INT and S systems, it is possible to distinguish
the quantumness of gravity from other quantum inter-
actions by observing the visibility of Ramsey interference.
We believe that our study is beneficial for further under-
standing of the quantum nature of gravity.
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APPENDIX: WIGNER FUNCTION OF TIME
EVOLVED CM STATE

In this section we will investigate the time evolution of
the CM state jψ j;XðtÞi by depicting its Wigner function
[33], which gives us an intuitive understanding of the
visibility behavior.
In the QG case, the time-evolved CM state is given by

jψ j;XðtÞi ¼ Ûj;XðtÞjψ inii; ðA1Þ

where Ûj;XðtÞ ≔ e−iωjðâ†j;Xâj;Xþ1=2Þt, jψ inii is the ground state
of the Hamiltonian ωjðâ0;0†â0;0 þ 1=2Þ, and âj;X is as per
Eq. (27). The relation between the two annihilation
operators â0;0 and âj;X is as follows, by

âj;X ¼ cosh rjâ0;0 þ sinh rjâ
†
0;0 þ αj;X; ðA2Þ

erj ¼
ffiffiffiffiffiffiffiffiffiffiffi
mjωj

m0ω0

r
; αj;X ¼

ffiffiffiffiffiffiffiffiffiffiffi
m0ω0

2

r
erjðΔ0ð0Þ − ΔjðXÞÞ:

ðA3Þ

Using the squeezing operator ŜðrjÞ ¼ erjðâ
2
0;0−â

†2
0;0Þ=2 and the

displacement operator D̂ðαÞ ¼ eαðâ
†
0;0−â0;0Þ, the relation of

the two annihilation operators can be rewritten as

âj;X ¼ Ŝ†ðrjÞD̂†ðαj;XÞâ0;0D̂ðαj;XÞŜðrjÞ: ðA4Þ

Therefore, the initial ground state jψ iniðtÞi associated with
â0;0 evolves to become the squeezed coherent state char-
acterized by parameters rj and αj;X as given below,

jψ j;XðtÞi ¼ S†ðrjÞD†ðαj;XÞÛ0;0Dðαj;XÞSðrjÞjψ inii: ðA5Þ

For the no gravity case, the time-evolved CM state is
obtained by replacing αj;X → 0. For the CG case, the time-
evolved CM state is obtained by replacing αj;X → αj.
Next, we explore the temporal behavior of the CMWigner

function [33]. The Wigner function is a quasiprobability
distribution in the phase space ðx; pÞ and is defined as

Wψ ðx; pÞ ¼
1

2π

Z
∞

−∞
dξψ

�
xþ ξ

2

�
ψ�

�
x −

ξ

2

�
eiξp; ðA6Þ

where ψðxÞ is the wave function of the CM system. For
simplicity, we focus on the state with X ¼ �β, which is the
same condition as we depicted in Fig. 4. Length unit
of 2m0ω0 ¼ 1.
Figure 12 displays the time evolution of the Wigner

function of the CM state for the no gravity case. The blue
and red regions respectively denote the Wigner function of

FIG. 12. Time evolution of the Wigner function of the CM state for the no gravity case. A blue region: Wigner function of the jψ0ðtÞi
state. A red region: Wigner function of the jψ1ðtÞi state. Contour lines are drawn with (0.02,0.05,0.08,0.11,0.14).
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the jψ0ðtÞi and jψ1ðtÞi states. The parameters are set to
er1 ¼ 1.2, ω1=ω0 ¼ 0.8. Since there is no displacement
effect due to gravity, the time-evolved state is simply
squeezed due to a special relativistic effect. The two states
overlap for every π=ω1 period, which reflects the period of
squeezing. Since the visibility of the Ramsey interference
in Eq. (40) contains jhψ0ðtÞjψ1ðtÞij, its revival period π=ω1

stems from the squeezing period.
Figure 13 displays the time evolution of the Wigner

function of the CM state for the CG case. The blue and red
regions respectively denote the Wigner function of jψ0ðtÞi
and jψ1ðtÞi states. The parameters are set to er1 ¼ 1.2,
α1 ¼ 3, ω1=ω0 ¼ 0.8. The time evolved state is squeezed
by a special relativistic effect and displaced by a gravita-
tional effect. The two states overlap for every 2π=ω1 period
reflecting the period of coherent state, which results in the
2π=ω1 revival period of the visibility.

Figure 14 displays the time evolution of the Wigner
function of the CM state for the CG case. The blue region
with solid contours denotes The Wigner function of
jψ0;−βðtÞi, the blue region with dashed contours denotes
the Wigner function of jψ0;þβðtÞi, the red region with
solid contours denotes the Wigner function of jψ1;−βðtÞi,
and the red region with dashed contours denotes theWigner
function of jψ1;þβðtÞi. The parameters are set to er1 ¼ 1.2,
α0;0 ¼ 1.5, α1;0 ¼ 3.0, αj;þβ=αj;−β ¼ 0.6, ω1=ω0 ¼ 0.8.
There are four kinds of squeezed-coherent states with
j ¼ 0, 1 and X ¼ �β. The Wigner functions of jψ0;XðtÞi
and jψ1;Xi moves with different the time periods 2π=ω0

and 2π=ω1, respectively, and typically do not coincide.
The nonrevival behavior of the visibility for the QG case
is originated from the fact that these four states do not
coincide, as well as the phase difference e−iEj;Xt in Eq. (40).
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