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Superintegrability as the hidden origin of the Nekrasov calculus

: 2,34,
A. Mironov

£
and A. Morozov

1.3.4.%

'MIPT, Dolgoprudny 141701, Russia
Lebedey Physics Institute, Moscow 119991, Russia
*Institute for Information Transmission Problems, Moscow 127994, Russia
*NRC “Kurchatov Institute” - ITEP, Moscow 117218, Russia

® (Received 20 October 2022; accepted 14 November 2022; published 9 December 2022)

Once famous and a little mysterious, Alday-Gaiotto-Tachikawa (AGT) relations between Nekrasov
functions and conformal blocks are now understood as the Hubbard-Stratanovich duality in the Dijkgraaf-
Vafa (DV) phase of a peculiar Dotsenko-Fateev multilogarithmic matrix model. However, it largely remains

a collection of somewhat technical tricks, lacking a clear and generalizable conceptual interpretation. Our

new claim is that the Nekrasov functions emerge in matrix models as a straightforward implication of

superintegrability, factorization of peculiar matrix model averages. Recently, we demonstrated that, in the

Gaussian Hermitian model, the factorization property can be extended from averages of single characters to
their bilinear combinations. In this paper, we claim that this is true also for multilogarithmic matrix models,
where factorized quantities are just the point-split products of two characters. It is this enhanced

superintegrability that is responsible for existence of the Nekrasov functions and the AGT relations. This
property can be generalized both to multimatrix models, thus leading to AGT relations for multipoint
conformal blocks, and to DV phases of other non-Gaussian models.

DOI: 10.1103/PhysRevD.106.126004

I. INTRODUCTION

Once upon a time, in [1], we explained that the most
important reason for Nekrasov functions [2] and Alday-
Gaiotto-Tachikawa (AGT) relations [3] to exist are the
Kadell formulas [4-6] for the Selberg integrals [7], i.e.,
factorization of pair averages of Schur functions with the
double-logarithmic Selberg measure (see Sec. I A 2),

(Se{pe + v} Se{pi})
_ H/1 dxc (1 = ) A2(5) S p + 23S dpi} (1)
i=1 70

with p; = >V xV. The Nekrasov function is nothing but

Nrrr = (Sg{pr+v}- Seedpi}) + (Seipi+v}-Sprdpet)-
(2)

with two different sets of the u, v variables denoted by + and
—, or with two different integration contours, associated with
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the Dijkgraaf-Vafa (DV) phase of the three-logarithm matrix
model [8].

Nowadays we identified the property that an average of
Schur-like functions (characters) is factorized into a product
of similar functions as superintegrability, pertinent to
specific class of matrix and string models; see [9] for a
recent review and an ample list of references. This factori-
zation strengthens the usual integrability of matrix and
eigenvalue models [10], and, generically, of any nonper-
turbative functional integrals [11], and resembles the close-
ness of orbits for quadratic and Coulomb potentials, which
are peculiar superintegrable cases of the generically inte-
grable motion in any central potential [12].

It is a natural question to ask what is the connection of
these two properties, and if the Selberg measure possesses
some enhanced superintegrability, which applies to pair
correlators of characters and is responsible for the very
existence of the (still partly mysterious) Nekrasov calculus.
The latter deals with the Nekrasov functions, which are
nicely factorized quantities providing a new class of objects
in representation theory; the Nekrasov functions are still
awaiting a clear nontechnical definition.

The usual problem with pair correlators is that the
product of characters is expanded in characters, but gives
rise to a linear combination with sophisticated Littlewood-
Richardson coefficients, not to a single term [13]. Thus,
within the superintegrable context, the average is also a
linear combination of factorized quantities, which is not
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expected to, and generically does not, factorize. The
Kadell formulas, however, demonstrate that, for a par-
ticular double-logarithmic Dotsenko-Fateev matrix model
[8,14], they do, at the expense of a simple point-splitting
by v in (1). This is a drastic simplification as compared to
the recently analyzed Gaussian Hermitian model where
certain bilinear combinations of characters were also
shown to factorize [15], but the simple point-splitting
interpretation is not available.

In fact, after the f deformation (and further after the full-
fledged ¢, ¢ deformation) factorized are both pair correla-
tors of the Jack polynomials and also the averages of
generalized Jack polynomials, and these latter are respon-
sible for the emergence of the standard Nekrasov functions.

In this paper, we propose to call the Nekrasov function a
product of two different Dijkgraaf-Vafa (DV) blocks, which
are defined to be a bilinear combination of characters
(symmetric functions) factorized with a proper averaging.
This allows us to associate a matrix (eigenvalue) model
with a given set of Nekrasov functions. The DV blocks
giving rise to the standard Nekrasov functions are obtained
as averages of point-split bilinear products of two Schur
functions in the nondeformed case, and as averages of
generalized Jack polynomials, which are bilinear combi-
nations of the Jack polynomials in the deformed one.We
also consider other factorized averages of simple bilinear
combinations of characters; they can be also associated
with Nekrasov functions, and we explain what matrix
(eigenvalue) models they give rise to.

This means that the notion of Nekrasov function turns
out to be intimately related to factorization properties of
averaging, and this is exactly what is known under the
name of superintegrability of matrix models. Moreover, the
Nekrasov functions are related this way with a more subtle
avatar of superintegrability, with the factorization property
of bilinear correlators of characters. The latter is basically a
new issue in superintegrable theories.

The paper is organized in the following way. In Sec. II, we
consider the matrix model with potential that is a sum of
three logarithm terms. This model is a Dijkgraaf-Vafa type
model, and it leads to the standard Nekrasov functions,
which we demonstrate in Sec. III. In Sec. IV, we discuss the
p deformation of this matrix model, and realize that the
corresponding Nekrasov functions are given by averages of
the generalized Jack polynomials. At last, in Sec. V, we
discuss eigenvalue models that originate from the Nekrasov
functions associated with averages of point-split products of
Jack polynomials, and with the matrix model emerging from
the Nekrasov functions associated with factorized bilinear
correlators in the Gaussian matrix model. Section VI con-
tains some concluding remarks.

Altogether, we reproduce results about logarithmic
models, which are partly known from [1,4-6,16—18] but
now we rewrite and interpret them differently. This new
interpretation provides us with a unified look at Nekrasov

functions: as factorized bilinear character correlators. This
gives rise to various new generalizations mostly discussed in
Sec. V, and, no less important, to links with nonlogarithmic
matrix models in Sec. V B, where factorization is far less
obvious and technically more involved.

One of the applications that we discuss in Sec. V is an
explicit solution of the conformal matrix models (70)
[19,20]. These kinds of models emerged in various physical
contexts, particularly, in the double scaling limit; they
describe 2d gravity interacting with conformal matter,
minimal models, i.e., rational string theories with the central
charge less than 1 [20]. These models are also nothing but
the ADE matrix models, which were introduced in [21,22].
We considered only the case of two matrix model; the
extension to arbitrary ranks is immediate. Note that, while
complete solutions (in terms of symmetric functions) of
many one matrix models has been found so far [9], to the
best of our knowledge, this is the first time that a complete
solution of a multimatrix models is found.

Put differently, (i) we start from bilinears in characters
that have factorized averages; (ii) this allows us to construct
DV blocks; (iii) products of two DV blocks define Nekrasov
functions; (iv) this gives rise to a matrix or eigenvalue
model. The construction immediately extends to multilinear
products of DV blocks. This is one of the main new results
of this paper.

Another new result is expressed in formulas (47), (59),
and (78). It supports our conjecture that the factorized
averages of bilinears of characters are expressed through
the same characters.

Notation.—Throughout the paper, we use the notation
Sg{P;} for the Schur functions [13]. It is a graded
symmetric polynomial of variables &;, or of the power
sums P, = >, The Schur functions are labeled by
partitions (Young diagrams) R:R; > R, > ... > R, with I
parts (lines of the diagram), |R| := >_; R;. We also use the
notation  Sp{x} = Sg{P, =x} and dg = Sp{5. .}
Similarly, we use the notation J{P;} for the Jack poly-
nomials [13]. We normalize the Jack polynomials as in
[23]. We denote skew Schur function Sg/o{ Py} and skew
Jack polynomials Jg/o{ Py}

II. DV PHASES OF THE THREE-LOGARITHM
MODEL

A. DV phases of matrix models

Consider the Hermitian one-matrix model with a potential
V(H),

ZN{V;Pk}~/dH exp (—TrV(H)—ﬁ—Z%TrH"), (3)
k

where the integration goes over the N x N matrix H, and dH
is the Haar measure on Hermitian matrices. The integral is
understood as a power series in variables P}’s, hence it is
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given by moments of invariant polynomials of H with
measure exp (—TrV(H)). As soon as the integrand of (3) is
an invariant function, one can integrate over the angular
variables to obtain [24]

i=1 k
(4)

where h;’s are eigenvalues of matrix H, and A(h) is the
Vandermonde determinant. The integration contour is
chosen in such a way that the integral converges.

The Dijkgraaf-Vafa phase [25-27] emerges when the
potential V' (/) possesses several different extrema at points
h=a, r=1,...,s. Then [28-30], there are s different
independent integration contours K, such that the integral
(4) converges. These contours definitely form a linear space,
since one may choose a linear combination of them. In fact,
one may define the DV partition function so that N, out of N
eigenvalues /; are integrated along K. These N, serve as the
s additional moduli, if the answer is analytically continued
from the integer values of N, to arbitrary ones. Thus, one can
define the Dijkgraaf-Vafa partition function Zy, _ y {#;} as
a matrix (or, better to say, eigenvalue) model with s different
integration contours so that > ¥, N, = N integration var-
iables h; are parted into s subsets which we denote by the
superscript of h: the eigenvalues with i =1,...,N; are

integrated over K;, we denote them hgl), i=1,...,Ny;
those with i = Ny + 1, ..., Ny + N, are integrated over K,

we denote them hl( ), i=1,...,N,, etc.:
s N,
Zy,.v AP~ ) an”
r=1 i=1 r
P
-V h(’) Tk h(’) k AZ h
coxp (Vi) + D7) )

In this paper, we mostly concentrate on the case of
potential with two minima, and consider partition functions
at P, = 0 so that they are just functions of parameters of the
potential V (k) and of N, N,, and apply the technique of

|

Zy,v,({aatsw)

superintegrability. The case of nonzero P}’s requires further
refinement of superintegrability approach (see, e.g., [31]),
and will be discussed elsewhere.

B. Three-logarithm model

In order to demonstrate the phenomenon that we discuss
throughout the paper, we consider the matrix model with the
potential that is a sum of three logarithms, since this model
admits very explicit calculations. This model is inherited
from the Dotsenko-Fateev [32] representation [8,14,33] of
the conformal blocks in 2d conformal field theory, and is
given by the matrix integral over N x N Hermitian matrix H

Zu{an)s o)~ [ dt exp <T<Z 2, log(H — wa>).
(©)

Here dH is the Haar measure on the Hermitian matrices, and
{az,w,}, a =1, 2,3 are parameters. By a rescaling and a
constant shift of H, one can achieve w; =0, w, = 1, and
we will denote wy = w.

After integrating out the angular variables, one can
reduce this matrix integral to the integral over eigenvalues
of H

Zy({a,} w) ~ /dhh“‘ (1= ) (w—h)= A2(h). (7)

Partition function (7) is associated with the potential
V(h) = ajlogh + aylog(1l — h) + azlog(w — h). (8)

This potential has two minima, and, in accordance with the
general rule above, there are two independent contours. We
choose them to be C; := [0, w] and C, := [, o). Thus, the
N integrations in (7) are parted between these two contours.
Let us assume N, variables h;, i =1,...,N, run over
contour Cy, and the remaining N_ = N — N, over contour
C,, and change the variables: h; =wx;, i=1,...Ny,

hy,+j = y;l. Then, integral (7) becomes

N
=C H/dx,-x?‘(l —x)%(1 —wx;)®2A%(x)

/ dy,y 7N (1 =y (1 =y, ) A2(y) xH 1— wxiy,)? 9)

and we fix the normalization C so that Zy, v, ({a,};0) = 1. Later on, we use the traditional notation u, = a;, v, = as,

U_ = —a; —ay

—az — 2N, v_ = a, so that there is a constraint for these four variables

2N +u, +vy +u_+v_=0. (10)
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C. Selberg model as an elementary building block

The representation (9) of the three-logarithm model implies that it can be constructed from the two building elementary
blocks, which we will call the DV building blocks, each of them being associated with one concrete contour. In other words,
we represent (9) as an average in two distinct matrix models of the usual (non-DV) type:

N_ N,

Zn, v, (s, 05 W) = <<H]—wx7 (1-wy)) ’+H1N_[1—wxyj > > (11)

i=1 j=1 i=1 j=1

where the two matrix model averages are given by Selberg-type integrals

+—/ dx; .. /deHx—x Zl_Ix”+ = 1) f(xps o xy,)

_=/ dyl---/ dyn [T =y )T D= D f O (12)
0 0 i<j i

and the averages are as usual normalized in such a way that (1), = (1)_ = 1.
In order to calculate this average, we use the transformation [34]

N

H(l - Wxi)"

i=1
g
=1

where p; = Kand p, =0
Using the Cauchy identity, the right-hand side of (13) can be expanded to a sum bilinear in the Schur functions:

exp < Z P k(P + U+)) exp <— i%kpk(ﬁk + U—))

k=1
- Zwm/HlRNlSR/{—Pk = 0y }Sp A P SrA Pk Sr{=Pr — v-}. (14)

R .R"

N, N_
(1 —wy;)" HH 1—Wxiyj')2

1 i=1 j=1

pk+v+>exp< i% pk+v)> (13)

k=1

:12

»\iw

Now the averages in (11) split into products of two Selberg averages [1]:

Zy, (e viiw) = > WS (e — 0 S {pi ) (SpAd Pit Spr{ =P — v_})_. (15)
R/.R//

Nekrasov functions

These Selberg averages are factorized due to the superintegrability, and are called Nekrasov functions.

Hence, this illustrates our general approach to the DV type matrix model: one first has to part the partition function of this
matrix model into DV building blocks and then, using superintegrability to evaluate contributions of factors mixing between
the parts. These contributions are typically presented as a series in (factorized) expressions, which are called Nekrasov
functions. These mixing terms can be dealt with in different ways, each of them leading to a different set of Nekrasov
functions. The invariant notion is the DV matrix model, and, in this concrete case, the integral (11) can be associated with
the Losev-Moore-Nekrasov-Shatashvili integral [35], or with the 4-point conformal block [3], while the Nekrasov functions
are associated with a very concrete expansion of these.

III. NEKRASOV FUNCTIONS AND THREE-LOGARITHM MODEL

A. Factorization of double correlators

In this section, we demonstrate that superintegrability implies a factorization of proper double correlators of the Schur
functions, which allows one to rewrite (15) as an explicit series with coefficients being the standard Nekrasov functions.
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First of all, note that superintegrability implies that the single average is factorized (as usual, our normalization of
measure is such that (1) = 1) [4,5]:

N Sg{N} - Sg{N + u}
S = dxxt(1 = x;)" A% (x)S =) xp="F i : 16
Selp) =T [ aust1 - xra@sed pe= 3o} = TSN (16)
1. Factorization property of double correlators

The product of two characters is a sum of characters with the coefficients made from the Littlewood-Richardson
coefficients and the skew-characters at the point-splitting parameter {:

Schurg { p} - Schurge{p + ¢} = Schurg {p} - Y "Schury{p} - Schurgs /o ¢]
o

— Z(ZN@Q . SchurRu/Q[w}> - Schurg{p}. (17)
R 0

where N, o are the Littlewood-Richardson coefficients. The question is what is so special about the coefficient in brackets,

and why is it so nicely adjusted to the Selberg measure in (1)?
Nothing of this kind happens in the Gaussian Hermitian matrix model: point splitting is not enough to make pair
correlators factorized, e.g.,

(Schurpy{p} - Schuryy{p + {})gu = (Schuryy) gy + (Schurjzy)) gy + (Schurpy)) gy

{E+1)
2

+ ¢+ (Schurp)) gy + w - (Schurpy)) gy +
0
NN+ 1)(N*+ N+ 2+ +4)
4

(18)

-+ (Schurp)) gy =

which does not factorize for any reasonable choice of {, while the same average in the Selberg case is much more
complicated for generic ¢, but is nicely factorized for { = v:

(Schurpy{p} - Schurp{p + {}) = (Schury) + (Schur(z;j) + (Schurpyy))
e+
2

+¢ - (Schurgy) +¢ - (Schurpy)) +

NN+ 1)(N+u)(N+u+1)(N+0)(N+v+1)(N+u+v)(N+ut+ov+1)
N 42N+ u+v)?’ 2N +u+v—1)2N+u+v+3) '

. <Schur[2]>

(19)

A simpler version of the latter example is factorization for { = v of the average

(Schury{p} - Schur{p + {}) = (Schurp)) + (Schury yj) + ¢ - (Schury))

~ N(N+u)(N+v)(N+u+w) (20)
2N+ utv+ DN +u+ov-1)°

where the expression for generic w is short enough to be presented, see (21) below. This example is not interesting in the
Gaussian case: the average is just N, because (Schuryyj)gy = 0, as all Gaussian averages of the Schur functions for the
diagrams of odd sizes.

In fact, there are bilinears in the Gaussian model, which are factorized, but they are more complicated [15] (see Sec. V B).
Thus bilinear factorization has a chance to be a generically present enhancement and even corollary of superintegrability,
but only in the Selberg case it is described by a point-splitting.
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2. Factorized double correlators

Now let us concentrate on the double correlators of the Selberg averages. The simplest example is

N
[ [ 1 =2 pbsig (v -+ €)
i=1

B N(u+ N)E
S (wtv+2N-1)(u+v+2N)(u+0v+2N+1)
E=C(u+0)+Nu+v)(u+40) + (4N* = 1) +2N3 +3N?*u + (N* + 1)o. (21)
This expression is factorized at { = v:
E=@w+N)(u+v+N)u+v+2N). (22)

The general formula at this value of ¢ is still factorized [1,6]:

N
(Sp{pr + v} - Spei{pe}) = H /01 dxix' (1 = x;)? A% (x)Sp{px + v}Spr{pi}
i=1

B ]’]R/R/r SR/{Z) —|— N}SRH{M + N}

= 23
71@@ SR/{N}SR//{M+U+N} ( )
where
—_— i (R — i =R+ j) - [T, (R — i = Rf +)) (24)
KR Nu+v+2N+1+R—i+R/—))
Using the identity
’7@@ Sg{x + N}Spi{x + N}Sp{N}Sp{N} = (=1)FIGprg (x + 2N)Grvgr (—x = 2N)d e (25)
R/R//
with
— ! . /! .
Grrr(®) = [ r+1+R—i+R/—)) (26)
(ij)eR’
one obtains that
RIS {v+ N}Spr{u+ N}Sp{u+ v+ N}Sgp{N
(Selpi+ 0} - Seepe)) = LS M Sl N Sed SSwth) @)

GR”R’(” +v+ 2N)GRNRHV (—I/t -V - 2N)dR/dRN

This explains how to deal with a particular case of R" = @&, when the double correlator is reduced to a single one: using
Grg(x) = Sp{x}dg!, one obtains from (27) at R’ = @ formula (16). Note also that Gggv(0) = dg'; therefore one can
rewrite (27) in the form

(=D)®1Sp {v + N}Sgr{u + N}Sp{u + v+ N}Sp {N}
S / . S /" =
(Seipc + v} - Spr{pi}) Frw (4 v+ 2N) &2,

FR/R// (x) = GR//R//V (O)GR//R/ (x)GR/vR//\/ <—_X') GR/R/v (O) (28)

The denominator of (28) is proportional to z}ﬁ,, where z,,., 1s the standard vector Nekrasov function,

Zvect(RI’ R”’ )C) = fR’R” (X)Z‘ (29)
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Note that there is a simple rule of transposition of the Young diagram for the Schur function, which allows one to change the
sign of all time variables at once:

Seedpit = (=D)FISp{—py}. (30)

Hence, formula (28) becomes in this case

Sg{-v—-N}Sp{u+ N}Sp{-u-v —N}SRH{N}

Spi—pPr— v} Sgr = 31
(Se{=pc— v} Ser{pi}) R 2N)d2 di,, (31)
B. Nekrasov functions and AGT
Now we can immediately evaluate (15). Indeed, from (31) one obtains
Zoy (1t 3 w) = Z R'|+|R"| SR’V{U+ + N ySprfuy + N} Speduy + vy + N SN}
RR fR/vR"<u+ + Uy + 2N+)dR’vdR”
SR//\/{U +N }SRI{M +N }SR//\/{M —+ v_ +N }SR/{N } (32)
fR//le(u +v_+ 2N )d2 d123//v
Using the notations
2py = v, —ug, 2y ==v, +uy, 2U3 = v_—U_, 2y = v_ + u_, u=N,+u =-N_—pn; (33)
and
S pu—
24(R.x) = Seipe =} (34)

dg

which describes contributions of the fundamental matter to the Nekrasov functions (u,’s are proportional to masses of the
fundamental hypermultiplets), one rewrites (32) in the standard Nekrasov form [1]

Zw\R’HlR” [Li 2 (R o + 1)z (R g — 1) dydi

Z Up, Vi W
N, N') +5 V45 R’\/R”(MJr+U++2N+>‘7:R”VR/(M—+U—+2N—) dZ di//

R/ R//
_ ZW‘R/H—IR”l H2:1 Zf(R/vyﬂa +ﬂ)zf(R//v,ﬂa _ﬂ) _ Z |R'|+|R"| H =1 Zf(R Ha +M)Zf(RI,,ﬂa ﬂ)
levR//(u+ ‘v, + 2N+)2 Z“_,C,(R/ R", 2/1)

R R R R

(35)
since dR = de and fR//vR/(l/l_ +v_+ 2N_) = er/er(—u+ — Uy — 2N+) = ervR//(u+ + Uy + 2N+)

IV. f DEFORMATION OF THREE-LOGARITHM MODEL

Now we will consider the f-ensemble deformation of the three-logarithm matrix model. This example is important as an
illustration of an ambiguity of the Cauchy expansion when there are several natural bases of symmetric polynomials, and
only one of them leads to factorized quantities (or to Nekrasov functions). The model is now given by the integral

Z?V({aa}s /dh hal — ‘12 (W h. )(1; Azﬂ(l’l)

Jj=1 i=1 j=1

with Selberg averages
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1

1
= /dxl... / de+H(x,~ — x.,-)2/”Hx?‘(x,- = )" f(xy, s xy,)
i<j i
0 0
1 1
= /dyl /dyN [Toi-v; 2‘ny, yi= D" f (e nyw) (37)
i<j
0 0
and the constraint instead of (10) is
N +N_=1-p"=02f) " (uy +u_+v, +v.). (38)
We again use the transformation
N, N_ N. N_

0o k 0 k
—exp (=03 pioet ) Jexo (0 pulpe 710 (39)
k=1

=1
where p, = >, xf and p = 3, yf.

Now there are two different natural Cauchy expansions of this exponential into symmetric functions, which we discuss in
the next two subsections.

A. Double correlators of Jack polynomials

First of all, one can naturally expand (39) into the Jack polynomials

) k e k
exp < kZT Dk +ﬂ_11’+)> exp <_ﬁ;w7pk(l~7k +ﬂ_l7f—))

= ZW\R’|+|R//| Jed=pi = v Nedpid e AP w =P = v}

(40)
R[]
where
Ghp(x) = [[ x+R—j+pRI—i+1)) (41)
(i.j)ER’
and
~p
&) = Z2nlO) g (@)
GRRv (O)

with the bar over the functions denoting the substitution g — 5~

The quantity G/,i z-(0) can be interpreted as a # deformation of the product of the hook lengths over the Young diagram R,
when length of the vertical part of the hook is multiplied by . At = 1, Gﬁ z-(0) is given by the usual hook formula, which
is evident already from the identity G/, (0) = dg'.

The Jack polynomials, indeed, form a proper superintegrable basis for the Selberg  ensemble, since the Selberg average
of one Jack polynomial is factorized [4,5]:

‘(1 = x)0 _ _TelNYe{p @t ) £ N 1)
Urlpid) = / dxpt (1= x,) 'A% (x >JR{pk—fo}— W= @

i
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Similarly, there is a factorization of double correlators of the Jack polynomials [1,6] (see also [16]):

M TrAvB + N+ — W p{up™ + N+ 57— 1}

ripr+pi rdipi}) = = - (44)
RATK RELTK s JpANY e {up "+ N+p1=1+p}
where p = v + 7! — 1, and
g LR =i = Ry 4 )y TG (RY i~ R+ Jp), (45)
KR Niu+v+2Np+2-p+ R —if+ R} - jB)
with
(x+75)
= 46
(x)ﬂ r(x) ( )
being the Pochhammer symbol.
This expression can be also rewritten in the form
Je{p! u+1+R§’ +p+2N—-1—i
Ui lpid el + o) = i+ ) ) < [ 251 : L W)

Jp{f N (u+1+R!)+p+2N—i}

Hence, the factorized average of properly normalized Jack polynomials is expressed completely in terms of the same Jack
polynomials, exactly in the spirit of the superintegrability approach.

Note that this formula is not suitable for calculating the averages of products of Jack polynomials in (40): first of all, the
shift of p, in the Jack polynomials in (47) is different from that in (40). Second, an additional minus sign in the argument of
J in (40) cannot be removed just by transposition of the Young diagram as in the Schur case, since the transposition rule for
the ordinary Jack polynomial is

Jre{=pi} = (“DMIR] - Te-{Bpi}. (48)

Because of it, expansion (40) does not lead to factorized Nekrasov functions, while (47) does, but they do not correspond to

the matrix model Z%,({a,}. w), (36). As we shall see in the sext subsection, in order to deal with exponentials in (40), one
needs other, more involved bilinear combinations of the Jack polynomials, which still give rise to factorized expressions.

B. Another deformation: Generalized Jack polynomials

Besides the f deformation that promotes the Schur functions to the Jack polynomials, there is another one that deforms
just the whole product Sgr{p;} - Sg{—pi — v} replacing the product with generalized Jack polynomials (GJP). Since the
GIJP are bilinear combinations of the Jack polynomials, one can just look at them as a proper candidate for bilinears that
have factorized averages.

The GIP, Jg p{ps, Px|4} depends on two Young diagrams R and P, on two sets of variables p, and p;, and on some
spectral parameter A. They are defined to be eigenfunctions of the Hamiltonian

HIg p{pr. PilA} = Arp(2) - T p{Pr. PilA}

n,m

+ (n+m)p,p N P > - + nmp ik
n m nm R — nm T
PnPm aﬁn-ﬁ-m Pntm apnapm Pntm ai)nai’m

n,m

—l—(l—ﬂ)Z((n—l)np,,%—l—(n—l)npn > —I—/llznp,, "’/122”17”

n

apn-‘rm

(49)

with the eigenvalues
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Arp(A) = MR+ LlP|+2 > (j=1-pi-1)+2 > (j-1-p(i-1)) (50)

(i.j)eR (i.j)eP
and 1, — 1, = A
This Hamiltonian is not self-adjoint because of the last term. In fact, it is clear that the set of conjugated functions is

obtained from the GJP’s by interchanging (pj,4;,R) <> (Px,4, P) [R and P have to be interchanged because of
formula (50)], which means that the dual (adjoint) set of polynomials J p{py. Pil4} is'

Jrp{Prs PilA} = Jp r{Pr Pl — 2} (51)
These dual GJP’s are orthogonal to the GJP’s,
(JrpiPi PilA}s T p APk PilA}) = IR|| - [Pl - Srrdpp (52)
with respect to the scalar product
(Pa,Pa,|Pa Do) = Bia e 2a,28,08,4,04,4)- (53)

Thus, we normalize the GJP in such a way that the Cauchy identity looks like

ZJR,P{kai)kM} Jr. PP PilA} _ ZJR.P{pk’pkM} I pr{P)s Pl = A} — exp <ﬁz PP+ ﬁki’;<>' (54)
%

IR - (1] [IRI[ - (1] k

R.P R.P

The GJP’s turn into the product of two Schur functions at f = 1:

Jr.p{Pe Pl p=1 = Sripi} - Sp{Pi} (55)

so that the dependence on the spectral parameter disappears. Hence, the GJP can play a role of a deformation of the product
of two Schur functions. Now one can check that the superintegrability also survives for the GJP’s. In this case, one evaluates
the matrix model (Selberg) average of one GJP, which is a deformation of the product of two Schur functions. The GJP
counterpart (f deformation) of formula (31) becomes in this case (see also [17])

(Jr g d{Pr-—pr — B~ 0|2 })
EDRERIR IR N T {7 (e + 1) + N = L[ p NP g ANB + 0} g {B(N = 1) + u+ v + 1}
pAR F o (B (4 v+ 1) + 2N = 1D)J2 {51 120 {801}

(56)

where

Ao =ANB+2u+v+1-p) (57)

"This very simple relation is uplifted to a far more involved formula for the dual generalized Macdonald polynomials

o)

which follows from the Hamiltonian for the generalized Macdonald polynomials [36,37]

R _ (1 _ t—Zn)Zn q2k -1 9
H{p.p} = resz:o{em (prn exp T o

n k>0

B (1_[—2n)zn |:( t2n> ~ :|) < q2k_1 9 )}
+ 07! ex ———— {1 === |p,+ Pn| | ex — ) 7.
0" -exp <Z - )PP e\ o

_ y AW
My p{pe. PilQ} = MP.R{kaPk - <1 —F>Pk
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and

fﬂ//R/( ) G‘Iﬂe//R//\/ (0)G‘Iﬂe//R/( )Gﬁl\/R//v( _ﬂ - x)G‘IBe/VR/ (0)- (58)

Similarly to (47), this formula is also expressed completely in terms of the Jack polynomials in the spirit of the
superintegrability approach:

Te{-B (u+1+R;’)—p—2N+1+i}
Je{=p(u+1+R))—p—2N+i}

(Jrr w{pe:—px = plA}) = T {=N = p}{Jr{pi}) XH (59)

where we denoted p := v in order to emphasize a resemblance of this formula and (47). Indeed, this expression is just
(47) with signs of arguments of Jp properly changed and with the replacement p — p.
In the case of GJP, the transposition rule requires changing signs of the both sets of times:

TrepApi Brld} = (1) |[R|| - ||P|| - Tr p{=Brr. =BPil = p~'2} (60)

and the average (Jg g'{pi, px + const|A}) is not immediate to factorize.
Similarly, as follows from (51),

<J7€’,R”{_pk_ﬂ_l7j:pk| Ad) = e g P =i = B 0|4 }). (61)

In the Appendix, we explain how one can technically check in concrete examples that these correlators are indeed
factorized.

C. Nekrasov functions and AGT

Now we are ready to present the three-logarithm f ensemble as a sum over factorized terms using the GJP. Indeed,

Zy, v, (s, v W) <<eXp (—/32 P (P + B~ U+)) exp <—/"Z X pi(pe+p7w ))>+>_(2)
|R'|+|R"|
_ Z w

7 o e r{Prs =Pk — l”|ﬁ+}>+‘<J;/,R//{—Pk—ﬂ_lv’Pk|/1+}>— (62)
2 IRT-TRT

where we choose the spectral parameter (which can be freely chosen) to be A, := 4N + 2(u, + v, + 1 — f§). Note that it
follows from (38) that this A, = —4Nf —2(u_ + v_ + 1 — f) = —A_. Hence, one can finally write

Zgjvl.zv2 (ur, v13w)

Nekrasov functions
-

_ ZW‘R/‘+‘R//‘<JR/,RU{pk’ _pk _ﬂ_]v|/1+}>+ ’ <J};’,R”{_pk _ﬂ_lv7 pk| - ﬂ—}>_ (56!61)

P IR TR
- W) KR T {7 (s + 1) + Ny = DN J e AN+ v, e BN, = 1) + g + v, + 1}
S IR | lHR”II B F o By + 0y 4 1) + 2N, = 1)I2 {61 1720 {81}

y Je{B (u_ + 1)+ N_ = 1 {N_Yp{N_B+v_ g {p(N_ = 1)+ u_+v_+1}

Fb (BN 4 v_ + 1)+ 2N_ = 1)J2, {81 T2 {61} (63)
RVR' - - - R' Yk, 1Y v LYk,

Using the notations
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v u, —1 vy +u, +1 v_— U 1
2y = —- ﬁ+ +1, 2y 1= —- ﬂ+ -1, 2ps = 7 +1,
v_+u_+1
244 5 I, u=Ntu=-N_—p (64)
and
Jelpi = px}
B R\ Pk
(R, x) 1= ——— 65
(k%) Jr{dk1} (65)
one rewrites (63) in the standard Nekrasov form [1]
Zh (s, vy w Z w) KR T {p = 3 e = o} g B+ ) W o B + 2) }
Ny.N i 1 1’
: R/ R ||R/ ‘ ||R”|| f[;//vR/(zﬂ) {5k I}JR/IV {5k 1}

R S el E VR o pa e A=Pp — p3) M we {=Blu — 1)} 139
F R’VR”( 2u)J 7S a 3 4Bk}

Z w) R R T4, 2 (R”V,Ma +;¢)zf(R’V,ua —H) Ja T
3 -3
R'.R" ||R/ | ||R”|| R//\/Rr (2ﬂ) R/\/RH( 2”) J%’{ék,l}‘lz”{ék,l}
Z w) KR TTG- VR g+ w)(RY uy — )
R, R//”R/H l||R”H a fR//vR/( >‘7:RNR”(_2'M)
4 R R _
= 3 wlRRY 2! Zf(ﬂ Ha+ W) (R g = 1) (66)
R'.R" Zvect(R//,Rlv, 2/1)
since
Tr{e1} = ARIR|| - T {51} (67)
and
PARHRY
Zrear (R, R, 2p0) = Fro (20 F o (=200). (68)

IR - IR

V. MORE EXAMPLES OF DV MODELS

Now we will apply our general construction
factorized correlator of character bilinears — DV block — Nekrasov function — matrix model

to other factorized correlators in order to construct new solvable eigenvalue matrix models.
A. Models of logarithm type

First of all, using (47), one can easily deal with the models (one needs to carefully deal with the poles in this expression,
see, e.g., [19]):
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ZI(\;I).NZ (uj:a U:I:) /dx X (1 — WX ) p_AZ/}(x)
N_
<11 / dyyi (1= y))" (1= wy)) 7+ A% (y) x TJ(1 = wayy) ™
- ij

= <<exP (ﬁi%ﬁk(m +P+)) exp <ﬁg%pk(ﬁk +p_)>>+>_

Z & RAPK + o MR pid)  TrdPi + p- 3 rA{Pi}) -

(69)
2 IR - R
Nekrasov functions
and
ZQ) v, (s vi ) = (1= w)yHrer- H / depxi= (1 = x;)"= (1 = wx;) - A% (x) exp (ﬂzxfcsk)
i k=Li
/dy,y, (1=y))" (1= wy,) A% (y eXp(ﬂZy ’7k> x H (1= wx;y;)
k=1,i
© wk
= <<CXP < Z? P+ p-)(pi +P+)> exp (ﬂ Z(Pkfk + Pk’7k)>> >
= +/ _
_ Wik JrApi + o W rdpi}) s TrAd P + p- 3 re A Pic}) IR A&k} R A} (70)

R'.R".R" ||RI|| ||R”|| ' HRWH

Nekrasov functions

where p, ==+ (v, + 1) — 1, and &, #, are arbitrary constants. Note that the triple summation arises here since the
partition function includes the sources &, 7, which generate all invariant correlation functions. The partition function
without the sources reduces to just a single sum

25\3>N (u:t’vj:so 0) ﬂp+p H/dxx - (1 —Wx —ﬂ A2ﬂ XH 1_leyj

o i rIrdpe+ i by TrAPet+p-})-
/dy]yj 1— ) (1—Wy> Azﬂ Z | k - ||R/H : . (71)

Nekrasov functions

These are eigenvalue models, and the second model is the model of the type considered earlier within the framework of
conformal matrix models, whose partition functions satisfy W-algebra constraints [19,20] (see also [22]), and they are
described by the Nekrasov functions following from (47).

Another interesting set of models arises when one changes the mixing factor 1 — x;y; in the above models for x; — y;
(again, one has to be careful with the poles). This gives rise to p_; = >, xi‘k and p_, = >, yi‘k in the exponentials (69),
(70), and the corresponding Nekrasov functions are based on the factorized Selberg correlators related to (47),

IrApe+pHrdp—i) = Urdpe + PHrA Pt i urr (72)

after using the identity by Kadell [5]:
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N
Jripa} = Hxi_Rl Jri{pi} (73)
i=1
where Pk = va xi_k and Ri = Rl — RN_l'+].

B. Model with Gaussian DV building blocks

All of the models we considered so far were based on DV blocks with the Selberg measure. Now we consider the case of
Gaussian measure, where the bilinears in Schur functions are more involved, and the whole construction is looking more
complicated. Still, it exists and can be dealt with.

The starting point is constructing bilinears [15], which are the products

KA{TrH*} - Sp{TrH*}, with K,{TrH*} = (=1)18le2H* 3 et (74)

2
where

. 0\ *
Wy =Tr| —
Wi =] wa, (75)

and H is an N x N Hermitian matrix. The quantities K 5 {TrH*} are linear combinations of the Schur functions that form a
full basis in the space of polynomials of TrH*. The crucial point is that the averages of K,{TrH*} - Sg{TrH*} are
factorized with the Gaussian measure:

(on ::/dH...exp (-%mﬂ), (1) = 1

Sr{N}Sr{0k2}
SR{ék,l} ’

where pip o are numbers that do not depend on the size of matrix N, see [15] for details. In this formula, P is even, since
otherwise both the average of S; vanishes and pp o becomes singular. However, after rewriting it in another form, see
formula (78) below, this restriction is lifted.

In fact, one can naturally consider the linear combinations of K :

<KA{Ter} : SR{Ter}>GH = ﬂR.A(SR{Ter}>GH = HRA (76)

A)K | A i
pri= S EKS  pyrigter s, i) ot )
A 2a

where yp(A) is the character of symmetric group S \p| in representation P, and z, is the standard symmetric factor of the
Young diagram (order of the automorphism). If m; is the number of lines of length £ in the Young diagram A,
then z, = [ [ k™ my!.

The quantities yp are generated by the operators S P{W;}, and the averages now take the form

(v W) SeTH o = [ dH exp (=3 ToA? ) (W) si{ vt

B  Sgyp{sin} ~ Sr/p{0k2}Sr{N}
= (yp{TrH*} - SR{TrH"})cpy = W (SR{TtH }) gy = Se{di1}

where we integrated by parts in the second equality. This average certainly vanishes when |R| — |P| is odd (but |R| and |P|
can be both odd giving rise to a nonzero contribution).

(78)

%See also [38] on another realization of these operators, which better suits the framework of [39].
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Hence, these averages give us DV blocks, and one can use them to construct the Nekrasov functions and then a matrix
model:

25 v, = Y WIETHR G {TeX®) - S {TeX )) (e (oYY} - S {TeV*)). (79)

R’,R”

Nekrasov functions

It is a two-matrix integral over N, x N, Hermitian matrix X and N_ x N_ Hermitian matrix Y:

Z§ n, = / DX DYe 3 e # N \lR IS0 {tr XA LS po (YA} TRy {trX* e {1V}
R// R/

TrX*Try* : . X | ]
= / DXDY exp (Z %Mf) ZWIR \SR,{W]: (X)}SR,{W;(Y)}e—itere—itrYz
k R

TrX*Try* k(0N [0\
= /DXDYexp (Z%w’) exp <Z%Tr (0_X) Tr (6_Y> )e‘%ﬁxze—%‘ryz. (80)

k k

VI. CONCLUSION

In this paper, we explained that the very existence of Nekrasov functions, i.e., factorization of the average of point-split
pair correlators is a peculiar property of superintegrability. We introduced a notion of the DV block, which is defined by the
input pair: “measure” and “bilinear combination of characters” such that averaging of this bilinear combination with this
measure is factorized. This allowed us to extend the notion of Nekrasov function and ascribe this name to the product of two
arbitrary DV blocks. Thus defined Nekrasov functions give rise to a matrix or eigenvalue model, on one hand, and the class

of Nekrasov functions becomes well defined and well structured, on the other hand.

Thus, our construction is

factorized correlator of character bilinears — DV block — Nekrasov function — matrix model.

In Sec. V, we constructed in such a way various new models that can be solved.

In this paper, we considered four examples of factorized
averages of bilinears of characters:

(1) the Selberg average, when the bilinear is just

Sedpit - Seelpi + vk

(2) the p-deformed Selberg average, when there are two
factorized averages of bilinears of Jack polynomials:
(a) a simple bilinear Jgp{p;}-Jr{pi+ 7!

(v+1)—1} and
(b) a more complicated linear combination of Jack
bilinears, the generalized Jack polynomials;

(3) the Gaussian average, when the bilinear is
xpipi} - Sg{pi}, and yp is a peculiar linear combi-
nation of the Schur functions.

In all of these cases we observe that the factorized average
of bilinears is expressed through the properly normalized
characters [13]: see formulas (47), (59), and (78). Hence,
we conjecture that this is a general phenomenon: factorized
averages of bilinears of properly normalized characters are
expressed through the same characters.

Our approach can be embedded into an algebraic
framework. Indeed, the Nekrasov functions we described
in this paper are associated with the SU(2) group. In the
case of arbitrary SU(N) group, the Nekrasov function is
still constructed as a product of two DV blocks; however,

the DV block is now not a bilinear combination of
characters, but an N-linear one. More precisely, one has
to introduce N — 1 different measures y,,a =1,...,N — 1,

each one associated with a set of variables { p,i”)}, and
consider a linear combination of products of the form

Q’:_(% )(a{P;iaH) - P;(f)}, p,(co) = p,((N) = 0, where y denotes

proper characters (for instance, the Schur functions, or the
Jack polynomials) [18]. These linear combinations are
chosen in such a way that they are factorized after
averaging with {u,}, which leads us to a DV block. If
one now looks at the matrix model that is generated by the
constructed Nekrasov function, it becomes an essentially
multimatrix model.

Extensions to other root systems of Lie algebras, and
to quivers are immediate. In particular, in order to deal
with the affine algebra AN_ 1, it is enough to switch from

the Dirichlet boundary conditions p,io) = p,((N) =0 to the

periodic ones p,i()) = p,((N).
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APPENDIX: FACTORIZATION OF THE
GJP AVERAGES

A general reason and a proof of factorization in for-
mula (59) are not present in this paper. Let us, however,
explain how one can technically check that the averages
(47) and (59) are indeed factorized in concrete examples.

First of all, in order to calculate (Jp/{p; }Jp{pi + a})
with some parameter a, one can expand the Jack poly-
nomials into the skew Jack polynomials,

Tedpe+a} = Trofato{pi} (A1)
0
and use the expansion
Jr{pitlo{pi} = ZNg”Q‘]P{pk}v (A2)
P

g,,Q are the f-dependent Littlewood-Richardson

coefficients, in order to express the product Jg/{p;}
Jr{pr + a} through the single ordinary Jack polynomial,
its average being given by (43). This would be enough to

|

where N

calculate the averages of the products of two Jack poly-
nomials as in (47).

The simplest way to evaluate the GJP average is to
expand the GJP into products of pairs of the ordinary Jack
polynomials at the two different sets of time variables,

Jr & {Pr PrlA} = ZCI%I% () o{pi}Jo{Pr}.  (A3)
Q’.Q”

Now there is an additional minus sign in front of p;, and
one has to reexpand Jg{—p,} to Jg{pi}, using the
orthogonality of the Jack polynomials

(JrAp e dpi}) = (IR - S (Ad)
with respect to the scalar product
(palpar) = 2 2p0a (AS)

hence obtaining

Jri-pi} = Z||Q||_1<JR{—P1<}|JQ{P1<}> Jo{pi}. (A6)
o

Thus, finally one obtains

Jr{=pe =B 0} pd{pi} = ZJR’/Q’{_ﬂ_lU}JQ’{_pk}JR”{pk}
o]

= Z JR'/Q'{—ﬂ_lU}HQ”H_1 <JQ’{_pk}|JQ”{pk}> ) JQ”{Pk}JR”{Pk}

Q/ , Q//

= > Jrso{-p0}IQ"! (o =P} o {Pi})NGigr - T p{ i}

Q/ , Q//

(A7)

and, inserting this formula into (A3) and evaluating further the average of the single Jack polynomial Jp{p,} using (47),
one can check the factorization of the GJP average in concrete examples.

[1] A. Mironov, A. Morozov, and S. Shakirov, J. High Energy
Phys. 02 (2011) 067.

[2] N. Nekrasov, Adv. Theor. Math. Phys. 7, 831 (2003); R.
Flume and R. Poghossian, Int. J. Mod. Phys. A 18, 2541
(2003); N. Nekrasov and A. Okounkov, arXiv:hep-th/
0306238.

[3] L. Alday, D. Gaiotto, and Y. Tachikawa, Lett. Math. Phys. 91,
167 (2010); N. Wyllard, J. High Energy Phys. 11 (2009) 002;
A. Mironov and A. Morozov, Nucl. Phys. B825, 1 (2009).

[4] J. Kaneko, SIAM J. Math. Anal. 24, 1086 (1993).

[5] K. W.J. Kadell, Adv. Math. 130, 33 (1997).

[6] K. W.J. Kadell, Compos. Math. 87, 5 (1993).

[7]1 A. Selberg, Norsk. Mat. Tidsskr. 24, 71 (1944).

[8] A. Mironov, A. Morozov, and S. Shakirov, J. High Energy
Phys. 02 (2010) 030.
[9] A. Mironov and A. Morozov, arXiv:2201.12917.

[10] A. Morozov, String Theory: From Gauge Interactions to
Cosmology (Springer, Dordrecht, 2005); A. Mironov, Int. J.
Mod. Phys. A 09, 4355 (1994); Phys. Part. Nucl. 33, 537
(2002); Electron. Res. Announ. AMS 9, 219 (1996).

[11] A. Morozov, Phys. Usp. (UFN) 37, 1 (1994).

[12] W. Miller Jr, S. Post, and P. Winternitz, J. Phys. A 46,
423001 (2013).

[13] I. G. Macdonald, Symmetric Functions and Hall Polyno-
mials, 2nd ed. (Oxford University Press, New York, 1995);
W. Fulton, Young Tableaux: With Applications to

126004-16


https://doi.org/10.1007/JHEP02(2011)067
https://doi.org/10.1007/JHEP02(2011)067
https://doi.org/10.4310/ATMP.2003.v7.n5.a4
https://doi.org/10.1142/S0217751X03013685
https://doi.org/10.1142/S0217751X03013685
https://arXiv.org/abs/hep-th/0306238
https://arXiv.org/abs/hep-th/0306238
https://doi.org/10.1007/s11005-010-0369-5
https://doi.org/10.1007/s11005-010-0369-5
https://doi.org/10.1088/1126-6708/2009/11/002
https://doi.org/10.1016/j.nuclphysb.2009.09.011
https://doi.org/10.1137/0524064
https://doi.org/10.1006/aima.1997.1642
https://doi.org/10.1007/JHEP02(2010)030
https://doi.org/10.1007/JHEP02(2010)030
https://arXiv.org/abs/2201.12917
https://doi.org/10.1142/S0217751X94001746
https://doi.org/10.1142/S0217751X94001746
https://doi.org/10.1070/PU1994v037n01ABEH000001
https://doi.org/10.1088/1751-8113/46/42/423001
https://doi.org/10.1088/1751-8113/46/42/423001

SUPERINTEGRABILITY AS THE HIDDEN ORIGIN OF THE ...

PHYS. REV. D 106, 126004 (2022)

Representation Theory and Geometry (Cambridge Univer-
sity Press, Cambridge, 1997), LMS.

[14] A. Mironov, A. Morozov, and S. Shakirov, Int. J. Mod.
Phys. A 25, 3173 (2010); J. High Energy Phys. 03 (2011)
102; A. Mironov, A. Morozov, and A. Morozov, Nucl. Phys.
B843, 534 (2011); A. Marshakov, A. Mironov, and A.
Morozov, J. Geom. Phys. 61, 1203 (2011).

[15] A. Mironov and A. Morozov, arXiv:2206.02045.

[16] V.A. Alba, V.A. Fateev, A.V. Litvinov, and G.M.
Tarnopolskiy, Lett. Math. Phys. 98, 33 (2011).

[17] A. Morozov and A. Smirnov, Lett. Math. Phys. 104, 585
(2014).

[18] S. Mironov, A. Morozov, and Y. Zenkevich, JETP Lett. 99,
109 (2014).

[19] A. Marshakov, A. Mironov, and A. Morozov, Phys. Lett. B
265, 99 (1991).

[20] S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, and
S. Pakuliak, Nucl. Phys. B404, 17 (1993); A. Mironov and
S. Pakulyak, Theor. Math. Phys. 95, 604 (1993).

[21] L. Kostov, Phys. Lett. B 297, 74 (1992).

[22] 1. Kostov, Phys. Lett. B 297, 74 (1992); J. Alfaro and I.
Kostov, arXiv:hep-th/9604011.

[23] A. Mironov, A. Morozov, and S. Shakirov, Int. J. Mod.
Phys. A 27, 1230001 (2012).

[24] J. Ginibre, J. Math. Phys. (N.Y.) 6, 440 (1965); M. L. Mehta,
Random Matrices, 2nd ed. (Academic Press, New York,
1990).

[25] R. Dijkgraaf and C. Vafa, Nucl. Phys. B644, 3 (2002);
B644, 21 (2002); arXiv:hep-th/0208048.

[26] K. Demeterfi, N. Deo, S. Jain, and C.-I Tan, Phys. Rev. D
42,4105 (1990); J. Jurkiewicz, Phys. Lett. 245, 178 (1990);

C. Crnkovi¢ and G. Moore, Phys. Lett. B 257, 322 (1991);
G. Akemann and J. Ambjgrn, J. Phys. A 29, 1.555 (1996);
G. Akemann, Nucl. Phys. B482, 403 (1996); G. Bonnet, F.
David, and B. Eynard, J. Phys. A 33, 6739 (2000).

[27] L. Chekhov and A. Mironov, Phys. Lett. B 552, 293 (2003).

[28] A. Klemm, M. Marino, and S. Theisen, J. High Energy
Phys. 03 (2003) 051.

[29] A. Mironov, Teor. Mat. Fiz. 146, 77 (2006) [Theor. Math.
Phys. 146, 63 (2006)].

[30] A. Mironov, A. Morozov, and Z. Zakirova, Phys. Lett. B
711, 332 (2012); arXiv:1202.6029; J. High Energy Phys. 10
(2019) 227.

[31] A. Mironov, A. Morozov, and Z. Zakirova, Phys. Lett. B
831, 137178 (2022).

[32] V.1. Dotsenko and V. Fateev, Nucl. Phys. B240, 312 (1984).

[33] R. Dijkgraaf and C. Vafa, arXiv:0909.2453; H. Itoyama, K.
Maruyoshi, and T. Oota, Prog. Theor. Phys. 123, 957
(2010); T. Eguchi and K. Maruyoshi, J. High Energy Phys.
02 (2010) 022; 07 (2010) 081.

[34] H. Itoyama and T. Oota, Nucl. Phys. B838, 298 (2010).

[35] G. Moore, N. Nekrasov, and S. Shatashvili, Nucl. Phys.
B534, 549 (1998); arXiv:hep-th/9801061; A. Losev, N.
Nekrasov, and S. Shatashvili, Commun. Math. Phys. 209,
97 (2000); 209, 77 (2000).

[36] Y. Zenkevich, J. High Energy Phys. 05 (2015) 131.

[37] A. Mironov and A. Morozov, J. High Energy Phys. 01
(2020) 110.

[38] R. Wang, F. Liu, C. H. Zhang, and W.Z. Zhao, Eur. Phys.
J. C 82, 902 (2022).

[39] A. Mironov, V. Mishnyakov, A. Morozov, and R. Rashkov,
Eur. Phys. J. C 81, 1140 (2021).

126004-17


https://doi.org/10.1142/S0217751X10049141
https://doi.org/10.1142/S0217751X10049141
https://doi.org/10.1007/JHEP03(2011)102
https://doi.org/10.1007/JHEP03(2011)102
https://doi.org/10.1016/j.nuclphysb.2010.10.016
https://doi.org/10.1016/j.nuclphysb.2010.10.016
https://doi.org/10.1016/j.geomphys.2011.01.012
https://arXiv.org/abs/2206.02045
https://doi.org/10.1007/s11005-011-0503-z
https://doi.org/10.1007/s11005-014-0681-6
https://doi.org/10.1007/s11005-014-0681-6
https://doi.org/10.1134/S0021364014020076
https://doi.org/10.1134/S0021364014020076
https://doi.org/10.1016/0370-2693(91)90021-H
https://doi.org/10.1016/0370-2693(91)90021-H
https://doi.org/10.1016/0550-3213(93)90595-G
https://doi.org/10.1007/BF01017146
https://doi.org/10.1016/0370-2693(92)91072-H
https://doi.org/10.1016/0370-2693(92)91072-H
https://arXiv.org/abs/hep-th/9604011
https://doi.org/10.1142/S0217751X12300013
https://doi.org/10.1142/S0217751X12300013
https://doi.org/10.1063/1.1704292
https://doi.org/10.1016/S0550-3213(02)00766-6
https://doi.org/10.1016/S0550-3213(02)00764-2
https://arXiv.org/abs/hep-th/0208048
https://doi.org/10.1103/PhysRevD.42.4105
https://doi.org/10.1103/PhysRevD.42.4105
https://doi.org/10.1016/0370-2693(90)90130-X
https://doi.org/10.1016/0370-2693(91)91900-G
https://doi.org/10.1088/0305-4470/29/22/001
https://doi.org/10.1016/S0550-3213(96)00542-1
https://doi.org/10.1088/0305-4470/33/38/307
https://doi.org/10.1016/S0370-2693(02)03163-5
https://doi.org/10.1088/1126-6708/2003/03/051
https://doi.org/10.1088/1126-6708/2003/03/051
https://doi.org/10.4213/tmf2010
https://doi.org/10.1007/s11232-006-0007-7
https://doi.org/10.1007/s11232-006-0007-7
https://doi.org/10.1016/j.physletb.2012.04.036
https://doi.org/10.1016/j.physletb.2012.04.036
https://arXiv.org/abs/1202.6029
https://doi.org/10.1007/JHEP10(2019)227
https://doi.org/10.1007/JHEP10(2019)227
https://doi.org/10.1016/j.physletb.2022.137178
https://doi.org/10.1016/j.physletb.2022.137178
https://doi.org/10.1016/0550-3213(84)90269-4
https://arXiv.org/abs/0909.2453
https://doi.org/10.1143/PTP.123.957
https://doi.org/10.1143/PTP.123.957
https://doi.org/10.1007/JHEP02(2010)022
https://doi.org/10.1007/JHEP02(2010)022
https://doi.org/10.1007/JHEP07(2010)081
https://doi.org/10.1016/j.nuclphysb.2010.05.002
https://doi.org/10.1016/S0550-3213(98)00628-2
https://doi.org/10.1016/S0550-3213(98)00628-2
https://arXiv.org/abs/hep-th/9801061
https://doi.org/10.1007/PL00005525
https://doi.org/10.1007/PL00005525
https://doi.org/10.1007/s002200050016
https://doi.org/10.1007/JHEP05(2015)131
https://doi.org/10.1007/JHEP01(2020)110
https://doi.org/10.1007/JHEP01(2020)110
https://doi.org/10.1140/epjc/s10052-022-10875-z
https://doi.org/10.1140/epjc/s10052-022-10875-z
https://doi.org/10.1140/epjc/s10052-021-09912-0

