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We show a possible way to build the AdS=CFT correspondence starting from the quantum field theory
side based on renormalization group approach. An extra dimension is naturally introduced in our scheme
as the renomalization scale. The holographic wave equations are derived, with the potential term being
determined by the QFT properties. We discover that only around the fixed point, i.e., the conformal limit,
the potential in the bulk equations can be fully constrained, and upon this foundation, the correspondence
is build. We demonstrate this fact using a 3D scalar theory in which, besides the trivial fixed point, there
exists the Wilson-Fisher fixed point. From the energy scalings around those fixed points, we determine the
behavior of the potential in the bulk equations.
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I. INTRODUCTION

The AdS=CFT (or gauge/gravity) correspondence [1]
provides a possible way to understanding nonperturbative
nature of gauge theories. The correspondence conjectures
that strongly correlated gauge theories in d-dimensional
spacetime can be mapped onto weak gravitational theories
in (dþ 1)-dimensional spacetime.
The studies of the AdS=CFT correspondence may

include mainly two manners: One is to start from a string
theory, choosing the background in such a way as to
reproduce essential ingredients of, for instance, quantum
chromodynamics (QCD) as matter in the fundamental
representation, and to study the resulting QCD-like theories,
obtained by top-down approach, e.g., the Witten-Sakai-
Sugimoto model, see a review [2]. The other, bottom-up
approach is to begin with QCD and attempt to determine or
constrain the dual theory properties by matching them to
known properties of QCD using gauge/gravity correspon-
dence [3–7].
One important correspondence is that the Regge trajec-

tory for meson mass spectra in QCD or QCD-like theories,
which is known for instance that the squared masses of
excited vector (rho) mesons can be well explained by
m2

n ∼ n, with n a consecutive number, can be achieved

via a holographic theory with potentialUðzÞ ∼ z2 at z → ∞.
Hence, the task now is how such a potential UðzÞ ∼ z2

occurs from analytical computations in quantum field
theory (QFT) models, as it is expected that UðzÞ involves
information about the QFT dynamics.
The purpose of this work is to propose a way to

determine UðzÞ from the QFT side. All information about
the QFT dynamics is encoded in the (one-particle irre-
ducible) effective action Γ, and can be studied via the
functional renormalization group (FRG) [8]. There, the
effective average action Γk is defined such that high
momentum modes jpj > k for a cutoff scale k are inte-
grated out. The FRG equation follows the change of Γk by
sliding k as a functional differential equation and one
obtains the full effective action as Γ ¼ Γk→0. In addition to
the fact that FRG has been elucidated the nonperturbative
nature in QFT (see, e.g., Ref. [9]), an important feature of
the method is the existence of fixed point at which Γk is
independent of k, i.e., the system becomes scale invariant.
The perturbation of the effective action around the fixed
point gives universal critical exponents. Heuristically, the
dynamics of the fixed point is related to the conformal
property of the theory and presumably also to the dynam-
ics in AdS spacetime.
In this work, we show that the FRG equation can be

reformulated in a form of the wave equation in a holo-
graphic theory by a certain change of variables. We
demonstrate using the 3D scalar field theory that energy
scaling at fixed points uniquely determines the form of
UðzÞ, and illustrate how the conformal property of QFT is
encoded in the anti–de Sitter (AdS) dynamics in this
correspondence.
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II. HOLOGRAPHIC WAVE EQUATIONS FROM
FUNCTIONAL RENORMALIZATION GROUP

The AdS metric gMN is defined by

ds2 ¼ gMNdxMdxN ¼ R2

z2
ðdz2 þ ημνdxμdxνÞ; ð1Þ

where M;N ¼ 0;…; d, while μ; ν ¼ 0;…; d − 1. Here, xM

is the (dþ 1)-dimensional spacetime coordinate that is
decomposed into d-dimensional spacetime coordinate xμ
and an extra dimensional space coordinate z. The d dimen-
sional flat metric is denoted by ημν ¼ diagð−1; 1;…; 1Þ and
R is the radius of AdS space. We consider the equations of
motion (the wave equations) for a field Φ̂Jðx; zÞ≡
Φ̂M1…MJ

ðx; zÞ with integer spin J in the AdS spacetime
(1). Assuming that the field Φ̂Jðx; zÞ propagates as a
plane wave in the xμ directions, namely, Φ̂Jðx; zÞ ¼
eiPμxμ−φðzÞ=2ΦJðzÞ, the wave equations for ΦJðzÞ can then
read as

�
∂
2
z −

ðd− 1− 2JÞ
z

∂z −
ðμRÞ2
z2

−UJðzÞ þM2

�
ΦJðzÞ ¼ 0;

ð2Þ

where μ2 is the squared mass parameter of ΦJ and is given
by ðμRÞ2 ¼ ðΔ − JÞðΔ − dþ JÞ according to Refs. [5,10]
with conformal dimension Δ, and M2 ¼ PμPμ ¼ ημνPμPν

is the invariant mass. Here, φðzÞ is the dilaton field that
constitutes the potential

UJðzÞ ¼
1

2
φ00 þ 1

4
φ02 þ 2J − dþ 1

2z
φ0; ð3Þ

in which the prime denotes the derivative with respect to z.
The explicit derivation of Eq. (2) is presented, e.g.,
in Ref. [5].
Through redefining the field ΦJðzÞ as ψðzÞ ¼

ðR=zÞ−d−1−2J
2 ΦJðzÞ, Eq. (2) can be written in terms of the

Schrödinger equation for ψ on the bulk:

�
−

d2

dz2
−
1 − 4L2

4z2
þ UJðzÞ

�
ψðzÞ ¼ M2ψðzÞ; ð4Þ

where L2 is the Casimir representation of orbital angular
momentum and L2 ¼ ðJ − d=2Þ2 þ ðμRÞ2. The equivalence
between Eqs. (2) and (4) has been shown in Ref. [4]. If
UðzÞ ∼ z2 for a large z, then its solution reproduces discrete
spectra M2 ¼ P2 ∼ n as eigenvalues [7]. From Eq. (3), the
dilaton field behaving as φðzÞ ¼ λz2 explicitly provides
UJðzÞ ¼ λ2z2 þ 2λðJ − 1Þ with λ as a constant parameter.

Elucidating the origin of such a potential or a dilaton field is
an important issue in holographic QCD.
We show from now that Eq. (2) can be derived from

the QFT language andUJðzÞ is related to the beta function.
To this end, we start by introducing the FRG equation
(or simply the flow equation). One of its forms is
formulated for the one-particle irreducible effective action
Γk in d-dimensional spacetime and is given by [11]

k∂kΓk ¼
1

2
Tr½k∂kRkðpÞ ·GkðpÞ�≡ βΓ; ð5Þ

where k is the energy scale, ∂k ¼ ∂=∂k and Tr is the
functional trace acting on all internal spaces in which field
variables are defined. Here RkðpÞ is the regulator function
to realize the coarse-graining procedure, and GkðpÞ is
the regulated full propagator whose explicit form is given

by GkðpÞ ¼ ðΓð2Þ
k ðpÞ þ RkðpÞÞ−1 with the full two-point

function Γð2Þ
k , i.e., the second-order functional derivative

with respect to field variables. The n-point function is
defined by the functional derivatives

½ΓðnÞ
k ðp1;…; pnÞ�fMg���fNg

¼ δnΓk

δϕM1…Mi
ðp1Þ � � � δϕN1…Nj

ðpnÞ
; ð6Þ

where fMg ¼ M1…Mi stands for a set of momenta and
one of momenta is redundant thanks to the momentum

conservation. Note that ΓðnÞ
k with different momenta p

together with, e.g., the Lorentz structures correspond to
different channels of the wave equation. Each can be
selected by choosing the momentum and the projection.
The flow equation for the full n-point function ΓðnÞ

k can
be obtained by taking the nth order functional derivative for
both sides of Eq. (5) with respect to field variables. More
specifically, we symbolically write

k∂kΓ
ðnÞ
k ¼ δnβΓ

δϕJiðp1Þ � � � δϕJjðpnÞ
≡ βðnÞΓ ; ð7Þ

where ϕJiðpÞ≡ ϕM1…Mi
ðpÞ. The regulator function sat-

isfies RkðpÞ > 0 for p2=k2 → 0 and behaves as RkðpÞ ¼ 0

for k2=p2 → 0 and as RkðpÞ → ∞ for k2 → ∞. There is an
infinite number of possible forms for such a function. A
specific choice of its form corresponds to the renormal-
ization scheme.
An important fact is that the functional renormalization

group equation (5) is derived without any approximations.
In other words, solving the flow equation without making
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approximations means exactly performing the path integral
and obtaining full information about the QFT dynamics.
Now we show that the flow equation can be written in the

form of the bulk wave equation. A similar attempt to build
relations between these two conceptions has been made in
Refs. [12–18]. See also Refs. [19–21] as applications of the
FRG to the bosonic string dynamics. The previous studies
mostly focus on the holographic renormalization group in
AdS spacetime and the correspondence is build upon its
similarity to the Wilsonian RG in QFT, which is the RG
applied here. Such a comparison is instructive; however, as
raised in Ref. [12], a key question, “what cutoff on the field
theory corresponds to a radial cutoff in the bulk?”, is left
unanswered. In this work, instead of applying the holo-
graphic renormalization group, we focus on the Wilsonian
RG equation for the n-point correlation function ΓðnÞ

k and
shows the exact correspondence to the holographic wave
equations (2). The comparison reveals the importance of
the fixed point dynamics, which naturally provides an
answer about the cutoff.
We start by multiplying k−δ with a power factor δ and

then taking a derivative with respect to k∂k on the flow
equation (7) and rewrite the flow equation as

k∂kfk−δk∂kΓðnÞ
k g ¼ k∂kðk−δβðnÞΓ Þ: ð8Þ

Then, we perform the following change of variables:

k ¼ 1=z ð9Þ

and

h
ΓðnÞ
k ðp1;…;pi−1;pi;…; pnÞ

i
fMg

¼ δdðp1 þ � � � þpi−1 −pi − � � �−pnÞTfMg
i ½zd−ηΦJðzÞ�−1;

ð10Þ

where η is a constant and can be related to conformal
dimension Δ, and spin J as will show later in Eq. (10).
The correlation function in (10) has been chosen to

contain the bound state channel as TfMg
n an appropriate

tensor structure for the symmetries of the system in the
channel that projects out the respective bound states and
the momentum parametrization as p1 þ � � � þ pi−1 ¼ P
with P2 ¼ M2. Note that there are in fact arbitrarily many
different correlation functions which can contain the
same bound state, and hence there are different choices
of momentum and Lorentz structure in Eq. (10). In
principle, the obtained spectra of the bound state should
be equivalent. The only artificial dependence in ΦJðzÞ
comes from the regularization RkðpÞ of the correlation

function ΓðnÞ
k . The dependence of regularization RkðpÞ

does not change the equations as it can be absorbed into
the definition of wave function ΦJ. However, such
dependence in ΦJ is required to be vanishing for the
correspondence between Eqs. (2) and (8) since the spectra
of the bound states cannot depend on the regularization.
The key point of our paper is to show that this is only
valid in the critical region near fixed point, and we will
discuss this in detail in the next section.
For the left-hand side of the flow equation (8), one finds

½lhs of Eq: ð8Þ� ¼ −zδ−ηþdþ2ðΓðnÞ
k Þ2

�
∂
2
z −

ð−1 − δþ 2d − 2ηÞ
z

∂z − 2

�
∂ logΦJ

∂z

�
2

−
ðd − η − δÞðd − ηÞ

z2

�
ΦηðzÞ: ð11Þ

From the right-hand side of the flow equation (8), one
can recognize the potential UðzÞ as

UJðzÞ ¼ −
z−1−δ

ΓðnÞ
z

∂zðzδβðnÞΓk
Þ; ð12Þ

where ΓðnÞ
k ¼ ΓðnÞ

1=z ≡ ΓðnÞ
z . Note that βðnÞΓk

¼ −βðnÞΓz
¼

−z∂zΓ
ðnÞ
z . Together with the identification of variables as

δ ¼ 2J þ d − 2η; M2 ¼ −2
�
∂ logΦJ

∂z

�
2

; ð13Þ

with the parameter η being related to conformal dimension
Δ and spin J as

ðη − J − d=2Þ2 ¼ 2ðJ − d=2Þ2 − ðΔ − d=2Þ2: ð14Þ

After this we can see that the flow equation (8) is equivalent
to the bulk wave equations (2). We note here that the last
term in Eq. (11) with the redefinition (13) is

ðμRÞ2¼ðd−η−δÞðd−ηÞ;
¼ðJ−d=2Þ2−δ2=4: ð15Þ

This quantity corresponds to the angular momentum con-
tribution, and eventually leads to L2 ¼ ðJ − d=2Þ2 þ
ðμRÞ2 ¼ 2ðJ − d=2Þ2 − δ2=4 in Eq. (4). If L2 ≥ 0, then
one has ðμRÞ2 ≥ −ðJ − d=2Þ2 ∼ −4 with J ¼ 0 and d ¼ 4,
which is the equivalence between the quantum mechanical
stability condition and the Breitenlohner-Freedman stability
bound in AdS space similarly as argued in Ref. [4].
Before discussing the evaluation ofUðzÞwithin a specific

model, we briefly review the notion of fixed points and
scaling (critical) exponents in the functional renormalization
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group. Fixed points characterize the scale invariance of a
theory, i.e., certain points so as to be βΓ ¼ 0. Let us here
denote Γ� a scale invariant action. For such a fixed point,
consider a small perturbation δΓk ¼ Γk − Γ� around Γ�. The
perturbation also works on any n-point function through
Eq. (6). Now we generally expand the i-point function as

ðΓðiÞ½p1;…; pi; ϕ̄�ÞM1���Mi ¼ gikðp1;…; piÞTM1���Mi
i ; ð16Þ

where gik are couplings depending on k and external
momenta. We note that the external momenta should be
in principle arranged to contain an on shell bound state,
but at the lowest order in the derivative expansion of the
effective action can also be taken in vanishing external
momenta for g̃ikð0;…; 0Þ. Let di be the mass dimension
of gik. The flow equation (7) is reduced to a coupled
differential equation for the dimensionless couplings
ḡik ¼ gik=k

di , i.e., k∂kḡik ¼ βiðfḡkgÞ where fḡkg stands
for a set of couplings. Within the operator expansion
scheme, a fixed action Γ� infers vanishing beta functions
βi ¼ 0 for all iwhich gives the set of fixed couplings fḡik�g
and the small perturbation of the i-point function δΓi

k is
given in terms of couplings:

ḡik ¼ ḡik� þ
X
i

Cj
i

�
k0
k

�
θj
; ð17Þ

where k0 is a reference scale and C
j
i is a matrix representing

mixing effects between different couplings i ≠ j. When the
mixing effects are negligible, one has Cj

i ≈ ciδ
j
i with ci

small parameters. Here, θj are associated critical exponents
characterizing the energy scalings of operators around the
fixed point. Couplings with a positive scaling exponent are
amplified for k → 0 and then are called “relevant,” while
“irrelevant” couplings have a negative θi and thus decrease
for the IR limit. In particular, at the trivial (or Gaussian)
fixed point ḡik� ¼ 0, the critical exponents correspond to the
canonical mass dimension of coupling constants, i.e.,
θi ¼ d − di.

III. RELATION BETWEEN CRITICAL EXPONENT
AND BOUND STATE NATURE

We see from the derivation of the wave equation
presented above that the dynamics in AdS spacetime can
be fully captured by the FRG equation, with all information
about the QFT dynamics in d-dimensional spacetime now
being included in UðzÞ. The interesting question now is
what the potential UðzÞ looks like from the functional
renormalization group analysis, i.e., directly evaluating the
right-hand side of Eq. (12). Before discussing the behavior
of potential, some general conclusions can be drawn
through the above derivation:

(i) The conformal property of QFT is encoded in AdS
dynamics in AdS=CFT correspondence through the
fixed point of the theory.

As mentioned above, in the FRG equation, there
is generally the regularization RkðpÞ dependence.
This regularization term is an arbitrary function in k,
with only constraint at k ¼ 0 to return to the original
theory. Such an artificial regularization term makes
the potential Uðz ¼ 1=kÞ underdetermined, and
consequently the bound state mass M2 is under-
determined as well, with dependence of the regu-
larization term.

The fixed point is thus important as it ensures the
expansion of the correlation functions in QFT as in
Eq. (17). The expansion coefficients Cj

i and the
critical exponents θj are independent of the regulari-
zation term inside the critical region [22] and, hence,
makes the corresponding potential uniquely deter-
mined. In a word, only around the fixed point, the
flow equation (8) is fully equivalent to the bulk wave
equation (2) with the vanishing of the dependence of
the artificial regularization term RkðpÞ.

It is thus clear that, if the mass termM2 in the bulk
wave equation corresponds to thebound states of some
theory, there must exist fixed point in the respective
theory to entail the correspondence, otherwise the bulk
wave equation is rather a coincidence to describe the
boundstates.Moreover, thequestion raised inRef. [12]
is now naturally answered: the radial cutoff in the bulk
is the boundary of the critical region where the
correlation functions of QFT start to deviate from
the critical behavior as in the expansion of Eq. (17).
Note that the potential is vanishingat fixedpointwhich
corresponds to the conformal limit, and the critical
behavior approaching fixed point together with the
cutoff characterized by the critical region determine
the mass spectrum of the bound states.

(ii) For each correlation function ΓðnÞ
k in a specific

channel, there corresponds to a type of potential
in the bulk which behavior can be determined by the
expansion coefficients and critical exponents of the
respective correlation function.

The potential for the bound states is determined

by the correlation functions of ΓðnÞ
k that contain the

respective bound states. Putting the expansion in
(16) and (17) into the definition of potential in (12),
one immediately obtains

UðzÞ ¼ z−1−δ
∂zðzδþ1

∂zḡikÞ
ḡik

: ð18Þ

If setting δ ¼ di, then one can cancel the naive
contribution from the dimension of the correlation
functions and simply has
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UðzÞ ¼ ∂
2
z ḡik
ḡik

: ð19Þ

Note that the other choices of δ will just shift the
definition of L2. Therefore, the parameter δ should
be fixed by relating L2 to the physical angular
momentum of the bound states which contain in
the respective channel of the n-point correlation
functions. This fact provides the meaning of L2 in
the AdS bulk equations. Now with all this knowl-
edge, one can see that the analysis of the potential
UðzÞ can be carried on by analyzing the fixed point
of FRG equations.

IV. BOUND STATES IN 3D SCALAR THEORY
AND GAUGE THEORY

We have shown that the holographic wave function can
be derived from the functional renormalization group
equation, and how the bound states property is related to
the fixed point dynamics. Now we would like to illustrate
some special cases in 3D scalar theory and gauge theory.

A. At a trivial fixed point

For a theory with the asymptotically free property, the
trivial fixed point is located at the UV scale (corresponding
to z ¼ 0) while for the others are at z ¼ ∞. Around the
trivial fixed point, the system can be analyzed perturbatively.
For instance, the flow equation for the mass parameter in

scalar theory is

m2ðkÞ ¼ k2m̄2ðkÞ;
m̄2ðkÞ ¼ m̄2� þ m̄2

0ðk0=kÞθm ∼ m̄2� þ cmzθm; ð20Þ

wherem2
0 is a constant given at k0. For the trivial fixed point

m̄2� ¼ λ� ¼ � � � ¼ 0, one has θm ¼ 2 for which the potential
UðzÞ around the trivial fixed point is found to be

UðzÞ ¼ z−1−δ
∂zðzδþ1

∂zm2Þ
m2

¼ ðθm − 2Þðδþ θm − 2Þ
z2

; ð21Þ

where we have used the trivial fixed point m̄2� ¼ 0. The
potential at the fixed point with θm ¼ 2 is vanishing. Now
considering a perturbation around the trivial fixed point that
gives a small deviation from θm ¼ 2 to θm ¼ 2 − am, one
obtains UðzÞ ¼ −amðδ − amÞ=z2.
The similar derivation can be done in any QFT theory,

and thus one may have UðzÞ ¼ −amðδ − amÞ=z2 with am
the anomalous dimension, which again coincides with the
angular momentum part (15) in the wave equation is
corrected so as to be

−
1 − 4L2

4
→ −

1 − 4L2

4
− amðδ − amÞ: ð22Þ

This in general shows how the anomalous dimensions are
introduced into the AdS dynamics.

B. At a nontrivial fixed point

For the 3D scalar theory, there exists the Wilson-Fisher
fixed point being an IR fixed point and there is only one
relevant coupling that gives a nontrivial energy scaling
behavior for all correlations. For the two point correlation
function with δ ¼ di ¼ 2 we have

UðzÞ ¼ ∂
2
zðm̄2� þ cmzθmÞ
m̄2� þ cmzθm

∼ z−2þθm; ð23Þ

where we have assumed that cm is a small perturbative
parameter around the nontrivial fixed point and have taken
the lowest order of the expansion in terms of cm. The
elaborated studies on the determination of the scaling
exponent have shown that θm ∼ 1.59 [23,24]. The
Schrödinger equation with the potential ∼1=z2−θm then
entails some unusual bound states. The numerical com-
putations actually have suggested some bound states exist
in 3D ϕ4 theory [25–27], which coincides with what we
found here. The additional bound states can survive
between d ¼ 2 to d ¼ 4 as the interval of the dimension
for occurring the nontrivial fixed point, which also verifies
the numerical computation [26].
To demonstrate our approach, we show a few eigen-

values by solving the Schrödinger equation (4) with the
potential (23) for J ¼ 0 which yields L2 ¼ 7=2 in d ¼ 3.
To do this, we need to fix two parameters. One of them is
the coefficient, denoted here by γ, in the potential, i.e.,
UðzÞ ¼ γz2−θm . Although we cannot determine the exact
value of γ, we here would infer from the typical order of
the fixed point value m2� ∼Oð1Þ and a small perturbation
parameter cm that γ is of order of 0.1. The potential (23) is
valid around the fixed point. Therefore, there must be a
cutoff scale zcut ¼ 1=kcut where the mass parameter starts
to deviate from the scaling regime with θm ¼ 1.59 under
the RG evolution. In this study, we set γ ¼ −0.15 and
similarly to the hard wall model [7,28], we set zcut ¼ 10
and solve the Schrödinger equation with the boundary
condition ψðzcutÞ ¼ 0.
We compare energy eigenvalues obtained between in

Ref. [25] and in our work. In order to avoid mismatches of
the energy scale, the ratios between excited states and the
ground state are shown in Fig. 1. It seems that our approach
captures the property of bound states in 3D scalar field
theory despite the simple and crude calculation. We also
give our prediction for the higher excited states (n ¼ 3, 4).
These mass eigenvalues should be tested by other methods.
More accurate FRG computations could provide precise
values for γ and zcut without any ambiguities. We would
leave such an analysis for future works.
Now, it is especially interesting to study the nontrivial

fixed point for gauge theory. In particular, it is expected
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that, for QCD, there is presumably an infrared fixed point
[29–33]. This fixed point and strong coupling nature of
QCD lead to a large scaling window for studying hadrons,
which is the standing point of the holographic QCD [34,35].
However, due to the complexity of the gauge theory, here we
will not do the computation directly but, instead, we draw
some conclusions from the correspondence.
Based on the derivation in this work, we can confirm

that the infrared fixed point should exist in order to
reproduce the potential UðzÞ ∼ z2 at z → ∞, and conse-
quently, the Regge trajectory. In another word, the Regge
trajectory reveals that in QCD there must exist an infrared
fixed point at which an associate critical exponent repro-
duces UðzÞ ∼ z2 via Eq. (12). More interestingly, the z2

dependence of the potential in turn leads

½Φ�−1 ∼
�
gμν −

PμPν

P2

�
δ2Γk

δJμδJν
∼

1

k4
; ð24Þ

with Jμ ∼ ψ̄γμψ the vector meson field or in QCD, the
vector current of quarks, respectively. The relation implies

a linear confining potential between the vector current of
quarks, which is associated with the Regge trajectory.

V. SUMMARY

In this work, we show that the holographic wave
equation can be obtained from the quantum field theory
via the renormalization group method. One may start from
the flow equation and then obtain the potential UðzÞ, the
metric and the dilaton background introduced in the AdS
space are then fixed. In this sense, the flow equation
describes the dynamics in different AdS spaces by equip-
ping with different fixed points which characterize con-
formalities of the system. This picture seems natural. The
additional dimension in the AdS spacetime is naturally
interpreted as the renormalization scale, and the confor-
mality is encoded through the fixed point of the renorm-
alization group flow to guarantee the uniqueness of the
correspondence.
Practically, we show that the anomalous dimensions can

be introduced in the AdS dynamics through the trivial fixed
point in perturbative region. After that, we verify that the
Wilson-Fisher fixed point brings in some bound states in
3D scalar theory as discovered from some numerical
studies. Due to the complexity of QCD dynamics, it is
hard to directly compute the potential UðzÞ from QCD.
Nevertheless, what we discovered here is that the Regge
trajectory naturally entails a nontrivial fixed point to occur
in the infrared of QCD. In turn, the critical exponent at
this fixed point uniquely determines the correspondence of
AdS spacetime and greatly simplifies the low-energy QCD
dynamics.
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