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We present an investigation of the Clauser-Horne-Shimony-Holt (CHSH) inequality within a relativistic
quantum field theory model built up with a pair of free massive scalar fields ðφA;φBÞ where, as is
customary, the indices ðA; BÞ refer to Alice and Bob, respectively. A set of bounded Hermitian operators is
introduced by making use of the Weyl operators. A CHSH-type correlator is constructed and evaluated in
the Fock vacuum by means of canonical quantization. Although the observed violation of the CHSH
inequality turns out to be rather small as compared to Tsirelson’s bound of quantum mechanics, the model
can be employed for the study of Bell’s inequalities in the more physical case of gauge theories such as the
Higgs models, for which local Becchi-Rouet-Stora-Tyutin (BRST) invariant operators describing both the
massive gauge boson as well as the Higgs particle have been devised. These operators can be naturally
exponentiated, leading to BRST invariant type of Weyl operators useful to analyze Bell’s inequalities
within an invariant BRST environment.
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I. INTRODUCTION

Since their discovery [1–4], Bell’s inequalities have
much changed the way we look at the quantum world,
forcing us to go deeper and deeper in the understanding of
quantum mechanics and of the nature of space-time. It is
fair to say that, nowadays, the phenomenon of entangle-
ment is a pivotal issue in both theoretical and experimental
physics as well as in the creation of new technologies.
This work aims at investigating, within the framework of

relativistic quantum field theory, a very popular and
extensively studied version of Bell’s inequalities, known
as the Clauser-Horne-Shimony-Holt (CHSH) inequality
[5–8]. Let us briefly recall it, in the form usually presented
in quantum mechanics textbooks; see, for example,
Refs. [9–11]. One starts by introducing a two spin-1=2
operator

CCHSH ¼ ½ðα⃗ · σ⃗A þ α⃗0 · σ⃗AÞ ⊗ β⃗ · σ⃗B

þ ðα⃗ · σ⃗A − α⃗0 · σ⃗AÞ ⊗ β⃗0 · σ⃗B�; ð1Þ

where ðA;BÞ refer to Alice and Bob, σ⃗ are the spin-1=2
Pauli matrices, and ðα⃗; α⃗0; β⃗; β⃗0Þ are four arbitrary unit
vectors.1 Because of the properties of the Pauli matrices,
one expects that

jCCHSHj ≤ 2 ð2Þ

for any possible choice of the unit vectors ðα⃗; α⃗0; β⃗; β⃗0Þ,
though it turns out that this inequality is violated by
quantum mechanics, due to entanglement. In fact, when
evaluating the CHSH correlator in quantummechanics, i.e.,
hψ jCCHSHjψi, where jψi is an entangled state as, for
example, the Bell singlet, one gets

jhψ jCCHSHjψij ¼ 2
ffiffiffi
2

p
;

jψi ¼ jþiA ⊗ j−iB − j−iA ⊗ jþiBffiffiffi
2

p : ð3Þ

The bound 2
ffiffiffi
2

p
is known as Tsirelson’s bound [12–14],

yielding the maximum violation of the CHSH inequality
(2). The experiments carried out over the past decades (see
Refs. [5–8,15–20], and references therein) have largely
confirmed the violation of the CHSH inequality, being in
very good agreement with the bound 2

ffiffiffi
2

p
.
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1Notice that, due to σiσj ¼ δij þ iεijkσk, it follows that
ðn⃗ · σ⃗Þ2 ¼ 1 for any unit vector jn⃗j ¼ 1.
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Concerning now the status of the study of the CHSH
inequality within the relativistic quantum field theory
framework, the amount of research done so far cannot
yet be compared to that of quantum mechanics. We quote
here the pioneering work by Refs. [21–25], who have been
able to show, by using the techniques of the algebraic
quantum field theory, that even free fields lead to a violation
of the CHSH inequality. This important result is taken as a
strong confirmation of the fact that the phenomenon of
entanglement in quantum field theory is believed to be
more severe than in quantum mechanics, a property often
underlined in the extensive literature on the so-called
entanglement entropy, a fundamental quantity in order to
quantify the degree of entanglement of a very large class of
systems; see Refs. [26–29] for a recent overview on this
matter.
It seems, thus, worth to us to pursue the investigation

of the CHSH inequality within the realm of relativistic
quantum field theory.
The paper is organized as follows. In Sec. II, we present

the classical aspects of our field theory model as well as
the class of operators eligible in order to construct the
CHSH inequality. In Sec. III, we proceed with the canonical
quantization and with the evaluation of the correlator of the
CHSH operator. Although rather small, we shall be able to
already observe a violation of the CHSH inequality,
confirming in fact the severity of entanglement in relativ-
istic quantum field theory. In Sec. IV, the violation of the
CHSH is analyzed in details. Section V deals with the
Becchi-Rouet-Stora-Tyutin (BRST) invariant generaliza-
tion of the present setup to Higgs gauge theories.

II. THE MODEL: CLASSICAL ASPECTS

As already stated, the model we shall be using is
constructed with a pair of free massive real scalar fields
ðφi

A;φ
i
BÞ, i ¼ 1, 2, 3, taken in the adjoint representation of

the SUð2Þ group:

L ¼ 1

2
ð∂μφi

A∂μφ
i
A −m2

Aφ
i
Aφ

i
AÞ þ

1

2
ð∂μφi

B∂μφ
i
B −m2

Bφ
i
Bφ

i
BÞ:
ð4Þ

Furthermore, we introduce the following bounded operator:

Uaðx; yÞ ¼ cos aiðφ̂i
AðxÞ þ φ̂i

BðyÞÞ

¼ eia
iðφ̂i

AðxÞþφ̂i
BðyÞÞ þ e−ia

iðφ̂i
AðxÞþφ̂i

BðyÞÞ

2
; ð5Þ

where faig stands for an arbitrary real vector and where we
have introduced the rescaled fields ðφ̂i

A; φ̂
i
BÞ in order to deal

with dimensionless variables:

φ̂i
A ¼ φ̂i

A

mA
; φ̂i

B ¼ φ̂i
B

mB
: ð6Þ

As is apparent from expression (5), the quantity Uaðx; yÞ is
real and bounded, taking values in the interval ½−1; 1�. As
such, according to Refs. [21–25], it is an eligible operator
for the construction of a CHSH inequality which, using the
same notations of Refs. [21–25], we write as

ðAþ A0ÞBþ ðA − A0ÞB0; ð7Þ

with ðA; A0; B; B0Þ bounded quantities which take values in
the interval ½−1; 1�. Application of the triangle inequality
[12–14] shows that

jðAþ A0ÞBþ ðA − A0ÞB0j ≤ 2: ð8Þ

In terms of the operator U, expression (7) takes the form

Caa
0bb0 ðx; x0; y; y0Þ ¼ ðUaðx; yÞ þ Ua0 ðx; yÞÞUbðx0; y0Þ

þ ðUaðx; yÞ − Ua0 ðx; yÞÞUb0 ðx0; y0Þ;
ð9Þ

namely,

Caa
0bb0 ðx; x0; y; y0Þ

¼ ½cos aiðφ̂i
AðxÞ þ φ̂i

BðyÞÞ þ cos a0iðφ̂i
AðxÞ þ φ̂i

BðyÞÞ�
× cos biðφ̂i

Aðx0Þ þ φ̂i
Bðy0ÞÞ þ ½cos aiðφ̂i

AðxÞ þ φ̂i
BðyÞÞ

− cos a0iðφ̂i
AðxÞ þ φ̂i

BðyÞÞ� cos b0iðφ̂i
Aðx0Þ þ φ̂i

Bðy0ÞÞ;
ð10Þ

with ðai; a0i; bi; b0iÞ being arbitrary vectors. These vectors
are akin to the four unit vectors ðα⃗; α⃗0; β⃗; β⃗0Þ entering
expression (1), though, unlike ðα⃗; α⃗0; β⃗; β⃗0Þ, ðai; a0i; bi; b0iÞ
are now not restricted to be unit vectors, due to the fact that
expression (5) is already bounded, taking values in the
interval ½−1; 1�. They are independent quantities which, as
the four vectors ðα⃗; α⃗0; β⃗; β⃗0Þ, will be chosen in the most
convenient way at the end of the computation. From
Eq. (8), we have that, classically,

ljCaa0bb0 ðx; x0; y; y0Þlj ≤ 2: ð11Þ

for any choice of the vectors ðai; a0i; bi; b0iÞ.
Let us now specify the space-time properties of the

regions in which Alice’s and Bob’s labs are located. The
two space-time points ðx; x0Þ belong to a space-time region
ΩA in which Alice’s lab is located, while ðy; y0Þ refer to
points of the region ΩB corresponding to the location of
Bob’s lab. The two regions ðΩA;ΩBÞ are spacelike sepa-
rated. Moreover, we consider events within ΩA which are
timelike. The same for those belonging to ΩB. This means
that the measurements performed by Alice and Bob are
separated by spacelike intervals, implementing thus the
principle of relativistic causality. In summary, we have
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ðx− x0Þ2 > 0; ðy− y0Þ2 > 0; ðx− yÞ2 < 0;

ðx− y0Þ2 < 0; ðx0 − yÞ2 < 0; ðx0 − y0Þ2 < 0; ð12Þ
where

ðx − x0Þ2 ¼ ððx0 − x00Þ2Þ − ðx⃗ − x⃗0Þ2: ð13Þ
The physical meaning of Eq. (12) can be easily visualized
with the help of a two-dimensional ðt; xÞ space-timediagram;
see Fig. 1. Alice’s lab is located at x ¼ 0, while Bob’s lab at
x ¼ xB. Alice performs a firstmeasurement at the time tA and
repeats it at t0A > tA. On the other hand, Bob does his first
measurement at tB and the second one at t0B > tB. Moreover,
as is apparent from Fig. 1, since the spatial distance between
the two labs is greater than the maximum time interval, i.e.,
xB > ðt0B − tAÞ, it follows that Alice and Bob are spacelike
separated, according to Eq. (12).

III. CANONICAL QUANTIZATION AND
INTRODUCTION OF THE CHSH CORRELATOR

BY MEANS OF WEYL OPERATORS

Before facing the quantization of the operator (9), it is
useful to shortly recall a few basic properties of the
canonical quantization of a free massive scalar field
[30]. For such a purpose, the use of a single field φ is
enough, the generalization to two free fields being imme-
diate. We start with a free Klein-Gordon field:

L ¼ 1

2
ð∂μφ∂μφ −m2φ2Þ: ð14Þ

Expanding φ in terms of annihilation and creation oper-
ators, we get

φðt; x⃗Þ ¼
Z

d3k⃗
ð2πÞ3

1

2ωðk;mÞ ðe
−ikxak þ eikxa†kÞ;

k0 ¼ ωðk;mÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þm2

q
; ð15Þ

where

½ak; a†q� ¼ ð2πÞ32ωðk;mÞδ3ðk⃗ − q⃗Þ;
½ak; aq� ¼ 0; ½a†k; a†q� ¼ 0; ð16Þ

implementing the canonical commutation relations. A
quick computation shows that

½φðxÞ;φðyÞ� ¼ iΔm
PJðx − yÞ ¼ 0 for ðx − yÞ2 < 0; ð17Þ

where Δm
PJðx − yÞ is the Lorentz invariant causal Pauli-

Jordan function, encoding the principle of relativistic
causality:

Δm
PJðx − yÞ ¼ 1

i

Z
d4k
ð2πÞ3 ðθðk

0Þ

− θð−k0ÞÞδðk2 −m2Þe−ikðx−yÞ; ð18Þ

Δm
PJðx − yÞ ¼ −Δm

PJðy − xÞ; ð∂2x þm2ÞΔm
PJðx − yÞ ¼ 0;

ð19Þ

Δm
PJðx − yÞ

¼
�
θðx0 − y0Þ − θðy0 − x0Þ

2π

�

×

�
−δððx − yÞ2Þ þm

θððx − yÞ2ÞJ1ðm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − yÞ2

p
Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − yÞ2

p �
;

ð20Þ

where J1 is the Bessel function.
However, as it stands, expression (15) is a too singular

object, being in fact an operator-valued distribution in
Minkowski space [30]. To give a well-defined meaning to
Eq. (15), one introduces the smeared field

φðhÞ ¼
Z

d4xφðxÞhðxÞ; ð21Þ

where hðxÞ is a test function belonging to the Schwartz
space SðR4Þ, i.e., to the space of smooth infinitely differ-
entiable functions decreasing as well as their derivatives
faster than any power of ðxÞ ∈ R4 in any direction. The
support of hðxÞ, supph, is the region in which the test
function hðxÞ is nonvanishing. Introducing the Fourier
transform of hðxÞ,2

ĥðpÞ ¼
Z

d4xeipxhðxÞ; ð22Þ

FIG. 1. Location of the labs of Alice and Bob in a two-
dimensional space-time diagram.

2It is well known that the Fourier transform ĥðpÞ of a test
function hðxÞ ∈ SðR4Þ is again a rapidly decreasing function,
namely, ĥðpÞ ∈ SðR4Þ.
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expression (21) becomes

φðhÞ ¼
Z

d3k⃗
ð2πÞ3

1

2ωðk;mÞ ðĥ
�ðωðk;mÞ; k⃗Þak

þ ĥðωðk;mÞ; k⃗Þa†kÞ ¼ ah þ a†h; ð23Þ

where ðah; a†hÞ stand for

ah ¼
Z

d3k⃗
ð2πÞ3

1

2ωðk;mÞ ĥ
�ðωðk;mÞ; k⃗Þak;

a†h ¼
Z

d3k⃗
ð2πÞ3

1

2ωðk;mÞ ĥðωðk;mÞ; k⃗Þa†k: ð24Þ

One sees, thus, that the smearing procedure has turned the
too singular object φðxÞ [Eq. (15)] into an operator
[Eq. (23)] acting on the Hilbert space of the system.
When rewritten in terms of the operators ðah; a†h0 Þ, the
canonical commutation relations (16) take the form

½ah; a†h0 � ¼ hhjh0im; ð25Þ

where hhjh0im is the Lorentz invariant scalar product
between the test functions h and h0; i.e.,

hhjh0im ¼
Z

d3k⃗
ð2πÞ3

1

2ωðk;mÞ ĥ
�ðωðk;mÞ; k⃗Þĥ0ðωðk;mÞ; k⃗Þ

¼
Z

d4k⃗
ð2πÞ4 ð2πθðk

0Þδðk2 −m2ÞÞĥ�ðkÞĥðkÞ: ð26Þ

We indicate by a subscript m the mass that appears in the
scalar product (26), in view of the fact that our model
[Eq. (4)] contains more than one mass. The scalar product
(26) can be rewritten in configuration space. Taking the
Fourier transform, one has

hhjh0im ¼
Z

d4xd4x0hðxÞDðx − x0Þhðx0Þ; ð27Þ

where Dmðx − x0Þ is the so-called Wightman function

Dmðx− x0Þ ¼ h0jφðxÞφðx0Þj0i

¼
Z

d3k⃗
ð2πÞ3

1

2ωðk;mÞ e
−ikðx−x0Þ; k0 ¼ ωðk;mÞ;

ð28Þ

which can be decomposed as

Dmðx − x0Þ ¼ i
2
Δm

PJðx − x0Þ þHmðx − x0Þ; ð29Þ

where Δm
PJðx − x0Þ is the Pauli-Jordan function and

Hmðx−x0Þ¼Hmðx0−xÞ is the real symmetric quantity [31]

Hmðx − x0Þ ¼ 1

2

Z
d3k⃗
ð2πÞ3

1

2ωðk;mÞ ðe
−ikðx−x0Þ þ eikðx−x0ÞÞ;

k0 ¼ ωðk;mÞ: ð30Þ

The commutation relation (17) can be expressed in terms of
smeared fields as

½φðhÞ;φðh0Þ� ¼ iΔm
PJðh; h0Þ; ð31Þ

where h and h0 are test functions and

Δm
PJðh; h0Þ ¼

Z
d4xd4x0hðxÞΔm

PJðx − x0Þh0ðx0Þ: ð32Þ

Therefore, the causality condition in terms of smeared
fields becomes

½φðhÞ;φðh0Þ� ¼ 0; ð33Þ

if supph and supph0 are spacelike.

A. A few words on the test functions

As a concrete example of test functions, we might
consider the class of test functions that have compact
support, known as bump functions. A good example of a
bump function is the function

fbumpðxÞ ¼
�
Ce

− 1

α2−m2 jxj2 if α2 ≥ m2jxj2;
0 if α2 < m2jxj2;

ð34Þ

where α is a real number, C is a normalization factor, and
jxj2 ¼ ðx0Þ2 þ ðx1Þ2 þ ðx2Þ2 þ ðx3Þ2 is the Euclidean dis-
tance from the origin. The function (37) is a smooth
function, infinitely differentiable, with compact support.
It is nonvanishing only within the region α2 ≥ m2jxj2.
Bump functions such as that in Eq. (37) have many interes-
ting properties; see Ref. [31]. Since fbumpðxÞ ¼ fbumpð−xÞ,
its Fourier transform

f̂bumpðpÞ ¼
Z

d4xeipxfbumpðxÞ ð35Þ

is a real symmetric function:

f̂bumpðpÞ� ¼ f̂bumpðpÞ; f̂bumpðpÞ ¼ f̂bumpð−pÞ: ð36Þ

It turns out that f̂bumpðpÞ has no compact support.
However, it is a smooth, infinitely differentiable function,
exhibiting an exponential decay for large jpj. As such, both
fbumpðxÞ and its Fourier transform f̂bumpðpÞ belong to the
Schwartz space SðR4Þ. Another important property of the
bump functions is that their derivatives are still bump
functions. For example,
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f0bumpðxÞ ¼
�
C0 ∂ðe

− 1

β2−m2 jxj2 Þ
∂x0 if β2 ≥ m2jxj2;

0 if β2 < m2jxj2;
ð37Þ

is an antisymmetric bump function: f0bumpðxÞ ¼
−f0bumpð−xÞ. As a consequence, its Fourier transform reads

f̂0bumpðpÞ ¼ −ip0C0
Z
β≥mjxj

d4xeipxe
− 1

β2−m2 jxj2 : ð38Þ

We see thus that f̂0bumpðpÞ is a purely imaginary function
which is antisymmetric:

f̂0bumpðpÞ� ¼ −f̂0bumpðpÞ; f̂0bumpðpÞ ¼ −f̂0bumpð−pÞ:
ð39Þ

In particular, the normalization constants ðC; C0Þ as well as
the properties (36) and (39) can be used to define a pair of
test functions ðf; f0Þ fulfilling the following properties (see
also Refs. [21–25]):

fðxÞ ¼ fð−xÞ; f0ðxÞ ¼ −f0ð−xÞ;
kfk2m ¼ hfjfim ¼ m2; kf0k2m ¼ m2;

hfjf0im ¼ purely imaginary

¼ i
2

Z
d4xd4x0fðxÞΔm

PJðx − x0Þf0ðx0Þ: ð40Þ

The appearance of the mass parameter m2 in the normali-
zation of the test functions [Eq. (40)] is due to our
conventions for the engineering dimensions of the quantities
ðφ̂i

A; φ̂
i
BÞ [Eq. (6)], which will be kept dimensionless

throughout. Moreover, as we shall see in the next section,
the final dependence of the quantum CHSH correlator from
the parameters ðm2

A;m
2
BÞ will enable us to discuss the zero

mass limit.
Finally, we recall the Cauchy-Schwarz inequality for the

scalar product

ljhfjf0imlj2 ≤ kfk2mkf0k2m ¼ m4: ð41Þ

B. Weyl operators

Let us now recall a few features of the so-called Weyl
operators, which will be the building blocks for the con-
struction of the CHSH operator [Eqs. (9) and (10)] at the
quantum level. The Weyl operators are bounded unitary
operators built out by exponentiating the smeared field,
namely,

Ah ¼ eiφ̂ðhÞ; ð42Þ

where φ̂ðhÞ ¼ φðhÞ=m is the dimensionless smeared field
defined in Eqs. (21) and (23). Making use of the following
relation:

eAeB ¼ eAþBþ1
2
½A;B�; ð43Þ

valid for two operators ðA;BÞ commuting with ½A; B�, one
immediately checks that the Weyl operators give rise to the
following algebraic structure:

AhA0
h ¼ e−

1
2
½φ̂ðhÞ;φ̂ðh0Þ�Aðhþh0Þ ¼ e−

i
2m2Δ

m
PJðh;h0ÞAðhþh0Þ; ð44Þ

where Δm
PJðh; h0Þ is the causal Pauli-Jordan function

[Eq. (48)]. Also, using the canonical commutation relations
written in the form (25), for the vacuum expectation value of
Ah, one gets

h0jAhj0i ¼ e−
1

2m2khk2m: ð45Þ

As already underlined, the vacuum state j0i is the Fock
vacuum: akj0i ¼ 0, for all modes k.

C. Construction of the CHSH quantum operator

At the classical level, the model we are considering is
characterized by the Lagrangian density (4). We have two
free fields ðφi

A;φ
i
BÞ, for Alice and Bob, respectively. Each

field satisfies the Klein-Gordon equation and can be
expanded in term of annihilation and creation operators
[Eq. (15)], namely,

φi
Aðt; x⃗Þ ¼

Z
d3k⃗
ð2πÞ3

1

2ωðk;mAÞ
ðe−ikxaik þ eikxai†k Þ;

k0 ¼ ωðk;mAÞ;

φi
Bðt; x⃗Þ ¼

Z
d3k⃗
ð2πÞ3

1

2ωðk;mBÞ
ðe−ikxbik þ eikxbi†k Þ;

k0 ¼ ωðk;mBÞ; ð46Þ
where the only nonvanishing commutators among the
annihilation and creation operators are

½aik; aj†q � ¼ ð2πÞ32ωðk;mAÞδ3ðk⃗ − q⃗Þδij;
½bik; bj†q � ¼ ð2πÞ32ωðk;mBÞδ3ðk⃗ − q⃗Þδij: ð47Þ

To have well-defined operators in the Fock-Hilbert space,
these fields are smeared with test functions, as described in
Eq. (21), resulting in ðφi

AðhÞ;φi
BðhÞÞ. It is thus straightfor-

ward to evaluate the following commutation relations for
the smeared fields:

½φi
AðhÞ;φj

Aðh0Þ� ¼ iδijΔmA
PJ ðh; h0Þ;

½φi
Bðh̃Þ;φj

Bðh̃0Þ� ¼ iδijΔmB
PJ ðh̃; h̃0Þ;

½φi
AðhÞ;φj

Bðh̃Þ� ¼ 0; ð48Þ
valid for any pair of test functions ðh; h0Þ and ðh̃; h̃0Þ. The
presence of the Pauli-Jordan function in expressions (48)
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implements the relativistic causality in the model. In fact, if
supph and supph0 are spacelike as well as those of ðh̃; h̃0Þ,
then the commutator of the corresponding smeared fields
vanishes. The Fock vacuum of the model is defined as
being the state j0i such that

aikj0i ¼ 0;

bikj0i ¼ 0; ð49Þ

for any i ¼ 1, 2, 3 and any momentum k.
We are now ready to write down the quantum version of

the CHSH operator [Eqs. (9) and (10)]. We first introduce
the smeared operator

Uab
ff0gg0 ¼ cos aiðφ̂i

AðfÞ þ φ̂i
BðgÞÞ cos biðφ̂i

Aðf0Þ þ φ̂i
Bðg0ÞÞ

¼
�
eia

iðφ̂i
AðfÞþφ̂i

BðgÞÞ þ e−ia
iðφ̂i

AðfÞþφ̂i
BðgÞÞ

2

�

×

�
eib

iðφ̂i
Aðf0Þþφ̂i

Bðg0ÞÞ þ e−ib
iðφ̂i

Aðf0Þþφ̂i
Bðg0ÞÞ

2

�
; ð50Þ

where ðf; f0Þ and ðg; g0Þ are test functions belonging,
respectively, to Alice’s and Bob;s space-time regions, ΩA
and ΩB, respectively; see Fig. 1. More precisely, the
supports of ðf; f0Þ are spacelike with respect to those of
ðg; g0Þ:

ðsuppðf;f0ÞÞ spacelikewith respect to ðsuppðg;g0ÞÞ: ð51Þ

Furthermore, we introduce the Hermitian operator

Ûab
ff0gg0 ¼ ðÛab

ff0gg0 Þ† ¼
1

2
ðUab

ff0gg0 þ ðUab
ff0gg0 Þ†Þ: ð52Þ

Finally, for the quantum version of the CHSH operator
[Eqs. (9) and (10)], we write

Caa
0bb0

ðff0gg0Þ ¼ Ûab
ff0gg0 þ Ûa0b

ff0gg0 þ Ûab0
ff0gg0 − Ûa0b0

ff0gg0 : ð53Þ

In the following, we shall compute the vacuum correlator

h0jCaa0bb0ðff0gg0Þj0i ð54Þ

by means of the algebraic properties of the Weyl operators.
According to Refs. [21–25], we shall speak of a violation of
the CHSH classical inequality [Eq. (11)] if

ljh0jCaa0bb0ðff0gg0Þj0ilj > 2 ð55Þ

for some suitable choice of ðai; a0i; bi; b0iÞ.
Expression (54) can be calculated in closed form

using Eqs. (43)–(45) and the fact that the vacuum is
annihilated by aih and bjh; see Eq. (49). The outcome of
our result reads

hCaa0bb0ðff0gg0Þi ¼ e
−1
2

h
a⃗·a⃗

�
kfk2mA
m2
A

þkgk2mB
m2
B

	
þb⃗·b⃗

�
kf0k2mA

m2
A

þkg0k2mB
m2
B

	i

× cos

�
a⃗ · b⃗
2

ðωA þωBÞ
�
cosh ða⃗ · b⃗ðω̃A þ ω̃BÞÞ

þ ða→ a0Þ
þ ðb→ b0Þ
− ða→ a0; b→ b0Þ; ð56Þ

where

ωA ¼ 1

m2
A
ΔmA

PJ ðf; f0Þ;

ωB ¼ 1

m2
B
ΔmB

PJ ðg; g0Þ;

ω̃A ¼ 1

m2
A
Rehfjf0imA

;

ω̃B ¼ 1

m2
B
Rehgjg0imB

: ð57Þ

Instead of explicitly writing all terms in Eq. (56), we have
simply indicated that the other terms are obtained from the
first one by replacing the vectors a⃗ ¼ ða1; a2; a3Þ and b⃗ ¼
ðb1; b2; b3Þ as denoted by the arrows. The scalar product
between the vectors in Eq. (56) is the tridimensional
Euclidian scalar product, i.e., a⃗ · b⃗ ¼ P

3
i¼1 a

ibi.

IV. ANALYSIS OF THE VIOLATION
OF THE CHSH INEQUALITY

Having evaluated the CHSH correlator [Eq. (56)], we
can face now the issue of the violation of the CHSH
inequality. To a first look, one might have the impression
that Eq. (56) contains a lot of free parameters, so that it
would be relatively simple to find a violation of the CHSH
inequality. But things are not that easy, the main reason
being the presence of the exponentials which decay very
fast. As a consequence, the allowed space of parameters
turns out to be quite small.
Before analyzing the best choice for the parameters

ðai; a0i; bi; b0iÞ, we fix the norms of the test functions ðf; f0Þ
and ðg; g0Þ, with supports in the regions of Alice’s lab ΩA
and Bob’s lab ΩB, respectively, according to

kfk2mA
¼ kf0k2mA

¼ m2
A; kgk2mB

¼ kg0k2mB
¼ m2

B: ð58Þ

It is worth remarking here that, as expected, the choice of
the norm of the test functions does not play much role in
expression (56). These norms are easily seen to be

reabsorbable into the vectors ða⃗; b⃗; a⃗0; b⃗0Þ, which are
arbitrary. Therefore, the choice of working with normalized
test functions [Eq. (58)] does not change the final output.
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Concerning now the scalar products hfjf0i and hgjg0i,
we have followed the same prescription adopted in the
original work [22] and have taken ðhfjf0i; hgjg0iÞ purely
imaginary,3 as described in Eqs. (40), namely,

hfjf0i ¼ purely imaginary ¼ i
2
ΔmA

PJ ðf; f0Þ;

hgjg0i ¼ purely imaginary ¼ i
2
ΔmB

PJ ðg; g0Þ: ð59Þ

Because of Eqs. (58) and (59), the CHSH correlator gets
simplified:

hCaa0bb0ðff0gg0Þi ¼ e−a⃗·a⃗−b⃗·b⃗ cos

�
a⃗ · b⃗
2

ðωA þ ωBÞ
�

þ e−a⃗
0·a⃗0−b⃗·b⃗ cos

�
a⃗0 · b⃗
2

ðωA þ ωBÞ
�

þ e−a⃗·a⃗−b⃗
0·b⃗0 cos

�
a⃗ · b⃗0

2
ðωA þ ωBÞ

�

− e−a⃗
0·a⃗0−b⃗0·b⃗0 cos

�
a⃗0 · b⃗0

2
ðωA þ ωBÞ

�
:

ð60Þ

In addition to the vectors ðai; a0i; bi; b0iÞ, expression (60)
contains the quantity

ωA þ ωB ¼ 1

m2
A
ΔmA

PJ ðf; f0Þ þ
1

m2
B
ΔmB

PJ ðg; g0Þ; ð61Þ

which is the smearing of the Pauli-Jordan function. Because
of the choice of the scalar products hfjf0i and hgjg0i done in
Eq. (59), from the Cauchy-Schwarz inequality it follows

ΔmA
PJ ðf; f0Þ ¼

2

i
hfjf0imA

; ð62Þ

which implies that

jΔmA
PJ ðf; f0Þj ≤ 2kfkmA

kf0kmA
¼ 2m2

A: ð63Þ

The same holds forΔmB
PJ ðg; g0Þ. Thus, taking into account the

even character of the cosine, it is convenient to parametrize
ðωA þ ωBÞ by introducing the quantity σ defined as

ωA þ ωB ¼ 4σ; 0 ≤ σ ≤ 1: ð64Þ

Therefore, we have

hCaa0bb0ðff0gg0Þi ¼ e−a
2−b2 cos ð2a⃗ · b⃗σÞ þ e−a

02−b2 cos ð2a⃗0 · b⃗σÞ
þ e−a

2−b02 cos ð2a⃗ · b⃗0σÞ
− e−a

02−b02 cos ð2a⃗0 · b⃗0σÞ; ð65Þ

where a ¼ ja⃗j, b ¼ jb⃗j, a0 ¼ ja⃗0j, and b0 ¼ jb⃗0j. Before
focusing on expression (65), let us devote a little discussion
to the parameter σ, which has a deep physical meaning. This
is the task of the next subsection.

A. The meaning of the parameter σ

As we have seen [Eq. (64)], the parameter σ is directly
related to the smearing of the Pauli-Jordan functions
ðΔmA

PJ ðf; f0Þ;ΔmB
PJ ðg; g0ÞÞ. As such, σ encodes all informa-

tion about the relativistic causality of our model. It is
important, thus, to have a more precise idea of its behavior
and of its explicit relation with Alice’s and Bob’s space-
time configurations, as depicted in Fig. 1. To that end, it
suffices to pick up Alice’s factor ωA [Eq. (57)] and proceed
by smearing it with two narrowed Gaussians in order to be
able to work out analytic expressions which will provide a
more transparent understanding of σ. Accordingly, for the
pair of Gaussian test functions ðf; f0Þ around x⃗ ¼ 0, we
write

fðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8π2

0; 41411…

s
mA∂te−m

2
Aðt−tAÞ2e−m2

Ar
2

;

f0ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8π2

0; 18301…

s
m2

Ae
−m2

Aðt−t0AÞ2e−m2
Ar

2

; ð66Þ

where r ¼ jx⃗j and where the numerical factors take into
account the normalization of ðf; f0Þ. The two temporal
coordinates tA and t0A in Eq. (66) can be thought of as the
instants in which Alice performs her measurements; see
Fig. 1. Moving to momentum space, one gets4

f̂ðpÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π2

0; 41411…

s
ip0e−

p2

4m2−
p2
0

4m2þip0tA

m
ffiffiffi
2

p ;

f̂0ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8π2

0; 18301…

s
e−

p2

4m2−
p2
0

4m2þip0t0Affiffiffi
2

p : ð67Þ
3We notice that, since at least one of the labs is not located at

the origin of the coordinate system, one pair of test functions will
not have the odd and even symmetries with respect to x ¼ 0, as
assumed in Eqs. (40). However, due to the translation invariance
of the Wightman function and, consequently, of the scalar
product, a pair of test functions can still satisfy Eqs. (40) if they
are odd and even with respect to a certain point of the space-time
which, in the present case, is the location of Bob’s lab; see Fig. 1.

4Strictly speaking, f and f0 being two Gaussians, they do not
display properties (40); that is, hfjf0i has a real part as well as an
imaginary part. Moreover, one easily verifies that the real part
gets smaller and smaller as mAjtA − t0Aj becomes small, so that
hfjf0i fulfills, in practice, property (40).
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Evaluating ωA, one finds

ωA ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0; 41411…

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0; 18301…

p

×
Z

∞

0

duu2 cos ðmAðtA − t0AÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
Þe−1þ2u2

2 : ð68Þ

The behavior of ωA as a function of mAΔt≡mAjtA − t0Aj is
shown in Fig. 2. Essentially, ωA shows an exponential
decay modulated by a periodic function. This exponential
decay in the variable ðmAΔtÞ is in full agreement with one
of the main results of Refs. [21–25]; see, in particular,
Corollary 4.2 in Ref. [21]. It means that the violation of the
CHSH inequality decreases exponentially with the magni-
tude of the masses of the particles and with the size of the
time intervals involved. For lighter particles and short time
intervals, i.e., when σ ≈ 1, we shall in fact be able to show
that the violation of the CHSH inequality of our model is
the biggest one.

B. The violation of the CHSH inequality

Let us now dive into the analysis of the CHSH corre-
lator (65), which is recognized to be a bounded quantity.

To analyze hCaa0bb0ðff0gg0Þi, we consider the space of parameter as

being

ða; a0; b; b0; α; β; γ; δ; σÞ;

where

a⃗ · b⃗ ¼ ab cos α;

a⃗0 · b⃗ ¼ a0b cos β;

a⃗ · b⃗0 ¼ ab0 cos γ;

a⃗0 · b⃗0 ¼ a0b0 cos δ: ð69Þ

Regarding the parameters ða; a0; b; b0Þ, which correspond
to the norms of the vectors ðai; a0i; bi; b0iÞ, one sees that,
due to the exponential decay of expression (65), they
cannot take large values; otherwise, the whole correlator
will be exponentially suppressed, becoming too small in
order to detect a violation of the CHSH inequality. For the
two parameters ða; bÞ, the best values seem to be
a ¼ b ¼ 0, 001. In Figs. 3 and 4, one finds the behavior
of hCaa0bb0ðff0gg0Þi as a function of the remaining parameters a0

and b0 and for the choices σ ¼ 0, 85 and σ ¼ 1, respec-
tively, in a configuration in which all vectors ðai; a0i; bi; b0iÞ
are parallel; that is, α ¼ β ¼ γ ¼ δ ¼ 0.
It turns out that (see cyan surface and the blue curve in

Figs. 3 and 4) hCaa0bb0ðff0gg0Þi violates the CHSH inequality in

both cases, although the violation is rather small, its
maximum value being located in the interval [2.029,
2.03]. According to Ref. [21] and as discussed before,
the violation of the CHSH inequality reaches its optimal
value for σ ¼ 1, corresponding to light particles and short
time intervals.
Let us mention that, although in our analysis we have

employed many different configurations for the vectors

ða⃗; b⃗; a⃗0; b⃗0Þ, the correlator hCaa0bb0ðff0gg0Þi turns out to be

FIG. 3. CHSH correlator for σ ¼ 0, 85. Behavior of the CHSH correlator hCaa0bb0ðff0gg0Þi (cyan surface) for a⃗ · b⃗ ¼ a⃗ · b⃗0 ¼ a⃗0 · b⃗ ¼ 0,

a⃗0 · b⃗0 ¼ a0b0, a ¼ b ¼ 0, 001, and σ ¼ 0, 85. To observe the violation more easily, we have also plotted the plane z ¼ 2, corresponding

to the orange surface. The blue line in the right-hand side shows the behavior of hCaa0bb0ðff0gg0Þi for a⃗ · b⃗ ¼ a⃗ · b⃗0 ¼ a⃗0 · b⃗ ¼ 0, a⃗0 · b⃗0 ¼ a0b0,
a ¼ b ¼ 0, 001, σ ¼ 0, 85, and b0 ¼ 0, 7.

FIG. 2. ωA as a function of the variable ðΔtmAÞ.
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sensible only to the relative orientation of a⃗0 and b⃗0. For
instance, if a⃗0 and b⃗0 are perpendicular, i.e., δ ¼ π=2, the
violation no longer occurs, whereas parallel, δ ¼ 0, or
antiparallel, δ ¼ π, configurations lead to a violation.
Finally, as already underlined, the violation of the CHSH

inequality increases as σ → 1.

V. A BRST INVARIANT FORMULATION OF THE
CHSH INEQUALITY IN GAUGE THEORIES:
THE EXAMPLE OF THE Uð1Þ HIGGS MODEL

This section is devoted to outline a BRST invariant setup
for the study of the CHSH inequality in gauge theories,
taking as an explicit example the renormalizable Uð1Þ
Higgs model whose action, including the gauge fixing, is
given by

SHiggs ¼
Z

d4x

�
−
1

4
FμνðAÞFμνðAÞ þ ðDμφÞ�ðDμφÞ

−
λ

2

�
φ�φ −

v2

2

�
2

þ b∂μAμ þ c∂2c

�
; ð70Þ

where

φ ¼ 1ffiffiffi
2

p ðvþ hþ iρÞ ð71Þ

is a complex scalar field whose components h and ρ denote
the Higgs and the Goldstone fields, respectively. The
massive parameter v is the vacuum expectation value of
φ, i.e., hφi ¼ vffiffi

2
p , implementing the Higgs mechanism. The

field b is known as the Nakanishi-Lautrup field, needed to
impose the gauge condition which, in the present case, has
been chosen to be the transverse Landau gauge

∂A ¼ 0: ð72Þ

Also, the fields ðc̄; cÞ are the Faddeev-Popov ghosts.

The action SHiggs enjoys an exact BRST invariance:

sSHiggs ¼ 0; s2 ¼ 0; ð73Þ
where s is the nilpotent BRSToperator, whose action on the
fields ðAμ; h; ρ; b; c̄; cÞ is specified by

sAμ ¼ −∂μc;

sh ¼ −ecρ;

sρ ¼ ecðvþ hÞ;
sc ¼ 0;

sc̄ ¼ b;

sb ¼ 0: ð74Þ
The interest in the Uð1Þ Higgs model is due to a set of
articles [32–43] where a fully BRST invariant description
of the massive gauge boson has been worked out.
More precisely, it has been shown that the following

dimension-three vector operator

Vμ ¼
1

2
ð−ρ∂μhþðvþhÞ∂μρþ eAμðv2þh2þ 2vhþ ρ2ÞÞ;

ð75Þ

displays the following properties (see Refs. [35–40]):
(i) Vμ is BRST invariant, belonging to the local

cohomology [44] of the operator s:

sVμ ¼ 0; Vμ ≠ sQμ; ð76Þ

for some local field polynomial Qμ.
(ii) Vμ turns out to be the conserved Noether current

corresponding to the global Uð1Þ invariance of the
action (70), namely,

δh ¼ −ωρ; δρ ¼ ωðvþ hÞ;
δðAμ; b; c̄; cÞ ¼ 0; δSHiggs ¼ 0; ð77Þ

FIG. 4. CHSH correlator for σ ¼ 1. The CHSH correlator hCaa0bb0ðff0gg0Þi (cyan surface) for a⃗ · b⃗ ¼ a⃗ · b⃗0 ¼ a⃗0 · b⃗ ¼ 0, a⃗0 · b⃗0 ¼ a0b0,
a ¼ b ¼ 0, 001, and σ ¼ 1. To observe the violations more easily, we have also plotted the plane z ¼ 2 (orange surface). The blue line in

the right-hand side shows the behavior of hCaa0bb0ðff0gg0Þi for a⃗ · b⃗ ¼ a⃗ · b⃗0 ¼ a⃗0 · b⃗ ¼ 0, a⃗0 · b⃗0 ¼ a0b0, a ¼ b ¼ 0, 001, σ ¼ 1, and b0 ¼ 0, 7.
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where ω is a constant parameter. Thus,

∂
μVμ ¼ equations of motion: ð78Þ

From this property, it follows that the anomalous
dimension of Vμ vanishes to all orders in perturba-
tion theory.

(iii) The transverse component of the two-point function
hVμðpÞVνð−pÞiT ,

hVμðpÞVνð−pÞiT ¼ PμσhVσðpÞVνð−pÞi;

Pμσ ¼
�
gμσ −

pμpσ

p2

�
; ð79Þ

has the same pole mass of the elementary two-point
function hAμðpÞAνð−pÞi, a key property which
extends to all orders of perturbation theory, due to
a set of Ward identities.

(iv) The longitudinal component of hVμðpÞVνð−pÞiL,

hVμðpÞVνð−pÞiL ¼ LμσhVσðpÞVνð−pÞi;

Lμσ ¼
�
pμpσ

p2

�
; ð80Þ

has only tree-level contributions to all orders. More-
over, the tree-level term is momentum independent,
so that hVμðpÞVνð−pÞiL does not correspond to any
propagating mode.

(v) The two-point transverse function hVμðpÞVνð−pÞiT
exhibits a Källén-Lehmann spectral representation
with positive definite spectral density.

All these nontrivial properties enable us to employ the
operator Vμ to achieve a fully gauge-invariant description
of the massive gauge boson in the Uð1Þ Higgs model. It
worth underlining that the whole set of properties listed
above generalize to the non-Abelian SUð2Þ case with a
single scalar field in the fundamental representation; see
Refs. [35–40].
Being BRST invariant, the operator Vμ leads to a natural

construction of BRST invariant bounded Weyl-type oper-
ators, i.e.,

AV ¼ eiV̂ðfÞ ¼ ei
R
Ω
d4xfμðxÞV̂ðxÞμ ; ð81Þ

where V̂μ stands for the dimensionless quantity

V̂μðxÞ ¼
1

ev3
VμðxÞ ð82Þ

and where ffμðxÞg are a set of smooth functions with
compact support, introduced in order to localize the
operator AV in the desired region of the space-time Ω.
It is helpful to remind here that, in the case of a gauge

field AμðxÞ, the smearing procedure is done by means of a

set ffμðxÞg of test functions carrying a Lorentz index (see
Ref. [45]):

AðfÞ ¼
Z

d4xAμðxÞfμðxÞ; ð83Þ

where ffμðxÞg are required to transform in such a way to
leave expression (83) Lorentz invariant.
As is apparent, the operator AV displays the important

property of being BRST invariant, providing thus a way to
construct suitable CHSH operators in order to investigate
the violation of the CHSH inequality in Higgs models
within an explicit BRST invariant environment. From the
computational side, the operatorAV can be evaluated order
by order in a loop expansion, much like the usual way
we deal with the perturbative treatment of the Wilson

loop Wγ ¼ e
i
R
γ
dxμAμ .

Let us end this section by giving a short account of
what we are currently doing on the Uð1Þ Higgs model,
whose detailed analysis will be reported in a forthcoming
work [46].
As we have learned from the pioneering work [21–25],

free fields are already able to produce a violation of the
CHSH inequality. Therefore, as a first step, we are looking
at the purely quadratic part of the Higgs action SHiggs
[Eq. (70)], namely,

SquadHiggs ¼
Z

d4x

�
−
1

4
FμνðAÞFμνðAÞ

þm2

2
AμAμ þ 1

2
∂μh∂μh −

m2
h

2
h2

þ 1

2
∂μρ∂

μρþmAμ∂
μρþ b∂μAμ − c̄∂2c

�
; ð84Þ

where m2 ¼ e2v2 and m2
h ¼ λv2 are the masses of the

gauge vector boson and of the Higgs field h, respectively.
Even at the quadratic level, the action SquadHiggs exhibits an

exact BRST invariance, corresponding to the linear part of
the transformations of Eqs. (74), i.e.,

s0S
quad
Higgs ¼ 0; s0s0 ¼ 0; ð85Þ

where

s0Aμ ¼ −∂μc;

s0h ¼ 0;

s0ρ ¼ evc;

s0c ¼ 0;

s0c̄ ¼ b;

s0b ¼ 0: ð86Þ
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At the same order, the vector operator Vμ [Eq. (75)]
becomes

V lin
μ ¼ 1

2
vð∂μρþ evAμÞ; ð87Þ

with

s0V lin
μ ¼ 0: ð88Þ

One easily recognizes that V lin
μ coincides precisely with the

physical part of the gauge boson field, displaying the
content of the Higgs mechanism: The Goldstone mode is
eaten by the gauge field, which becomes massive.
We underline that the quadratic action in Eq. (84) can

be canonically quantized by following the well-known
Kugo-Ojima procedure [47–50] for the construction of the
physical Fock space with positive norm states through the
extensive use of the cohomology of the BRST charge.
We can therefore repeat the same analysis done in the
previous sections and built an s0-invariant CHSH correlator
by means of the s0-invariant Weyl operator

AV lin ¼ eiV̂
linðfÞ; s0AV lin ¼ 0; ð89Þ

allowing thus to investigate the possible violation of the
CHSH inequality in the Uð1Þ Higgs system already at the
quadratic level [46].
We mention here that a BRST invariant operator O can

be introduced also for the Higgs field h [35–40]:

OðxÞ ¼ 1

2
ð2vhðxÞ þ h2ðxÞ þ ρ2ðxÞÞ; sO ¼ 0: ð90Þ

The operator O shares many of the properties of the
operator Vμ at the quantum level [35–40] and can be
employed in order to have a BRST invariant description of
the Higgs field h. As in the case of Vμ, BRST invariant
Weyl operators can be introduced by exponentiating O:

AO ¼ eiÔðgÞ ¼ ei
R
Ω
d4xgðxÞÔðxÞ; ð91Þ

where Ô denotes the dimensionless quantity

ÔðxÞ ¼ 1

v2
OðxÞ: ð92Þ

Therefore, even in the quadratic approximation, it will be
possible to investigate the violation of the CHSH inequality
by using Weyl operators of the Higgs type [Eq. (92)].

VI. CONCLUSION

In this work, we have analyzed the violation of the
CHSH inequality in a relativistic quantum field theory
model. Following the pioneering work of Refs. [21–25], we
started with a pair of free massive real scalar fields
ðφi

A;φ
i
BÞ, i ¼ 1, 2, 3, taken in the adjoint representation

of the SUð2Þ group [Eq. (4)]. These fields have been
employed to introduce a CHSH-type operator Caa

0bb0
ðff0gg0Þ

[Eqs. (50), (52), and (53)], obtained by means of
Hermitian combinations of Weyl operators. Making use
of the canonical quantization, the correlation function
hCaa0bb0ðff0gg0Þi of the above-mentioned operator has been evalu-

ated in closed form [Eq. (56)], allowing us to already detect
a violation of the CHSH inequality in the free case; see
Figs. 3 and 4.
Although the reported violation turns out to be rather

small as compared to Tsirelson’s bound, we believe that the
present work might be helpful for the investigation of more
physical models.
In particular, as discussed in Sec. V, we have paid

attention to devise a BRST invariant framework for the
study of the violation of the CHSH inequality in the case of
gauge theories, taking as an explicit example the Uð1Þ
Higgs model [46]. We highlight that the setup presented in
Sec. V generalizes as well to the case of the non-Abelian
SUð2Þ model [35–40], a feature which might lead to a
quantum field theory investigation of the CHSH inequality
in electroweak theory, a subject of great phenomenological
and experimental interest; see Ref. [51] and references
therein.
A second topic which we are starting to look at is the

possibility of obtaining a formulation of the CHSH inequal-
ity by means of direct use of the Feynman path integral.
This would enable us to treat interacting field theories
through the usual dictionary of the Feynman diagrams.
Even if the task might seem to not present much difficulty,
it requires one, nevertheless, to face the challenging issue of
the renowned lack of causality of the Feynman propagator
ΔFðx − yÞ [52], namely,

ΔFðx − yÞ ¼

8>><
>>:

1
4π δððx − yÞ2Þ − m

8π
ffiffiffiffiffiffiffiffiffiffi
ðx−yÞ2

p Hð2Þ
1 ðm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − yÞ2

p
Þ; ðx − yÞ2 ≥ 0;

im
4π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−ðx−yÞ2Þ

p K1ðm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðx − yÞ2

p
Þ; ðx − yÞ2 < 0;

ð93Þ
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whereHð2Þ
1 is the Hankel function, while K1 is the modified

Bessel function. Expression (93) shows the lack of cau-
sality of ΔFðx − yÞ: It receives nonvanishing contributions
from the spacelike region ðx − yÞ2 < 0. This feature
requires a deeper understanding of the relationship between
entanglement and Feynman propagator; see, for instance,
the discussion in Ref. [53]. This is certainly a topic worth to
be investigated, due to the large number of applications of
the Feynman path integral in quantum field theory.
Overall, it seems fair to state that the study of the Bell-

CHSH inequalities in quantum field theory can be consid-
ered at its very beginning. Many issues remain to be
investigated. Our results, obtained by employing a rather
simple free field model, suggest that the entanglement
properties of the vacuum state of a relativistic quantum field
theory should play a fundamental role, as corroborated
by the general Reeh-Schlieder theorem [30]; see also the
detailed Sec. III, Eq. (3.22), in Ref. [26].
Certainly, the inclusion of interaction terms in the

starting action represents a major step toward a complete
understanding of the Bell-CHSH inequalities in quantum
field theory. In particular, the treatment of non-Abelian
theories looks of particular interest, due to the asymptotic
freedom as well as to genuine nonperturbative effects
ranging from the existence of the Gribov copies to the
inclusion of instanton and monopole contributions. We
hope to report soon on these very attractive topics.

Finally, we add to this short list the establishment of a
quantum field theory version of Bell’s inequality [1], which
we reproduce below in its original form [1]:

jEða; bÞ − Eða; cÞj ≤ 1þ Eðb; cÞ; ð94Þ

where Eða; bÞ stands for the expectation value of the
product of Alice’s and Bob’s measurements [1]. From
the work of Refs. [21–25], we have learned how to
formulate the CHSH inequality in relativistic quantum
field theory, though we are unaware of a similar formu-
lation for the original Bell inequality. This would be a nice
achievement, in view of the pivotal role played by this
inequality in the physics of entanglement.

ACKNOWLEDGMENTS

The authors thank the Brazilian agencies Conselho
Nacional de Desenvolvimento Científico e Tecnológico
and Fundação Carlos Chagas Filho de Amparo à Pesquisa
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