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We study classical scalar fields in asymptotically Lifshitz spacetimes. By evading Derrick’s theorem
requiring the scalar potential to explicitly depend on the background coordinates, we induce a diffeo-
morphism invariance breaking and settle a formalism to find spatially localized solutions in the probe field
limit. By inserting a backreaction equipped with a cosmological constant and a Maxwell term coupled to a
dielectric function in the model, we find a Lifshitz black hole solution.

DOI: 10.1103/PhysRevD.106.125017

I. INTRODUCTION

Spatially localized structures modeled by classical sca-
lars in field theory has brought several contributions to the
understanding of topological solutions and their applica-
tions [1–3]. In flat spacetime the existence of stable,
nonzero finite-energy solutions in systems governed by
standard covariant Lagrangians constituted only by scalar
fields has hard restrictions arising from Derrick’s theorem
[4,5], which states that nontrivial solutions only exist in
1þ 1 dimensions in models where non-negative scalar
potentials are equipped with some nonunitary set of
degenerate minima. Spatially localized scalar field solu-
tions are then trapped inside the topological sectors existing
between consecutive degenerate minima and have a kink-
like profile.
There are some paths to evade Derrick’s theorem in flat

spacetimes and capture nontrivial scalar field solutions in
arbitrary dimensions. One of these ways is presented in
[6], where it’s proposed to put aside general covariance by
requiring the scalar potential to have an explicit depend-
ence on the background coordinates. It generates non-
dynamical degrees of freedom in the action which implies
that the energy-momentum tensor is no longer conserved
in general. Studying models in this setup has provided
several results involving topological solutions in different

scenarios (recent related works are in [7–13]).
Generalization of Derrick’s theorem for curved space-
times has been proposed in some works [14–16], pointing
out that it is not possible to exist nontrivial probe scalar
field solutions on flat or static, asymptotically flat space-
times with more than 1þ 1 dimensions in relativistic
scalar field models with standard covariant structure, but
there are already paths for its evasion [17–22], which
leads to new tools on finding soliton-like structures in
different scenarios. Some of these routes are also based on
[6], but mainly on models with no backreaction since the
diffeomorphism invariance breaking results in compati-
bility problems with the gravitational field equation when
it comes to backreacting configurations.
We are interested in working on radially symmetric

backgrounds asymptotically approaching Lifshitz space-
times [23] as

ds2
����
r→∞

≃−
�
r
l

�
2z
dt2þ

�
l
r

�
2

dr2þ
�
r
l

�
2

dxidxi; ð1:1Þ

where z denotes the dynamical exponent, read as a measure
of the spacetime anisotropy since within its set of iso-
metries the metric (1.1) is equipped with the nonrelativistic
coordinate scaling [24]

Dz∶ t → βzt; xi → βxi and r → r=β: ð1:2Þ

Lifshitz geometries were introduced in [23] in the context
of gauge/gravity duality to study strongly correlated non-
relativistic field theories presenting anisotropic scaling
properties. For z ≠ 1 the boundary geometry (1.1) does
not arise from scalar-tensor theories, but usually only
emerges in the presence of massive vector fields [25] or
in the context of Horäva-Lifshitz gravity [26]. For z ¼ 1we
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retrieve anti–de Sitter (AdSD) spacetime. Additionally,
black hole solutions asymptotically approaching Lifshitz
spacetimes have emerged in models where the temperature
of the gravity side is used to involve the dual field theory in
thermal bath [24,25,27,28] and since then several solutions
of asymptotically Lifshitz black holes have been carried out
(see, for instance [29–39]).
In this work we study scalar fields in asymptotically

Lifshitz spacetimes both in probe limit and in the full
backreacting setup by breaking general covariance (or
diffeomorphism invariance). Initially, we are interested in
capturing spatially localized structures in an effective
model where the probe scalar field is placed on fixed,
nonbackreacting geometries. In this regime, analytical and
numerical solutions were found on the Lifshitz boundary
geometry (1.1) [19] and on generic static, isotropic space-
times, with applications in topological black holes and
wormholes [20–22]. In particular, in [19,20] a routine to
capture nontrivial probe scalar solutions from first-order
field equations on curved spacetimes has been introduced.
Here we extend these studies to asymptotically Lifshitz
spacetimes.
We insert backreaction in the model from a minimally

coupled Einstein-Maxwell-scalar model equipped with a
coordinate dependent dielectric function. In this scenario,
in addition to losing coordinate invariance, we also
have a compatibility problem in the field equations, since
in the gravity sector the divergence of the Einstein tensor
is zero (due to the contracted Bianchi identity which
holds even in absence of general covariance) while the
divergence of the energy momentum tensor in general is
not due to contributions arising from the nondynamical
degrees of freedom in the action. Consequently, we can
only find solutions in the particular cases where the sum
of contributions arising within the divergence of the
energy momentum tensor due to the diffeomorphism
invariance breaking cancel out, as extensively discussed,
for example, in refs. [40–45]. It leads us to a neutral
topological Lifshitz black hole despite the presence of the
Maxwell field, which is a net effect of the compatibility
condition on the background dependent ingredients in the
action. It is interesting to point out that although there is
no prior correlation between the critical exponent and the
nondynamic degrees of freedom, the latter vanish for
z → 1, where one finds an AdS black hole. Thus, in this
regime both relativistic scaling and general covariance
are restored.
The work is organized as follows. In Sec. II we present

the scalar field action with its respective field equations and
develop the formalism to deal with probe scalars on Lifshitz
spacetimes, where we study the formation of soliton-like
structures. In Sec. III we insert backreaction in the model
and find a Lifshitz black hole solution, whose thermody-
namics is analyzed in Sec. IV. In Sec. V we make final
remarks about the study we present.

II. SCALAR FIELDS IN THE PROBE LIMIT

A. General setup

The action for the model we study in this section is
given by

SðϕÞ ¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
−
1

2
∇aϕ∇aϕ − Vðx;ϕÞ

�
; ð2:1Þ

where g ¼ detðgabÞ is the metric determinant, ϕðxÞ repre-
sents a scalar field that self-interacts through the scalar
potential Vðx;ϕÞ, which explicitly depends on the back-
ground coordinates xa, a ¼ 0; 1;…; D − 1. The field equa-
tion and the energy-momentum tensor derived from the
action (2.1) are

□ϕ ¼ ∂V
∂ϕ

; ð2:2aÞ

Θab ¼ ∇aϕ∇bϕ −
1

2
gabð∇ϕÞ2 − gabVðx;ϕÞ; ð2:2bÞ

respectively, where □ ¼ gab∇a∇b is the d’Alembertian
operator. By requiring the action to explicitly depend on the
background coordinates, we explicitly break the diffeo-
morphism invariance of the model, which implies—in
particular—that the energy-momentum tensor is no longer
conserved, since

∇aΘa
b ¼ ∂bVðx;ϕÞ ≠ 0. ðin generalÞ ð2:3Þ

The explicitly coordinate dependence can be read as the
presence of nondynamical degrees of freedom in the action,
which induces part of the self-interaction energy of the
scalar field to be dissipated on the background geometry in
form of energy and momentum, but for now not in quantity
enough to change the background geometry.
We are interested in finding spatially localized structures

in the probe limit where the scalar field is placed on fixed,
static geometries describing asymptotically Lifshitz space-
times generically written as

ds2 ¼ −
�
r
l

�
2z
e2νdt2 þ

�
l
r

�
2

e2λdr2 þ
�
r
l

�
2

σ̂ijdxidxj;

ð2:4Þ

with ν ¼ νðrÞ, λ ¼ λðrÞ and ðx0; x1Þ ¼ ðt; rÞ. The standard
Lifshitz spacetime (1.1) is recovered in cases where the
limit ðe2ν; e2λÞr→∞ ¼ ð1; 1Þ is satisfied along with the
identification σ̂ij ¼ δij, but here we assume a larger
setup where the metric σ̂ijðxkÞ depends on the remaining
coordinates xi; i ¼ 2;…; D − 1, describing a transverse
(D − 2)-dimensional Einstein manifold Σ̂γ with Ricci
tensor R̂ij ¼ γσ̂ij and γ ¼ 0;�1, hence Σ̂γ can hold SD−2
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(for γ ¼ 1), RD−2 (for γ ¼ 0) or HD−2 (for γ ¼ −1)
topologies.
The background metric (2.4) supports a time-like Killing

vector ξ ¼ −∂t, which can be used to build a conserved
current related to the probe field as Ja ¼ Θabξb and define
the energy of the scalar as

EðξÞ ¼ −
Z
Σ
dD−1x

ffiffiffiffiffiffi
jhj

p
naξbΘab; ð2:5Þ

where Σ denotes a (D − 1)-dimensional manifold defined
at fixed time, equipped with unit normal vector na ¼
−ðrlÞzeνδa0 and induced metric hpq, with h ¼ detðhpqÞ
and p; q ¼ 1;…; D − 1. For simplicity, we assume that
the scalar field and potential only depends on the radial
coordinate, i.e., ϕ ¼ ϕðrÞ and Vðx;ϕÞ ¼ Vðr;ϕÞ. Opting
for a static configuration of the model is important here
because it allows us to ensure that there is no energy flux
from the field to the background geometry. In this way, the
energy of the field is conserved even in the presence of a
gradient term of the scalar potential along the radial
coordinate.
Under these considerations, the field equation (2.2a)

becomes

�
l
r

�
Dþz−3

e−ðνþλÞ d
dr

��
r
l

�
Dþz−1

eν−λ
dϕ
dr

�
¼ ∂V

∂ϕ
: ð2:6Þ

The above equation is second order and in general hard to
solve due to possible nonlinearities arising from the metric
and scalar potential functions. For regular spatially local-
ized solutions with finite energy the appropriate boundary
conditions are

ϕðr → r0Þ ¼ ϕ0; ϕðr → ∞Þ ¼ ϕ∞; ð2:7aÞ

lim
r→r0

���� dϕdr
���� < ∞; lim

r→∞

dϕ
dr

¼ 0; ð2:7bÞ

where ϕ0 and ϕ∞ are constants specified in each scalar field
model and r0 ≥ 0 denotes a possible lower bound on the
radial coordinate range, depending on the background
geometry one uses.

B. Minimal energy setups for probe scalars

A possible route for finding spatially localized field
solutions within the system described so far is by reducing
the order of the field equation (2.6), since it can relieve
some difficulties when dealing with its nonlinearities.
In order to capture suitable first-order equations, we look
up for minimal energy field solutions. To begin with, we
note that −naξbΘab ¼ −ðrlÞzeνΘ0

0 and that Θ0
0 can be

rearranged as

−Θ0
0 ¼

1

2

�
e−λ

r
l
dϕ
dr

∓ ffiffiffiffiffiffi
2V

p �
2

� e−λ
r
l
dϕ
dr

ffiffiffiffiffiffi
2V

p
: ð2:8Þ

By inserting these expressions in the energy of the scalar
field in (2.5) one can improve the bound

EðξÞ ≥ �
Z
Σ
dD−1x

ffiffiffiffiffiffi
jhj

p
eν−λ

�
r
l

�
zþ1 dϕ

dr

ffiffiffiffiffiffi
2V

p
; ð2:9Þ

which is saturated for cases where the first-order differ-
ential equation

dϕ
dr

¼ �eλ
l
r

ffiffiffiffiffiffi
2V

p
ð2:10Þ

is satisfied, leading us to minimal energy field solutions. A
direct checking proves that scalar fields solving equa-
tion (2.10) also satisfy the second-order equation (2.6).
A consequence of the first-order equation (2.10) is that its
solutions must come in pairs. Furthermore, since the sign
of the derivative does not change, such solutions are
monotonic and, in accordance with the boundary con-
ditions (2.7), must present kink-like profiles. We use kink
for the positive sign and anti-kink for the negative sign
in Eq. (2.10).
The minimal energy is given by Emin ¼ min fEðξÞg and

by using relation (2.10) one can express it as

Emin ¼ ωðγÞ
D−2

Z
∞

r0

dreν−λ
�
r
l

�
Dþz−1

�
dϕ
dr

�
2

; ð2:11Þ

where ωðγÞ
D−2 ¼

R
dD−2x

ffiffiffiffiffiffijσ̂jp
is the world volume of the

transverse space Σ̂γ , with σ̂ ¼ detðσ̂ijÞ. Moreover, one can
also use the equation (2.10) to rewrite the energy density of
the scalar field and shows that it automatically satisfies the
weak energy condition

ρ ¼ e−2λ
�
r
l

�
2
�
dϕ
dr

�
2

¼ Θabξ
aξb ≥ 0; ð2:12Þ

which indicates that the scalar fields we are treating here are
well behaved since its energy density measured by observ-
ers on time-like curves on the background geometry is
always nonnegative [46].
We can distinguish the kink solution from the antikink

solution by associating the field values on the spacetime
boundaries with conserved quantities. Here, we follow a
routine similar to the one recently settled in [19,20] and
build such a charge from the 1-form

B ¼ Badxa ¼ eνþλΔϕðrÞζðrÞdt; ð2:13Þ

with ΔϕðrÞ ¼ ϕðrÞ − ϕ0 and
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ζðrÞ ¼

8>><
>>:

− r
α−1

�
l
r

�
α

; if α ≠ 1;

l ln r; if α ¼ 1;
ð2:14Þ

where for simplicity we write α ¼ D − z − 1. The
vector Ba is used to define the antisymmetric tensor fab ¼
∂aBb − ∂bBa, which is necessary to build the auxiliary
conserved current J̃a ¼ ∇bfab. Applying Gauss’s law on
the current J̃a, one finds the conserved charge

QΔϕ ¼ −
I
∂Σ∞

dD−2x
ffiffiffiffiffiffiffiffiffiffi
jhð2Þj

q
nasbfab; ð2:15aÞ

¼ ωðγÞ
D−2Δϕ∞ lim

r→∞

�
1þ

�
r
l

�
α

ðνþ λÞ0ζðrÞ
�
; ð2:15bÞ

where Δϕ∞ ¼ ϕ∞ − ϕ0 and sa ¼ e−λ r
l δ

a
1 denotes the unit

normal vector to the boundary surface ∂Σ defined at fixed r,

with induced metric hð2Þij ¼ ðrlÞ2σ̂ij and taken at spatial
infinity ð∂Σ∞Þ.
The last important ingredient to setup this formalism is

given through the insertion of an auxiliary function WðϕÞ
as follows:

dϕ
dr

¼ �e−ðν−λÞ
�
l
r

�
Dþz−1 dW

dϕ
: ð2:16Þ

Under this choice the above first-order equation is—in
principle—calculable by using standard calculus tech-
niques, depending on the choice we made for the back-
ground geometry and the scalar potential, which now can
be factored out by separating the field-dependent term from
the coordinate-dependent one, leading to

Vðr;ϕÞ ¼ 1

2
e−2ν

�
l
r

�
2ðDþz−2Þ�dW

dϕ

�
2

; ð2:17Þ

once we require compatibility between Eqs. (2.10) and
(2.16). In order to avoid possible divergences arising from
the metric functions and ensure the compatibility of the
scalar potential and the field equation (2.16) with the
boundary conditions (2.7) we also require that the scalar
potential satisfy Vðr0;ϕ0Þ ¼ 0 ¼ limr→∞Vðr;ϕÞ, which
implies that the boundary values ðϕ0;ϕ∞Þ have to be
extremes of WðϕÞ. Another advantage of the presented
formalism is that the minimal energy now depends only on
the boundary values of the auxiliary function WðϕÞ,

Emin ¼ ωðγÞ
D−2jΔWj; ð2:18Þ

where ΔW ¼ Wðϕ∞Þ −Wðϕ0Þ. In this way, we can find
the energy of the scalar even if we do not know the exact
solution of the field equation, since it is enough to know the

auxiliary function related to the model and the scalar field
boundary values.

C. Example

Now let us discuss an illustrative example where the
ideas discussed so far can be applied providing analytical
and numerical field solutions. We use as auxiliary function
WðϕÞ ¼ ϕ − ϕ3=3 and for background geometry we pick
out the uncharged scenario of the Lifshitz topological black
hole solution found in [47],

e2ν ¼ e−2λ ¼ 1 −
2m
rβ−1

þ γã2
�
l
r

�
2

; ð2:19Þ

with ã¼ðD−3Þ=ðβ−3Þ, β ¼ Dþ z − 1 and 2m ¼ rβ−1h þ
γã2l2rβ−3h , where r0 ¼ rh denotes its event horizon, which
exists for any possible value of γ in cases where β − 1 > 0.
With these ingredients the self-interaction potential (2.17)
becomes

Vðr;ϕÞ ¼ 1

2

�
l
r

�
2ðβ−1Þ ð1 − ϕ2Þ2

1 − 2m
rβ−1 þ γã2ðlrÞ2

; ð2:20Þ

and the first-order field equation (2.16) is here given by

dϕ
dr

¼ �
�
l
r

�
β 1 − ϕ2

1 − 2m
rβ−1

þ γã2ðlrÞ2
: ð2:21Þ

The above equation has no general solution for all possible
values of z, but it leads to scalar fields asymptotically
behaving as

ϕðr → ∞Þ≃ ∓ l
β − 1

�
l
r

�
β−1

þO
�

1

r2ðβ−1Þ

�
; ð2:22Þ

where we consider ϕ∞ ¼ 0 in order to completely suppress
the presence of the field in regions far from the black hole
horizon, where the Lifshitz background (1.1) is dominant.
Analytical solutions emerge in cases where z ¼ 3 −D. In
these cases we have event horizon given by rh ¼ mþ m̃,
where m̃2 ¼ m2 − γðD − 3Þ2l2 and the scalar field—in
terms of the parameters m and m̃—becomes

ϕðrÞ¼

8>>><
>>>:
� tanh

�
l2

2m̃
ln
�
1− ðmþ m̃Þ=r
1− ðm− m̃Þ=r

��
; if m̃> 0;

∓ tanh

�
l2

r−m

�
; if m̃¼ 0:

ð2:23Þ

The energy density of the field is
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ρ ¼
�
l
r

�
2ðβ−1Þ ð1 − ϕ2Þ2

1 − 2m
rβ−1

þ γã2ðlrÞ2
; ð2:24Þ

and has its profile depicted in Fig. 1 along with a numerical
field solution of (2.21) for different values of z. Note that it
has a spatially localized shape where the increasing of the
z-parameter accentuates the rate the field is asymptotically
suppressed, in addition to making the field density more
concentrated in the sectors near the horizon. As required,
the field is regular throughout the region outside the event
horizon and has a kinklike profile. In the vicinity of the
horizon the field assumes one of the extremes ofWðϕÞ and
the energy density strongly approaches zero, delimiting the
region where the curvature effects are dominant over any
self-interacting response of the field. Finally, the energy in
(2.18) and the conserved charge (2.5) are evaluated as

ðEmin; QΔϕÞ ¼ ωðγÞ
D−2ð2=3;�1Þ; ð2:25Þ

where the “þ” (“−”) sign is used to characterize the kink
(antikink) solution.

D. Radial stability

The radial stability of the solutions found from the model
we are discussing in this section is given by considering
periodic fluctuations around the static solution as ϕðr; tÞ ¼
ϕðrÞ þ eiωtψðrÞ in the field equation (2.6), which provides
the stability equation

�
−□þ ∂

2V
∂ϕ2

����
ϕðrÞ

�
ψðrÞ ¼ ω2

�
l
r

�
2z
e−2νψðrÞ: ð2:26Þ

After some manipulations, one can rewrite the Eq. (2.26) as
a Sturm-Liouville problem,

�
−

d
dr

�
pðrÞ d

dr

�
þ qðrÞ

�
ψ ¼ ω2

�
r
l

�
α−2

e−ðν−λÞψ ;

ð2:27Þ

where

pðrÞ ¼
�
r
l

�
β

eν−λ and qðrÞ ¼
�
r
l

�
β−2

eνþλ∂
2V
∂ϕ2

����
ϕðrÞ

;

ð2:28Þ
with, again, β ¼ Dþ z − 1. Its compatible inner product is

hψm;ψni ¼
Z

∞

ro

dr

�
r
l

�
α−2

e−ðν−λÞψ̄mðrÞψnðrÞ: ð2:29Þ

Equation (2.27) can be factorized as S†Sψ̃ ¼ ω2ψ̃ where
ψ̃ ¼ eν−λψ and

S† ¼
�
r
l

�
zþ1

eν−λ
�
d
dr

þWðrÞ þ ξðrÞ
�
; ð2:30aÞ

S ¼
�
r
l

�
zþ1

eν−λ
�
−

d
dr

þWðrÞ
�
; ð2:30bÞ

with

WðrÞ ¼ zþ 1

r
þWϕϕ

rD−2

�
l
r

�
zþ1

e−ðν−λÞ þ ðν − λÞ0; ð2:31aÞ

ξðrÞ ¼ 2ðν − λÞ0 −D − 2ðzþ 2Þ
r

: ð2:31bÞ

One can show that the operators S† and S are adjoint
under the inner product (2.29) [48], which implies that the
Sturm-Liouville problem (2.27) have no states with neg-
ative energy, which ensures the radial stability of the
solutions found. In particular, the zero-mode (ground-state)
is extracted from equation Sψ̃0 ¼ 0, resulting in

ψ0 ¼ c exp

�Z
dr

Wϕϕ

rD−2

�
l
r

�
zþ1

e−ðν−λÞ
�
; ð2:32Þ

where c denotes a normalization constant.

III. LIFSHITZ BLACK HOLE SOLUTION

Now we consider backreaction effects in the system.
We use the action of an Einstein-Maxwell-scalar model
given by

S ¼ SðϕÞ þ
1

2

Z
dDx

ffiffiffiffiffiffi
−g

p ðR − 2Λ − εðxÞFabFabÞ; ð3:1Þ

where SðϕÞ denotes the scalar action (2.1), R represents the
Ricci scalar, Fab ¼ ∇aAb −∇bAa is the Maxwell tensor

FIG. 1. Numerical solution of the Eq. (2.21) and its energy
density (2.24) for D ¼ 3þ 1, l ¼ 1, γ ¼ 0, rh ¼ 1=4 and some
different values of z.
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and Λ ¼ −ðD − 2ÞðDþ 3z − 4Þ=2l2 plays the role of a
cosmological constant. The Maxwell field is coupled with a
coordinate-dependent function εðxÞ, denoting a nondynam-
ical background field which induces another diffeomor-
phism breaking in the model and plays the role of an
effective dielectric [49,50]. In usual scalar-tensor models
presenting this type of coupling the effective dielectric
depends only on the scalar field (a necessary condition to
ensure general covariance in these scenarios) and it has
recently been used in modeling scalarization mechanisms
for black holes (see, for instance, [51–60] and references
therein).
The field equations derived from the action (3.1) are

□ϕ −
∂V
∂ϕ

¼ 0; ð3:2aÞ

∇aðεðxÞFabÞ ¼ 0; ð3:2bÞ

Eab ¼ Gab þ Λgab − Tab ¼ 0; ð3:2cÞ

where Gab denotes the Einstein tensor and

Tab ¼ Θab þ εðxÞ
�
2Fa

cFbc −
1

2
gabFcdFcd

�
; ð3:3Þ

represents the energy-momentum tensor with its scalar
sector Θab presented in Eq. (2.2b). The action (3.1) is not
invariant under diffeomorphisms, presenting explicit sym-
metry breaking in both scalar and Maxwell sectors induced
by the background dependence. It causes a compatibility
problem with the gravitational field equation (3.2c) since
we must have∇aEa

b ¼ 0 but each nondynamical degree of
freedom within the action (3.1) provides a new contribution
to the gradient of the energy-momentum tensor (3.3), while
the contracted Bianchi identity ∇aGab ¼ 0 holds even in
the absence of the general covariance due to the Riemann
tensor symmetries. It restricts the possibility of existence of
solutions to cases where the sum of contributions arising
from the background dependence comes in such a way that
∇aTa

b ¼ 0, which leads to

∂aVðx;ϕÞ ¼ −
1

2
FcdFcd

∂aεðxÞ; ð3:4Þ

used as a compatibility equation.
The ansatz we use for the background geometry is given

by the metric (2.4), but for simplicity we focus on cases
where the metric functions are related by νðrÞ ¼ −λðrÞ.
Motivated by the results described in the previous section
we assume that the scalar potential is

Vðr;ϕÞ ¼ 1

2
e−2ν

�
l
r

�
2ðDþz−2Þ�dW

dϕ

�
2

þ UðrÞ; ð3:5Þ

for some functionsW ¼ WðϕÞ and UðrÞ to be specified. In
this way, we factorize the dynamical degrees of freedom
from the nondynamical ones without affecting the field
equation (3.2a), which can still be reduced to the first-order
equation given by (2.16). Furthermore, we require the
effective dielectric and both scalar and Maxwell fields to
have again only radial dependence, i.e.,

ϕ ¼ ϕðrÞ; A ¼ AðrÞdt and εðxÞ ¼ εðrÞ: ð3:6Þ

In particular, the Maxwell field equation (3.2b) becomes

A0ðrÞ ¼ q=l
εðrÞ

�
l
r

�
D−z−1

; ð3:7Þ

where q denotes an integration constant and prime denotes
derivation in relation to the r-coordinate. We can associate
to the Maxwell field a charge given by

Q ¼ −
1

4π

I
∂Σ
dD−2x

ffiffiffiffiffiffiffiffiffiffi
jhð2Þj

q
nasbF̃ab ¼ q

4πl
ωðγÞ
D−2; ð3:8Þ

where F̃ab ¼ εðxÞFab. One can also verify that the com-
patibility equation (3.4) is satisfied by the pair of functions

1

εðrÞ ¼
ðz − 1ÞðDþ z − 2Þ

2q2

�
r
l

�
2ðD−2Þ

e2ν; ð3:9aÞ

UðrÞ ¼ −
zðz − 1Þ
2l2

e2ν; ð3:9bÞ

and note that both approach zero in the relativistic limit
z → 1. Note that these background geometry dependencies
affect obtaining the expression for the Maxwell field, which
can now only be obtained after solving the gravitational
field equations (3.2c). The components ðr; rÞ and ðt; tÞ of
the zero tensor Ea

b in Eq. (3.2c) becomes

Er
r ¼ Λ −

ðD − 2ÞðD − 3Þγ
2l2r2

þ ðD − 2Þðz − 1Þ
l2

e2ν

−
1

2
e2νϕ02

�
r
l

�
2

þ D − 2

2l2rDþ2z−4 ðrDþ2z−3e2νÞ0 ¼ 0;

ð3:10aÞ

Et
t ¼Λ−

ðD−2ÞðD−3Þγ
2l2r2

þðD−2Þðz−1Þ
l2

e2ν

þ1

2
e2νϕ02

�
r
l

�
2

þ D−2

2l2rD−2 ðrD−1e2νÞ0 ¼ 0: ð3:10bÞ

In the above equations we have no charge term con-
tributions associated with the Maxwell field. This comes
from the compatibility Eq. (3.4), which means that the
effective dielectric, the scalar and Maxwell fields compete
in such a way that the background geometry remains
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uncharged. The remaining equations Ei
j ¼ 0 are left for

checking. From subtracting the identity (3.10b) from
(3.10a) one finds�

dϕ
dr

�
2

¼ ðD − 2Þðz − 1Þ
r2

; ð3:11Þ

which is used within Eq. (3.10b) to finally find the
background solution

e2ν ¼ 1 − 2m
�
l
r

�
Dþ3z−4

þ γz
r2
; ð3:12Þ

with γz ¼ ðD − 3Þγ=ðDþ 3z − 6Þ and m is an integration
constant interpreted as a “mass parameter,” along with the
field solutions

ϕðrÞ ¼ φ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD − 2Þðz − 1Þ

p
ln

r
l
; ð3:13aÞ

AðrÞ¼ΦþðDþ z−2Þm
2q

�
l
r

�
2ðz−1Þ

þ z−1

2q

�
r
l

�
Dþz−2

�
1þðDþ z−3Þγz

ðDþ z−4Þr2
�
; ð3:13bÞ

where the pair ðφ;ΦÞ are integration constants. Since the
scalar field solution is invertible, the auxiliary function
WðϕÞ is found by using Eq. (2.16), leading to

WðϕÞ ¼ WðχðϕÞÞ

¼ ðD − 2Þðz − 1Þ
l

�
χDþz−2

Dþ z − 2
þmχ−2ðz−1Þ

z − 1

þ γz
l2

χDþz−4

ðDþ z − 4Þ
�

ð3:14Þ

with χðϕÞ ¼ exp ð�ðϕ − φÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðD − 2Þðz − 1Þp Þ. Once we
know the expression for WðϕÞ its simple to find the scalar
potential by inserting expressions (3.14), (3.12) and (3.9b)
in Eq. (3.5). For z ¼ 1 the auxiliary function, the scalar and
Maxwell fields becomes constants, while the effective
dielectric and the functionUðrÞ goes to zero, which implies
that in this regime, in addition to recovering the AdS
solution, we cancel all contributions arising from the
diffeomorphism invariance breaking, restoring the general
covariance.

IV. THERMODYNAMICS

We choose the extended thermodynamics framework
[61,62] for the analysis of black hole thermodynamics
obtained in the previous section. The cosmological constant
is understood as a constant thermodynamic pressure
term given by P ¼ −Λ=8π [63] and the mass of the black
hole is read as the enthalpy of the solution, rather than its

internal energy. The black hole temperature and entropy are
given by

TH ¼ 1

4πl

�
rh
l

�
z
�
ðDþ 3z − 4Þ þ ðD − 3Þ γ

r2h

�
; ð4:1aÞ

Sbh ¼
1

4

�
rh
l

�
D−2

ωðγÞ
D−2; ð4:1bÞ

respectively, while the first law becomes

dM ¼ THdSbh þ VbhdP; ð4:2Þ

where Vbh denotes the thermodynamic volume conjugate to
the pressure.
The black hole thermodynamic mass is obtained by

integrating Eq. (4.2) at constant pressure from zero to the
horizon and can be expressed in terms of pressure and
entropy as

MðP; SbhÞ ¼
Sbh
4πl

�
γ̂S̃

z−2
D−2
bh

Dþ z − 4
þ 16πl2PS̃

z
D−2
bh

Dþ z − 2

�
; ð4:3Þ

where, for simplicity, we define S̃bh ¼ 4Sbh=ω
ðγÞ
D−2. A direct

check reveals that TH ¼ ð∂M=∂SbhÞjP and since the black
hole mass is identified with enthalpy, the thermodynamic
volume becomes

Vbh ¼
∂M
∂P

����
Sbh

¼ l
Dþ z − 2

�
rh
l

�
Dþz−2

ωðγÞ
D−2; ð4:4Þ

which naturally matches the Smarr-like relation

M ¼ D − 2

Dþ z − 4
THSbh −

2

Dþ z − 4
PVbh; ð4:5Þ

also found in [47] for another class of Lifshitz black holes,
which coincides with the known Smarr relation associated
with AdS black holes for z ¼ 1 [61,64]. In this way, the
internal energy is Legendre transform of the mass,

Eint ¼ M − PVbh ¼
γ̂ωðγÞ

D−2
16πlðDþ z − 4Þ

�
rh
l

�
Dþz−4

; ð4:6Þ

which is proportional to the curvature on the horizon.
By assuming that the temperature can be expressed as a

function of the pressure and volume, the state equation for
the system is

TðP; VbhÞ ¼
Ṽ

z
Dþz−2
bh

4πlðD − 2Þ ð16πl
2Pþ γ̂Ṽ

−2
Dþz−2
bh Þ; ð4:7Þ

with Ṽbh¼ðDþz−2ÞVbh=lω
ðγÞ
D−2. Its associated P − V an

T−V diagrams for fixed z are depicted in Figs. 2(a) and 2(b),
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respectively. In Fig. 3 we depicted the P − V and T − V
diagrams with fixed T and P, respectively, for different
values of z. The specific heat at constant pressure is
Cp ¼ TH=ð∂TH=∂SbhÞjP, which leads to

Cp ¼ ðD − 2ÞSbh
16πl2PS̃

2
D−2
bh þ γ̂

16πl2zPS̃
2

D−2
bh þ γ̂ðz − 2Þ

: ð4:8Þ

For γ̂ ¼ 0 the internal energy (4.6) is zero and the
temperature is simply T ¼ 4lPṼ

z
Dþz−2=ðD − 2Þ, while

the specific heat is proportional to the entropy, with
Cp ¼ ðD − 2ÞSbh=z, which in this case is always positive
(Note that for ðγ̂; z; DÞ ¼ ð0; 2; 4Þ the entropy and specific
heat are equal). In addition, for γ̂ ≠ 0 we have Cp > 0 only
for −2Λr2h > jγ̂j, which sets a lower bound on the event
horizon possible values,

rh >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D − 3

Dþ 3z − 4

r
l: ð4:9Þ

These results generalize those obtained in [61] in the Ads
setup for theLifshitz black holeswepresent here.After some

manipulations, the thermodynamic mass can be also
expressed in terms of the “mass parameter” m as

M¼ eM−
ðz−1ÞðD−2ÞωðγÞ

D−2
4πlðDþ z−2ÞðDþ z−4Þ

�
rh
l

�
Dþz−2

; ð4:10Þ

with

eM ¼ Dþ 3z − 6

Dþ z − 4

�
l
rh

�
2ðz−1Þ ðD − 2ÞωðγÞ

D−2
8πl

m; ð4:11Þ

proportional to the mass of a topological AdSðDÞ black hole.
For z ¼ 1 we have M ¼ eMðz¼1Þ, which coincides with the
mass of the topological AdSðDÞ [65,66], as expected.

V. ENDING COMMENTS

In this work we studied scalar fields in asymptotically
Lifshitz spacetimes in scenarios presenting general covari-
ance breaking from the requirement of coordinate depend-
ence within the action. In the probe limit we presented a
method to capture analytical and numerical spatially
localized solutions based on evasions of the Derrick’s
theorem in curved backgrounds, generalizing the previous
results of [19]. The energy-momentum tensor is not
conserved in these setups, but when considering both
background geometry and field solutions static, we keep
the main conditions to have finite energy, as expected from
Noether’s theorem. The solutions found are radially stable
and a zero mode can be captured from its stability equation.
We also extended our study to consider backreaction

effects from an Einstein-scalar-Maxwell model presenting
explicit coordinate dependence in both scalar and Maxwell
sectors. In the scalar sector—inspired by the expression we
found for the scalar potential in the probe limit—we
factorized the scalar sector into two subsectors, one
depending only on the scalar field and the other holding
nondynamical degrees of freedom, while the Maxwell
sector was equipped with an effective dielectric, also
coordinate dependent. In this setup the diffeomorphism

(a) (b)

FIG. 2. (a) P − V diagram for isotherms with different values of TH and (b) T − V diagram for curves of constant pressure from
Eq. (4.7) with l ¼ 1, γ ¼ 1, z ¼ 1.25 and D ¼ 3þ 1.

FIG. 3. P − V (with fixed TH ¼ 0.25) and T − V (with fixed
P ¼ 0.25) diagrams for Eq. (4.7) with l ¼ 1, γ ¼ 1, D ¼ 3þ 1
and some different values of z.
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invariance breaking induces a compatibility problem with
Einstein equations, since in general the energy-momentum
tensor is no longer conserved while the Einstein tensor still
holds zero divergence due to the Bianchi identity. We can
only solve the complete set of field and gravity equations in
the particular case where the sum of the contributions
arising from the nondynamical degrees of freedom arising
in the divergence of the energy-momentum tensor is zero,
which was used to specify the background geometry of the
model, revealing a noncharged Lifshitz black hole solution
whose thermodynamics we analyzed in detail.
An interesting feature of the solution we found is that

the effects arising from the general covariance breaking
elements inserted in the action disappear in the relativistic
limit z → 1, despite the fact that there was no required
condition relating these two ingredients in the initial
assumptions. Furthermore, the emerging compatibility
equation exhibits a competition between the effective
dielectric and the scalar potential which has the net effect
of discharging the background geometry. We must point
out that there are several paths to extend the ideas
outlined here. For example, new solutions can be found
when considering distinct effective actions or different

geometries presenting anisotropic scaling, such as those
discussed in [67]. Another possibility is the search for
new gravity solutions in geometries with no scaling
anisotropy—the probe limit in these cases has already
been explored in [20], but scenarios which present
backreaction have not yet been considered. Finally, we
hope that the idea of using minimal energy solutions on
probe limits in a coordinated way with explicit general
covariance breaking will be useful for other future works
on effective gravitational models and their applications,
since the variety of choices which can be made about
diffeomorphism invariance breaking brings us a wide
range of possibilities to explore.
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