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The scalar field theory with potential VðφÞ ¼ 1
2
m2φ2 − 1

4
gφ4 (g > 0) is ill defined as a Hermitian theory

but in a non-Hermitian PT -symmetric framework it is well defined, and it has a positive real energy
spectrum for the case of spacetime dimensionD ¼ 1. While the methods used in the literature do not easily
generalize to quantum field theory, in this paper the path-integral representation of a PT -symmetric −gφ4

theory is shown to provide a unified formulation for general D. A new conjectural relation between the
Euclidean partition functions ZPT ðgÞ of the non-Hermitian PT -symmetric theory and ZHermðλÞ of the λφ4

(λ > 0) Hermitian theory is proposed: logZPT ðgÞ ¼ 1
2
logZHermð−gþ i0þÞ þ 1

2
logZHermð−g − i0þÞ. This

relation ensures a real energy spectrum for the non-Hermitian PT -symmetric −gφ4 field theory. A closely
related relation is rigorously valid in D ¼ 0. For D ¼ 1, using a semiclassical evaluation of ZPT ðgÞ, this
relation is verified by comparing the imaginary parts of the ground-state energy EPT

0 ðgÞ (before
cancellation) and E0;Hermð−g� i0þÞ.
DOI: 10.1103/PhysRevD.106.125016

I. INTRODUCTION

In search of physics beyond the StandardModel of particle
physics, non-Hermitian PT -symmetric Hamiltonians have
been used recently in model building [1]. The importance of
PT symmetry for non-Hermitian quantum-mechanical
theories with real energy eigenvalues was discovered in
1998 [2] on the basis of numerical and semiclassical argu-
ments. The quantum-mechanical theories considered are
governed by a Schrödinger equation with potential
VðxÞ ¼ m2x2=2þ gx2ðixÞϵ=4, where ϵ is a real parameter.
This potential is invariant under PT reflection P∶ x → −x,
T ∶ x → x, i → −i. For ϵ ≥ 0 the energy spectrum of the
Hamiltonian was found to be real numerically [2]. For the
massless case spectral reality was proved for ϵ > 0 byDorey
et al. using the methods of integrable systems [3,4]. For
ϵ ¼ 2 the massless case can be mapped to a Hermitian
Hamiltonian with the same spectrum [5,6]. The study of
PT -symmetric systems is an active research area [4,7].

Quantum mechanics is quantum field theory in one-
dimensional spacetime. However, very little is known about
the nature of PT -symmetric quantum field theory with
spacetime dimension D > 1, and the calculational tools
required for analyzing such theories remain largely unde-
veloped. Methods that have been successful in D ¼ 1 [4]
do not extend to higher dimensions. Recent papers [8–10]
have considered the case D > 1, but the proposed methods
have yet to be implemented in D ¼ 4.
In this paper we study the non-Hermitian PT -symmetric

scalar theory with potential VðφÞ ¼ m2φ2=2 − gφ4=4 (m,
g > 0) using the path-integral formulation of quantum
theories. Unlike earlier methods, here we study this theory
by constructing a relation between its Euclidean partition
function and that of a Hermitian theory with a positive
quartic potential VðϕÞ ¼ m2φ2=2þ λφ4=4 (m, λ > 0).
Specifically, we conjecture and propose the following
general relation for D ≥ 1:

logZPT ðgÞ ¼ 1

2
logZHermðλ ¼ −gþ i0þÞ

þ 1

2
logZHermðλ ¼ −g − i0þÞ; ð1Þ

where ZHermðλÞ is the usual Euclidean partition function for
the Hermitian theory, which must be analytically continued
to λ ¼ −g� i0þ (g > 0) in this equation. The functional
integral ZPT ðgÞ must be defined with an appropriate
contour CPT to ensure both existence and PT symmetry,
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as will be explained. The Euclidean partition function can
always be put in a form of an exponential function via the
exponentiation of disconnected Feynman diagrams in
perturbation theory or of the multi-instanton contributions
when there are nonpeturbative stationary points; logZ is
related to the energy. Therefore, (1) implies that

EPT ðgÞ ¼ 1

2
EHermð−gþ i0þÞ þ 1

2
EHermð−g − i0þÞ: ð2Þ

For positive real λ, EHermðλÞ ¼ E�
Hermðλ�Þ. This relation is

analytic, so it holds when EHermðλÞ is analytically con-
tinued to λ ¼ −gþ i0þ. We thus have Re½EHermð−gþ
i0þÞ� ¼ Re½EHermð−g − i0þÞ� and Im½EHermð−gþ i0þÞ� ¼
−Im½EHermð−g − i0þÞ�. Therefore, (1) implies a real energy
spectrum for the non-Hermitian −gφ4 theory.
We first study an analogous relation for toy D ¼ 0

partition functions, which are ordinary integrals. The
relation in this case takes a form similar to (1) but without
logarithms, and it can be rigorously proved because the toy
partition functions can be calculated exactly. We then
discuss some simple generalizations in D ¼ 0 in order to
understand why the logarithms in (1) appear when one
considers partition functions with D ≥ 1, which are func-
tional integrals. For D ¼ 1, we partly check the relation by
calculating the imaginary contributions to the ground-state
energy. Although on both sides of (2) the imaginary parts
cancel trivially, before their cancellation one can find
agreement between separate pieces on the lhs and rhs.
Since in the path-integral formulation, there is no essential
difference between the cases D > 1 and D ¼ 1 except for
the well-understood regularization and renormalization, we
conjecture that the relation (1) holds also for D > 1.

II. CASE D= 0

A. Full results

The toy D ¼ 0 model has been studied earlier in [4,11]
and is a good platform to illustrate the idea. We first
consider the Hermitian partition function

Z̃HermðλÞ ¼
Z

∞

−∞
dx exp

�
−
1

2
m2x2 −

1

4
λx4

�
; ð3Þ

where λ > 0. When λ ¼ −g < 0, the integral above is
divergent, but we can consider the PT -symmetric non-
Hermitian theory,

Z̃PT ðgÞ ¼ lim
ϵ→2

Z
CPT

dx exp
�
−
1

2
m2x2 −

1

4
gx2ðixÞϵ

�
; ð4Þ

where, for ϵ ¼ 2, CPT is a continuous contour that
terminates in the PT -symmetric Stokes wedges − 3

8
π <

arg x < − 1
8
π and − 7

8
π < arg x < − 5

8
π. The contour CPT is

not unique; deforming a contour joining the PT -symmetric
Stokes wedges leaves the value of the integral unchanged.

An example of CPT is shown as the solid line in Fig. 1.
Below, we show that the above toy partition functions
satisfy

Z̃PT ðgÞ ¼ 1

2
Z̃Hermð−gþ i0þÞ þ 1

2
Z̃Hermð−g − i0þÞ: ð5Þ

Using the contour CPT shown in Fig. 1 for (4) we get

Z̃PT ðgÞ ¼ eiπ=4
Z

0

−∞
dx exp

�
−
1

2
im2x2 −

1

4
gx4

�

þ e−iπ=4
Z

∞

0

dx exp

�
1

2
im2x2 −

1

4
gx4

�

¼ mπ

2
ffiffiffiffiffi
2g

p exp

�
−
m4

8g

��
I−1

4

�
m4

8g

�
þ I1

4

�
m4

8g

��
; ð6Þ

where I�1
4
ðzÞ is the modified Bessel function of the first

kind. On the other hand, doing the integral in (3) gives
Z̃HermðλÞ ¼ mffiffiffiffi

2λ
p expðm4

8λÞK1
4
ðm4

8λÞ, where K1
4
ðzÞ is the modified

Bessel function of the second kind. K1
4
ðzÞ has a branch cut

on the negative axis and for z > 0

K1
4
ð−z� i0þÞ ¼ π

2
ðI−1

4
ðzÞ − I1

4
ðzÞÞ

∓ iπ
2
ðI−1

4
ðzÞ þ I1

4
ðzÞÞ: ð7Þ

Substituting the above equation into 1
2
ZHermð−gþ i0þÞ þ

1
2
ZHermð−g − i0þÞ, we obtain the result in (6), which proves

the relation (5).

FIG. 1. An example of the contour CPT is shown as the solid
line. Also shown are two other contours (dashed lines)
C1∶ e−iπ=4ð−∞;þ∞Þ and C2∶ eiπ=4ð−∞;þ∞Þ.
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One may understand the relation (5) in another way.
When the function Z̃HermðλÞ is analytically continued away
from the positive real axis via λ ¼ g expðiθÞ, where g > 0,
it could still have an integral representation as in (3) but
with the contour rotated via x → x expð−iθ=4Þ. Then,
Z̃Hermðgeiðπ−0þÞÞ could be represented by the same integral
but with the contour given by C1 in Fig. 1, while
Z̃Hermðge−iðπ−0þÞÞ corresponds to the contour C2. In these
cases, the integrand is the same as that in (4) with ϵ ¼ 2.
Because of the symmetry x → −x in the integrand, the
contour CPT can be effectively viewed as half C1 plus half
C2 and thus one arrives at the relation (5).

B. Imaginary parts and semiclassical estimates

In the above example the partition functions can be
calculated exactly. This is not possible when D ≥ 1.
Therefore, we search for an alternative approach where
precise results of the partition functions are not needed, but
one still can examine the relation between the Hermitian
and the non-Hermitian PT -symmetric Euclidean partition
functions. From (7), one sees that Z̃Hermð−g� i0þÞ con-
tains an imaginary part:

Im½Z̃Hermð−g� i0þÞ�

¼ � mπ

2
ffiffiffiffiffi
2g

p exp

�
−
m4

8g

��
I1
4

�
m4

8g

�
− I−1

4

�
m4

8g

��

¼ ∓
ffiffiffi
π

p
m

e−m
4=4g for g → 0: ð8Þ

Although these imaginary parts cancel trivially on the rhs of
(5), one can still observe the same imaginary parts on the
lhs in evaluating Z̃PT ðgÞ semiclassically.
For small g we approximate the integral (4) using

the method of steepest descents [12]. There are three
stationary points: xL ¼−m=

ffiffiffi
g

p
, x0 ¼ 0, and xR ¼ m=

ffiffiffi
g

p
.

Steepest paths satisfy the constant-phase condition
Im½m2x2=2 − gx4=4� ¼ const, where the constant is deter-
mined by the phase at the stationary point. Writing x¼
xReþ ixIm, we have m2ðxRexImÞ¼ gðxRexImÞðx2Re−x2ImÞ,
which gives xRe ¼ 0; xIm ¼ 0, x2Re − x2Im ¼ m2=g. At the
stationary point x0, the solution with xIm ¼ 0 corresponds
to the steepest-descent path, while at xL or xR, x2Re − x2Im ¼
m2=g gives the steepest-descent path.
Next, we deform the contour CPT to the new one C0PT

shown in Fig. 2. In the case of a path integral for D ≥ 1,
all the steepest-descent paths crossing a stationary point
constitute a hypersurface called a Lefschetz thimble
[13–16]. For D ¼ 0, Lefschetz thimbles reduce to the
steepest-descent one-dimensional paths through the sta-
tionary points, e.g., the hyperbolas in Fig. 2. Anticipating
the generalization of our analysis to the caseD ¼ 1, we call
these paths in the present case thimbles, which are denoted
by J L, J 0, and J R. We denote the half Lefschetz thimble

of J L that goes to the lower (upper) half plane as J L;−ðþÞ.
Similarly, we denote the half Lefschetz thimble of J R
going to the lower (upper) half plane as J R;−ðþÞ. Thus, the
deformed contour can be expressed as C0PT ¼ J L;−þ
J 0 þ J R;−, which is left-right symmetric. The leading
contribution to Im½Z̃PT ðgÞ� is easily obtained by evalua-
ting the integral on J L;− and J R;− up to the Gaussian
fluctuations:

Im½Z̃PT ðgÞjJ L=R;− � ¼ �
ffiffiffi
π

p
2m

expð−m4=ð4gÞÞ:

These imaginary parts differ by a sign and so they also
cancel on the lhs of (5). Comparing the above equation with
the last line in (8), we see that for small g the imaginary
parts from J L;− and J R;− are equal to those from
1
2
Z̃Hermð−g − i0þÞ and 1

2
Z̃Hermð−gþ i0þÞ. The imaginary

part from J L;− is supposed to be that from the left part of
the standard contour CPT which is also the left part of C2
(see Fig. 1). The integral on the latter gives half of
ZHermð−g − i0þÞ. This explains the correspondence
J L;− ↔ −g − i0þ; J R;− ↔ −gþ i0þ in comparing the
imaginary parts from the lhs and rhs of (5).

C. Simple generalizations

The relation (5) is not general. To see why, consider a
generalization of the partition functions in (3) and (4). One
can consider ZHermðλÞ ¼ ½Z̃HermðλÞ�2. This partition func-
tion would be given by a double integral with the integrand
being the product of that in (3) for each variable. The
corresponding non-Hermitian partition function would be

FIG. 2. The deformed contour C0PT (heavy solid line) is
composed of steepest-descent paths through the stationary points
xL (left half-hyperboloid), x0 (the real line), and xR (right half-
hyperboloid).
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given as ZPT ðgÞ ¼ ½Z̃PT ðgÞ�2. These partition func-
tions do not satisfy ZPT ðgÞ ¼ ZHermð−gþ i0þÞ=2þ
ZHermð−g − i0þÞ=2 but rather

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZPT ðgÞ

p
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ZHermð−gþ i0þÞp
=2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ZHermð−g − i0þÞp
=2. One can

also consider ZHermðλÞ ¼ exp½Z̃HermðλÞ� and
ZPT ðgÞ ¼ exp½Z̃PT ðgÞ�, which satisfy (1) rather than (5).
In these examples Z̃PT and Z̃Herm are the fundamental

ingredients in the partition functions ZPT and ZHerm. The
relation between the Hermitian and non-Hermitian partition
functions should be expressed in terms of the fundamental
ingredients. Below we motivate that for realistic partition
functions with D ≥ 1, the fundamental ingredients are
given by logZ.

III. CASE D= 1

For D ¼ 1, the Euclidean partition function is
Z ¼ R

C Dx expð−S½x�Þ, where S is the Euclidean action

S½x� ¼
Z

dτ
�
1

2

�
dxðτÞ
dτ

�
2

þ VðxÞ
�
:

Usually, the partition function represents the Euclidean
transition amplitude between the ground state, h0je−ĤT j0i ¼R
dxfdxih0jxfihxfje−ĤT jxiihxij0i, where Ĥ is the

Hamiltonian operator and jxi=fi are position eigenstates.
The transition amplitude between position eigenstates
hxfje−ĤT jxii can also be calculated from the Euclidean
partition function but with fixed boundary conditions
xð−T=2Þ ¼ xi, xðT=2Þ ¼ xf for the functions to be
integrated.
The transition amplitude between position eigenstates is

used in practical calculations and one can project it onto the
vacuum persistence amplitude by taking T → ∞. For the
partition function Z ¼ hx0j expð−ĤTÞjx0i the imaginary
part of the ground-state energy can be calculated from this
Euclidean partition function [17–20]. To see this let
fjni; n ∈ Ng denote a complete set of energy eigenstates
of Ĥ with energies En increasing with n. We then
have Z ¼ hx0j expð−ĤTÞjx0i ¼

P
n expð−EnTÞjhx0jnij2.

Taking the imaginary parts on the logarithms of both sides
as T → ∞, we get

ImE0 ¼ − lim
T→∞

Im½logZ�
T

: ð9Þ

Of course, if the theory has a stable ground state, then
ImE0 ¼ 0. For the potentials of interest here, one may
choose x0 ¼ 0 as this point has the highest weight in the
ground-state wave function. For the Hermitian theory with
VðxÞ ¼ 1

2
m2x2 þ 1

4
λx4 (λ > 0), this defines ZHermðλÞ and

the contour C is in real function space: fxðτÞ∶xð−T=2Þ ¼
xðT=2Þ ¼ 0g. For the non-HermitianPT -symmetric theory
with VðxÞ ¼ 1

2
m2x2 − 1

4
gx4 (g > 0), one must assign a

contour CPT properly to define ZPT ðgÞ. A possible
way to define CPT is to let x ¼ θð−sÞ expðiπ=4Þsþ
θðsÞ expð−iπ=4Þs, where s is real and θðsÞ is the step
function. Then CPT is composed of all the real functions
sðτÞ with sð−T=2Þ ¼ sðT=2Þ ¼ 0.
Unlike the D ¼ 0 case, the PT -symmetric partition

function defined above is difficult to compute. However,
from the insights obtained in theD ¼ 0 case, we conjecture
the relation (1) between ZPT ðgÞ and ZHermðλÞ so that the
former can be calculated from the latter. Below, we adopt
the semiclassical evaluation of ZPT ðgÞ to motivate and
partly check this relation.

A. Semiclassical evaluation of ZPT ðgÞ
As in the case of D ¼ 0, to evaluate ZPT ðgÞ semiclassi-

cally we deform the contour CPT and apply the method
of steepest descents. We call the real function space
fxðτÞ∶xð−T=2Þ ¼ xðT=2Þ ¼ 0g the real hyperplane,
denoted as R∞. This is an infinite-dimensional space. To
apply the method of the steepest descents we need to
complexify this space to fzðτÞ∶zð−T=2Þ ¼ zðT=2Þ ¼ 0g,
where zðτÞ are complex functions. We denote the latter as
C∞. We then find the deformed contour C0PT that passes
through all relevant stationary points. The deformed con-
tour C0PT is a middle-dimensional hypersurface [21] in the
complexified space C∞.
First, we identify the stationary points and we assume that

all relevant stationary points are real as in the simple D ¼ 0
case. In the present case, we have infinitely many real
stationary points, but among all stationary points only three
are fundamental (in the so-called dilute-instanton-
gas approximation) and are in one-to-one correspondence
with theD ¼ 0 stationary points. All others are composed of
these fundamental stationary points. First, we have the trivial
stationary point x0ðτÞ ¼ 0. We also have two fundamental
instantons (also called bounces in the context of false-
vacuum decay [17,18]), xLðτÞ and xRðτÞ, whose explicit
forms are determined by solving the equation of motion

−
d2x
dτ2

þm2x − gx3 ¼ 0

with boundary conditions xðτÞjτ→�∞ ¼ 0 and
dx=dτjτ¼τ0

¼ 0. The solutions are

xLðτ; τ0Þ ¼ −
mffiffiffi
g

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − tanh2½mðτ − τ0Þ�Þ

q
;

xRðτ; τ0Þ ¼
mffiffiffi
g

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − tanh2½mðτ − τ0Þ�Þ

q
:

Note that the factors∓m=
ffiffiffi
g

p
are simply the stationary points

xL, xR in the simple D ¼ 0 toy partition functions.
The free parameter τ0 is a collective coordinate of the

bounce characterizing its “position.” In a rigorous sense,
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the parameter τ0 means that there are infinitely many
fundamental bounces for each type “L=R” that are degen-
erate in the Euclidean action. For any solution with chosen
τ0, the time invariance is spontaneously broken and thus
there is a zero mode in the fluctuations about a chosen
bounce solution. The integral over the fluctuations in the
zero-mode direction can be traded for an integral over
the collective coordinate; this amounts to adding up all the
degenerate fundamental bounces of the same type.
Now each bounce solution can be viewed as a point on

the real hyperplane as long as the degeneracy characterized
by τ0 is taken into account properly. Like the zero-dimen-
sional case associated with x0ðτÞ, xLðτ; τ0Þ, and xRðτ; τ0Þ,
we have three relevant Lefschetz thimbles J L, J 0, and J R
that are composed of the steepest-descent paths passing
through them. In general, the steepest-descent paths pass-
ing through a stationary point zaðτÞ can be obtained by
solving the gradient flow equation [13]

∂zðτ; uÞ
∂u

¼ δS½zðτ; uÞ�
δzðτ; uÞ

and its complex conjugate. Here u ∈ R and the boundary
condition is zðτ;u¼−∞Þ¼ zaðτÞ. Denoting h½z�¼−ReS½z�,
one can check that ∂h=∂u ≤ 0. The real part of −S½z�
decreases as we move away from the stationary point along
the path given by zðτ; uÞ (see Refs. [13,22]).
The present situation is much simpler. To identify the

steepest-descent paths passing through the fundamental
stationary points we consider the eigenvalue equation on
the real hyperplane

½−∂2τ þ V 00ðxaðτÞÞ�fai ðτÞ ¼ λai f
a
i ðτÞ;

where a ¼ 0;L;R. The fluctuation operators −∂2τ þ V 00ðxaÞ
are generalizations of Hessian matrices. In the tangential
space near xaðτÞ the eigenfunctions ffai g provide a basis.
For the cases λai > 0 (positive mode), λai ¼ 0 (zero mode),
and λai < 0 (negative mode),�fai generates two downward,
flat, and upward paths with respect to the “height function”
h½x� ¼ −ReS½x�. [Here the two paths generated by�fai join
at the stationary point xaðτÞ and form a continuous curve.]
Therefore, non-negative modes generate steepest-descent
paths that still lie on the real hyperplane of the configu-
ration space. For a negative mode one must look into the
subcomplex plane whose real axis is generated by that
negative mode. Associated with the negative mode, the
steepest-descent paths leave the stationary point and go to
the upper and lower imaginary directions on that subcom-
plex plane, in analogy with the hyperbolas in Fig. 2.
It is well known in the context of false vacuum decay [18]

that there is only one negativemode for the fluctuations about
each bounce solution while there is no negative mode about
the trivial solution. Therefore, all steepest-descent flows
passing through x0ðτÞ lie on the real line. ForJ L (J R), there
are two steepest-descent paths that do not lie on the real

hyperplane. Similarly, we only pick one of them, defining
J L=R;− and J L=R;þ.
Aside from the two fundamental bounces, there are

multiple-bounce solutions that form stationary points,
whose contribution to the path integral in the dilute-
instanton approximation is a combination of n1 left-type
bounces and n2 right-type bounces, which are separated by
intervals much larger than the duration of each single
bounce [18,23]. We label these multibounces by ðn1; n2Þ.
Denote the partition function evaluated on J L=R;− near the
single-bounce xL=R including the collective coordinate
integrated over as ZPT

L=R;−. Then the partition function
evaluated on the thimble J ðn1;n2Þ;− passing through the
multibounce ðn1; n2Þ has the form

ZPT
ðn1;n2Þ;− ¼ ZPT

0

n1!n2!

�
ZPT
L;−

ZPT
0

�n1
�
ZPT
R;−

ZPT
0

�n2

;

where ZPT
0 is the partition function evaluated on J 0 near x0

and its appearance is due to the contribution from the trivial
configurations between any two neighboring bounces. The
factor n1! or n2! is due to the symmetry when exchanging
the positions of the bounces of the same type. Then for an n
bounce, we have

ZPT
n;− ¼

X
n1þn2¼n

ZPT
ðn1;n2Þ;−:

The full partition function can be expanded as

ZPT ¼ ZPT
0 þ

X
n

ZPT
n;−

¼ exp

�
ZPT
L;−

ZPT
0

þ ZPT
R;−

ZPT
0

þ logZPT
0

�
: ð10Þ

In the full ZPT , all the fundamental stationary points are
completely entangled with each other because of the
multibounce configurations. In logZPT , they “decouple”
from each other and have one-to-one correspondence to the
three stationary points in the simple D ¼ 0 case (see
Fig. 2). Similarly, the Hermitian partition function ZHerm
can also be put in exponential form with logZHerm playing a
fundamental role; the latter is given by connected Feynman
diagrams. This, together with insights obtained from the
D ¼ 0 case, motivates us to conjecture the relation (1)
between logZPT and logZHerm. This relation indicates that
the energy of the non-Hermitian −gx4 theory can be
calculated from the Hermitian λx4 theory via (2).
Next, we partly check (2), and also relation (1), by

comparing the imaginary parts on the lhs and rhs for the
ground-state energy. Substituting (10) into (9) gives

ImEPT
0 ¼ − lim

T→∞

1

T
Im

�
ZPT
L;−

ZPT
0

þ ZPT
R;−

ZPT
0

�
; ð11Þ
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where we have used Im logZPT
0 ¼ 0 because the integral

ZPT
0 is performed on the real hyperplane near the trivial

stationary point.

B. Imaginary parts from nonperturbative
stationary points

We now evaluate ðZPT
L=R;−=ZPT

0 Þ. To integrate over the
Gaussian fluctuations on a Lefschetz thimble about a saddle
point, one usually needs to solve the flow equations that
determine the tangential space about the stationary point
on the thimble [13]. However, as mentioned above, our
case is much simpler and the well-known formula for
false-vacuum decay rates applies [22]. The integral over
fluctuations can be expressed in terms of functional
determinants of the Euclidean fluctuation operators:

ZPT
L=R;−
ZPT
0

¼ �
�
i
2

�
T

�
SE½xL=R�

2π

�
1=2

×

���� det0½−∂2τ þ V 00ðxL=RðτÞÞ�
det ½−∂2τ þ V 00ðx0Þ�

����−1=2e−SE½xL=R�: ð12Þ

Here, the prime on det indicates that the zero mode is
excluded when evaluating the functional determinant. The
integral over the fluctuations in the zero-mode direction can
be traded for an integral over the collective coordinate [24],
giving the factor T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE½xL;R�=2π

p
in the above equation,

where “þ” corresponds to the left-type bounce and “−” to
the right-type bounce.
The functional determinants can be calculated using the

powerful Gelfand-Yaglom theorem [25]. The results with
the zero modes removed are given in Ref. [19] for the kink-
type solutions and in Ref. [22] for the bounce-type
solutions. For our case, we have

det0½−∂2τ þ V 00ðxL=RðτÞÞ�
det ½−∂2τ þ V 00ðx0Þ�

¼ −
1

12m2
:

Substituting the above result into (12), we obtain

− lim
T→∞

1

T
Im

�ZPT
L=R;−
ZPT
0

�
¼ ∓m2

ffiffiffiffiffiffiffi
2m
πg

s
e−4m

3=ð3gÞ: ð13Þ

Below, we observe the same imaginary parts from the rhs
of (2).

C. Hermitian perturbation theory

The energy for the Hermitian theory can be expressed as
a Rayleigh-Schrödinger perturbation series [26]. In par-
ticular, for the ground-state energy, we have

E0;HermðλÞ ¼
m
2
þm

2

X∞
n¼1

An

�
λ

4m3

�
n
; ð14Þ

where An have the asymptotic behaviors An ∼ffiffiffi
6

p ð−1Þnþ13nΓðnþ 1Þ=π3=2. Taking the Borel sum of
the above series and analytically continuing λ to −g�
i0þ (g > 0) would give rise to imaginary parts in
E0;Hermð−g� i0þÞ. These imaginary parts are only sensi-
tive to the large-order behavior of An. Therefore, we
consider a series, denoted by F0, having the same form
as (14) but with An ¼

ffiffiffi
6

p ð−1Þnþ13nΓðnþ 1Þ=π3=2 for all
n ≥ 1. One then has ImF0ðλÞ ¼ ImE0;HermðλÞ. F0ðλÞ reads

F0ðλÞ ¼
m
2
−
m

ffiffiffi
6

p

π3=2

Z
∞

0

dtt−
1
2e−t

�
1

1þ 3λt
4m3

− 1

�
;

which gives

ImF0ð−g� i0þÞ ¼ �2m2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m=ðπgÞ

p
e−4m

3=3g:

Finally, we get

1

2
ImE0;Hermð−g� i0þÞ ¼ �m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m=ðπgÞ

p
e−4m

3=3g;

which are precisely the same as those from (13) and
therefore from ImEPT

0 ðgÞ per (11). Thus, there is indeed
a correspondence between the imaginary parts on the lhs
and rhs in (2) applied to the ground-state energy. Note that
we again have the correspondence J L;− ↔ −g − i0þ;
J R;− ↔ −gþ i0þ in comparing the imaginary parts.
To generalize the above analysis to D > 1, one can

simply replace xðτÞ → φðxÞ and use the corresponding
higher-dimensional action. Again, there are three funda-
mental bounce solutions φ0ðxÞ, φLðxÞ, and φRðxÞ. The
previous analysis is still valid, so we conjecture that the
relation (1) also holds for D > 1 [27].

IV. CONCLUSIONS

In search of physics beyond the Standard Model of
particle physics, the use of non-Hermitian Hamiltonians
has only recently been used in model building [1]. In this
paper we have proposed a new approach to study non-
Hermitian PT -symmetric theories, in which one searches
for relations between quantities in the non-Hermitian and
the corresponding Hermitian theories. We have focused on
the partition functions for the −gφ4 theory, but there is no
reason, in principle, why similar relations for other theories
(for example, for ϵ ≠ 2) and for other quantities cannot be
constructed. This approach opens a new avenue to explore
non-Hermitian PT -symmetric theories.
The path-integral formulation we have adopted to build

the central relation (1) is very general, and the relation
may hold for spacetime dimension D ≥ 1. This relation
immediately implies that the energy spectrum for the
PT -symmetric −gφ4 theory is real. Of course, (1) remains
a conjecture that has only been partly checked by comparing
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the imaginary parts on the lhs and rhs of (2) for the ground-
state energy. Our analysis is also related to work on
resurgence and the analysis of large-order behavior in
perturbation theory [28]. Given the challenge, it is important
to use all complementary approaches to understand the
predictions concerning PT -symmetric field theory in
D ¼ 4 spacetime.
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