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We present a “primitive”way of realizing finite-mass Dirac monopoles inUð1Þ gauge theories involving
a single nonminimally interacting scalar field. Typically, the energy density of this type of monopole is not
concentrated at its core, but it is distributed in a spherical shell, as we illustrate on several exact solutions
in the Bogomol'nyi-Prasad-Sommerfield limit. We show that our construction can be interpreted
as a limit of infinitely massive W bosons coupled to electromagnetic field strength via a dipole moment.
Combining our approach with ideas of Weinberg and Lee, we present a general landscape of Uð1Þ gauge
models that support a finite-mass Dirac monopole. In fact, all classical monopoles, i.e., Wu-Yang, ’t Hooft-
Polyakov, Cho-Maison, etc., are special points on this landscape.
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I. BARE AND DRESSED MONOPOLES

In the classical Maxwell theory (e denotes the electric
charge)

L ¼ −
1

2e2
FμνFμν; ð1Þ

a magnetic monopole is a singular configuration of Uð1Þ
gauge fields, i.e., the solution of ∇⃗ × A⃗ ¼ qr⃗=r3, with q
being a dimensionless constant. As is well known, the vector
potential can be described everywhere except on a line going
from the monopole to infinity, the so-called Dirac string [1].
For instance, a static monopole at the origin with a Dirac
string lying on negative z axis is given as

AD
i ¼ q

εi3jxj
rðrþ zÞ : ð2Þ

The shape of the string can be changed via gauge
transformation.
The above description, which we dub a “bare monop-

ole,” is singular in three logically distinct ways. Namely,
1. there is an unphysical singularity along the Dirac string,
2. there is a physical singularity at the origin in both gauge
fields and in the magnetic field B⃗ ¼ qr⃗=r3 (we define

Bi ≡ 1
2
εijkFjk), and 3. the energy density E ¼ q2=ð2e2r4Þ

diverges at the origin in such a way that the total energy
(i.e., the classical mass of the monopole) is infinite.
These singularities are invariably clues that point to the

incompleteness of the theoretical model. However, in so far
as physics is concerned, they are not equivalently serious.
The presence of Dirac string is simply a failure of global
description of the Uð1Þ fiber bundle. The singularity in B⃗ is
a result of taking the bird’s eye point of view and describing
the monopole as a point particle. By itself, this is not a
problem as we can reasonably expect that in a more
fundamental theory this singularity will be smoothed out
by monopole’s microscopic degrees of freedom. However,
the real red flag is the absence of finite energy solutions.
All in all, we are compelled to depart from the pure

Maxwell theory. Fortunately, unlike the case of electric
monopoles, we do not have to abandon classical field
theory to establish the existence of finite-mass Dirac
monopoles.
Let us now follow the (somewhat chronological) path

that leads to finite-mass field-theoretical descriptions. First,
there was an observation of Wu and Yang [2] that one can
get rid of a Dirac string by embedding (2) into an SUð2Þ
gauge field (q ¼ 1):

AWY
i ¼ εiajσaxj

2r2
¼ AD

i Uσ3U† − iU∂iU†; ð3Þ

where σa are the Pauli matrices and where

U ¼
�
cosðθ=2Þ − sinðθ=2Þe−iφ
sinðθ=2Þeiφ cosðθ=2Þ

�
ð4Þ
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is a (singular) SUð2Þ gauge transformation that relates the
Wu-Yang monopole AWY

i and the Dirac monopole AD
i . By

itself, however, this enhancement of symmetry is not
sufficient to get rid of other singularities, neither in the
SUð2Þ “magnetic” fields, nor in the energy density.
But, as was realized independently by ’t Hooft [3] and

Polyakov [4], the Wu-Yang monopole can be made
completely regular via spontaneous symmetry breaking
instigated by adjoint scalars. Loosely speaking, these
additional fields condense at monopole’s core and smooth
out the r ¼ 0 singularity—the monopole becomes dressed.
Due to this field-dressing, the ’t Hooft-Polyakov monopole
has none of the three singularities and represents the best
classical description of a magnetic monopole.
However, as E. Weinberg and K. Lee pointed out [5]—

and what we want to propagate in this paper as well—it is
also possible to come up with finite-mass monopoles
without resorting to non-Abelian gauge fields (2).
The key idea of [5] is to couple an Uð1Þ gauge field

to a complex vector field Wμ with nonzero dipole
moment tensor dμν ¼ iðW†

μWν −WμW
†
νÞ that screens the

bare monopole’s charge via dipole moment interactions.
In other words:

L ¼ −
1

4g2
F2
μν −

η

2
dμνFμν −

χg2

4
d2μν

−
1

2
jDμWν −DνWμj2 þm2jWμj2; ð5Þ

where DμWν ¼ ð∂μ þ iAμÞWν. The parameter η measures
the strength of the dipole interactions with external electro-
magnetic field, while χ measures the dipole-dipole self-
interactions. For a static configuration, the energy density
can be rewritten as

E ¼ χ

4

�
gdij þ

η

χg
Fij

�
2

þ 1

4g2

�
1 −

η2

χ

�
F2
ij

þ 1

2
jDiWj −DjWij2 þm2jWij2: ð6Þ

In order to cancel the singularity in Fij we need dij to have
the same type of singularity and—as we see—we must
require η2 ¼ χ. However, by itself this is not enough to
make E regular [5]. Critically, the mass term would still
give us ∼1=r2. Furthermore, simply setting m ¼ 0 from
the beginning would not help either. This can be seen in
the limit η ¼ λ ¼ 1, where the above model can be
rewritten as pure SUð2Þ model upon identifications Aμ ¼
A3
μ and Wμ ¼ ðA1

μ þ iA2
μÞ=ð

ffiffiffi
2

p
gÞ. The static solution is

gauge equivalent to Wu-Yang monopole, which we know
has divergent energy.
Thus a further field must be added, namely a real scalar

field ϕ that develops a nonzero expectation value at the
vacuum, but which vanishes at the monopole’s core.

The idea is to make mass of Wμ dependent on ϕ in such
a way that m2ðϕÞ → m2ð0Þ ¼ 0 as r → 0.
All in all, the Weinberg-Lee’s procedure for regularizing

magnetic monopole can be encompassed by the following
Lagrangian:

LWL ¼ −
1

4g2
F2
μν −

η

2
dμνFμν −

χg2

4
d2μν

−
1

2
jDμWν −DνWμj2 þm2ðϕÞjWμj2

þ 1

2
ð∂μϕÞ2 −

λ

2
ðϕ2 − v2Þ2: ð7Þ

The total energy of a monopole solution is finite and regular
if we take η2 ¼ χ and make an appropriate choice ofm2ðϕÞ.
In [5], these solutions were dubbed nontopological mag-
netic monopoles, as the mechanism that renders monopoles
in these models to have finite classical masses has nothing
to do with topological reasoning á la ’t Hooft-Polyakov.
Nevertheless, the ’t Hooft-Polyakov monopole is, in fact, a
special point in the above family of models, namely η ¼
χ ¼ 1 and m2ðϕÞ ¼ g2ϕ2. Indeed, with these assignments
(7) becomes a unitary gauge of SUð2Þ theory with an
adjoint scalar Φ ¼ 1

2
σ3ϕ.

To summarise, Eq. (7) gives us finite-mass magnetic
monopoles that, compared to bare monopoles of Eq. (1),
are dressed in complex vector fieldsWμ with explicit dipole
moment interactions and a scalar field ϕ that controls the
mass of Wμs, making it effectively zero at the monopole’s
core. This idea can be depicted as in Fig. 1.
In the next section, we introduce a “primitive” way of

regularizing magnetic monopole’s energy that is seemingly
unrelated to these arguments. Our construction will lead us
to novel solutions that can be described exactly in the
Bogomol'nyi-Prasad-Sommerfield (BPS) limit λ → 0.
However, in Sec. III we will unify our and Weinberg-
Lee’s points of view into a much broader landscape of
theories that support finite-mass Dirac monopoles.

II. A PRIMITIVE WAY

The core idea of this paper is to have a real scalar field ϕ
interact directly with the electric magnetic field via a
noncanonical kinetic term:

FIG. 1. Transition from a bare monopole of (1) to a “dressed”
monopole of (7).
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L ¼ −
h02ðϕ=vÞ

4g2
F2
μν þ

1

2
ð∂μϕÞ2 −

λ

2
ðϕ2 − v2Þ2: ð8Þ

From the outset, there seems to be no need for the complex
vector field Wμ and dipole moment interactions (but see
Sec. III). Indeed, this model can yield finite-energy
magnetic monopole solutions for appropriate choices of
so-far arbitrary function h0ðϕ=vÞ (this notation with the
prime denoting a derivative becomes obvious when we
discuss the BPS limit). Without loss of generality we take
the normalization h0ð1Þ ¼ 1.
We can depict this primitive way of a field-dressing by

means of just a scalar field as in Fig. 2.
Let us analyze the full equations of motion for a static

configuration:

∇⃗ × ðh02ðϕ=vÞB⃗Þ ¼ 0; ð9aÞ

∇⃗2
ϕ ¼ h0ðϕ=vÞh00ðϕ=vÞ

g2v
B⃗2 þ 2λϕðϕ2 − v2Þ: ð9bÞ

We see that in the monopole background, B⃗ ¼ qr⃗=r3, the
first equation is solved identically if the scalar field depend
only on the (dimensionless) radius, i.e., ϕ≡ vσðρÞ, where
ρ ¼ gvr. The second equation (subject to the boundary
conditions σð0Þ ¼ 0 and σð∞Þ ¼ 1) then reads

1

ρ2
∂ρðρ2∂ρσÞ ¼ q2

h0ðσÞh00ðσÞ
ρ4

þ 2λ

g2
σðσ2 − 1Þ: ð10Þ

From the expression for the energy density

E
g2v4

¼ q2
h02ðσÞ
2ρ4

þ 1

2
ð∂ρσÞ2 þ

λ

2g2
ðσ2 − 1Þ2 ð11Þ

it is clear that a necessary condition for E to be regular at
origin is h0ð0Þ ¼ 0. It is not a sufficient condition, though,
as can be seen by assuming a leading power dependence
h0 ∼ h0σα as σ → 0. In this case one must additionally
assume α ∈ ½1; 2� in order to maintain regularity of E. The
asymptotic behavior of σ and E near the origin then falls
into two categories:

1 < α ≤ 2∶

8>><
>>:

σ ∼
h

ρ
qh0ðα−1Þ

i 1
α−1

E
g2v4 ∼

h
ρ2−α

qh0ðα−1Þα
i 2
α−1

ð12aÞ

and

α ¼ 1∶

8<
:

σ ∼ σ0 exp
�
− jqh0j

ρ

�
E

g2v4 ∼ q2h2
0
σ2
0

ρ4
exp
�
−2 jqh0j

ρ

� : ð12bÞ

In the first category (1 < α ≤ 2) both σ and E fall off in the
origin as a power law with a positive exponent. In the
second category (α ¼ 1), which is just a limit case α → 1,
both σ and E develop nonanalytic profiles ∼e−1=ρ. As we
shall see, this behavior is indicative of a maximal region
around monopole’s core where almost no energy is stored.
Thus, this kind of monopole is “hollow” (a term that we
adopt from [6]). It should be also pointed out, that only in
the case α ¼ 2, the energy density does not vanish at the
origin. In all other cases, the energy is stored in a
spherical shell.

A. The BPS limit

In the BPS limit λ → 0, the energy density can be
completed into a total square as

E ¼ 1

2

�
∇⃗ϕ −

h0ðϕ=vÞ
g

B⃗

�
2

þ v
g
∇⃗ðhðϕ=vÞB⃗Þ; ð13Þ

where we used hðϕ=vÞ∇⃗ · B⃗ ¼ hð0Þqδ3ðr⃗Þ ¼ 0. Thus, we
demand that the primitive function of h0 is zero at each zero
of ϕ, namely hð0Þ ¼ 0. Notice that this fixes the constant of
integration. With this additional condition, one can easily
derive the formula for mass of the BPS monopole:

MBPS ¼
4πvq
g

hð1Þ ¼ 4πvq
g

Z
1

0

h0ðσÞdσ: ð14Þ

Let us illustrate the BPS solutions on a particular family
of functions

h0ðσÞ ¼ σ1þ1=n; ð15Þ

where n ≥ 1. The BPS equation ∇⃗ϕ ¼ h0ðϕ=vÞB⃗=g can be
easily integrated. For instance, taking a single monopole at
the origin,1 i.e., B⃗ ¼ qr⃗=r3, the result reads

FIG. 2. Transition from a bare monopole of (1) to a “dressed”
monopole of (8).

1Exact multimonopole solutions can be readily obtained as
well, simply by taking B⃗ ¼ q

P
iðr⃗ − r⃗iÞ=jr⃗ − r⃗ij3, where the

sum goes over positions r⃗i of the monopoles.
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ϕ ¼ v
ð1þ q

nρÞn
and

E
g2v4

¼ q2

ρ4ð1þ q
nρÞ2nþ2

; ð16aÞ

in full accordance with our asymptotic formulas (12a).
The limit n → ∞ takes us directly to the “hollow”
monopole case:

ϕ ¼ ve−q=ρ and
E

g2v4
¼ q2

ρ4
e−2q=ρ; ð16bÞ

corresponding to the asymptotic behavior (12b). We dis-
play the energy densities (16) in Fig. 3. The mass of the
monopole follows from (14) as

M ¼ 4πvq
g

n
2nþ 1

: ð17Þ

III. OUTLOOK: BROADENING THE LANDSCAPE

At first, it seems that our primitive approach of the
previous section runs orthogonal to the Weinberg-Lee’s
ideas of charge screening via dipole moment interactions.
However, there is a natural connection between the two that
results from the following observation. We can rewrite
Eq. (8) as

L ¼ −
1

4g2
F2
μν −

ηðϕ=vÞ
2

d̃μνFμν − g2
χðϕ=vÞ

4
d̃2μν

þ 1

2
ð∂μϕÞ2 −

λ

2
ðϕ2 − v2Þ2: ð18Þ

Indeed, upon eliminating d̃μν via its equation of motion
∂d̃μν

L ¼ 0, we obtain

L ¼ −
1

4g2

�
1 −

η2ðϕ=vÞ
χðϕ=vÞ

�
F2
μν þ

1

2
ð∂μϕÞ2 −

λ

2
ðϕ2 − v2Þ2:

ð19Þ

Hence we return to the original Lagrangian (8) if2

η2 ¼ χð1 − h02Þ: ð20Þ

Furthermore, we can identify d̃μν with the dipole moment
tensor of the vector field Wμ in the limit of infinite mass.3

It is in this sense that our primitive approach falls into the
same purview as the Weinberg-Lee’s procedure, namely
that the finiteness of the monopole’s mass is realized by
screening of the magnetic charge via dipole moment
interactions.
There is, however, one important difference. Notice

that our approach calls for field-dependent η and χ
couplings that were, however, kept constant in (7). From
the formula (20), we see that at the monopole’s position
η2ð0Þ ¼ χð0Þ, namely the same condition required by the
Weinberg-Lee scheme for eliminating the singularity in
energy density. On the other hand, in the vacuum ηð1Þ ¼ 0,
i.e., the dipole moment interactions are shut down. This is
physically different process then having field-dependent
mass of Wμ fields.
Thus, we see that ours and Weinberg-Lee’s approach are

not equivalent, but they are a special cases of a yet more
general procedure that can be subsumed by the following
landscape of Uð1Þ gauge theories:

L ¼ −
f21ðϕ=vÞ
4g2

F2
μν −

ηðϕ=vÞ
2

dμνFμν −
χðϕ=vÞg2

4
d2μν

−
f22ðϕ=vÞ

2
jDμWν −DνWμj2 þm2ðϕ=vÞjWμj2

þ 1

2
ð∂μϕÞ2 −

λ

2
ðϕ2 − v2Þ2: ð21Þ

In this landscape both approaches are combined: both mass
and dipole couplings are taken as functions of ϕ=v (again,
some redundancy exists as one of those functions can be

FIG. 3. Energy density profiles (16) for various n. We take
q ¼ 1.

2One can absorb either η or χ into the definition of d̃μν,
hence there is no ambiguity in the correspondence between
(18) and (8).

3By this, we mean that Wμ fields are frozen so that their
kinetic term vanishes. Moreover, a similar Lagrangian as in
Eq. (18) can be obtained by starting with the Weinberg-
Lee model (7) and dropping the kinetic term jD½μWν�j2 there.
Of course, the functions mðϕ=vÞ, χðϕ=vÞ, and ηðϕ=vÞ are
different, but the structure is similar, which is what we
emphasize. The mass term m2jWj2, which is present in (7)
but not in (18), can be accounted for (at least in local patches)

by assigning d̃μν ¼ dμν þ mðϕ=vÞ
g2χðϕ=vÞ gμν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−W†

ρWρ
q

, where dμν ¼
iðW†

μWν −W†
νWμÞ as in (7).
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eliminated by redefinition of Wμ fields). Furthermore, the
kinetic terms of both Aμ and Wμ have field-dependent
prefactors.
Equation (21) represents a vast territory. It contains

Wu-Yang, ’t Hooft-Polyakov, Weinberg-Lee’s, and our
primitive monopoles as special cases. As already noted
in [5], by adding additional real vector field Zμ together
with appropriate interaction terms, the above theory can be
easily mapped to the bosonic sector of the electroweak
model (or some of its modification). In this way, both the
so-called Cho-Maison monopole [7] and all its finite-mass
incarnations [8–10] are naturally contained in this con-
ceptual scheme.
Further, if we allow for more scalar fields, we can

incorporate various nonlinear electrodynamics theories.
For instance, to obtain a Born-Infeld electromagnetism,
we simply use a nondynamical scalar field, say φ, as a
Lagrange multiplier:

L ⊃ −
φ

4g2
F2
μν −

β2

2

�
φþ 1

φ

�
þ 2β2 ð22Þ

⟶
½∂φL¼0�

β2

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

2g2β2
F2
μν

s !
: ð23Þ

Notice that (21) also contains non-Abelian theories with
nonminimally coupled adjoint scalars. This can be seen by
writing down such models in unitary gauge and figuring

our relations between field-dependent functions. In this
way, the following sublandscape can be derived:

L ¼ v2

2
f21ðϕ=vÞðDμnÞ2

−
1

4g2
½f22ðϕ=vÞF2

μν þ f3ðϕ=vÞðn · FμνÞ2�

þ 1

2
ð∂μϕÞ2 −

λ

2
ðϕ2 − v2Þ2; ð24Þ

where we decomposed the adjoint triplet ϕ ¼ ϕn into a
scalar field ϕ and a unit isovector n2 ¼ 1. Here, we employ
SOð3Þ notation.
We plan to investigate the monopole solutions of these

models in a separate publication.

ACKNOWLEDGMENTS

F. B. would like to thankM. Eto andM. Arai for valuable
discussions and express gratitude for the institutional
support of the Research Centre for Theoretical Physics
and Astrophysics, Institute of Physics, Silesian University
in Opava and to the Institute of Experimental and Applied
Physics, Czech Technical University in Prague. P. B. is
grateful to FSM and Aštar Šeran for support. This work was
supported by the grant of the Ministry of Education, Youth
and Sports of the Czech Republic Grant No. LTT17018.

[1] P. A. M. Dirac, Quantised singularities in the electromag-
netic field, Proc. R. Soc. A 133, 60 (1931).

[2] T. T. Wu and C. N. Yang, Dirac monopole without strings:
Monopole harmonics, Nucl. Phys. B107, 365 (1976).

[3] G. ’t Hooft, Magnetic monopoles in unified gauge theories,
Nucl. Phys. B79, 276 (1974).

[4] A. M. Polyakov, Particle spectrum in quantum field theory,
JETP Lett. 20, 194 (1974).

[5] K.-M. Lee and E. J. Weinberg, Nontopological Magnetic
Monopoles and New Magnetically Charged Black Holes,
Phys. Rev. Lett. 73, 1203 (1994).

[6] D. Bazeia, M. A. Marques, and G. J. Olmo, Small and
hollow magnetic monopoles, Phys. Rev. D 98, 025017
(2018).

[7] Y. M. Cho and D. Maison, Monopoles in Weinberg-Salam
model, Phys. Lett. B 391, 360 (1997).

[8] Y. M. Cho, K. Kim, and J. H. Yoon, Finite energy electro-
weak dyon, Eur. Phys. J. C 75, 67 (2015).

[9] J. Ellis, N. E. Mavromatos, and T. You, The price of an
electroweak monopole, Phys. Lett. B 756, 29 (2016).

[10] F. Blaschke and P. Beneš, BPS Cho–Maison monopole,
Prog. Theor. Exp. Phys. 2018, 073B03 (2018).

ALL FINITE-MASS DIRAC MONOPOLES PHYS. REV. D 106, 125014 (2022)

125014-5

https://doi.org/10.1098/rspa.1931.0130
https://doi.org/10.1016/0550-3213(76)90143-7
https://doi.org/10.1016/0550-3213(74)90486-6
https://doi.org/10.1103/PhysRevLett.73.1203
https://doi.org/10.1103/PhysRevD.98.025017
https://doi.org/10.1103/PhysRevD.98.025017
https://doi.org/10.1016/S0370-2693(96)01492-X
https://doi.org/10.1140/epjc/s10052-015-3290-3
https://doi.org/10.1016/j.physletb.2016.02.048
https://doi.org/10.1093/ptep/pty071

