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Noether’s first and second theorems both imply conserved currents that can be identified as an energy-
momentum tensor (EMT). The first theorem identifies the EMT as the conserved current associated with
global spacetime translations, while the second theorem identifies it as a conserved current associated with
local spacetime translations. This work obtains an EMT for quantum electrodynamics and quantum
chromodynamics through the second theorem, which is automatically symmetric in its indices and invariant
under the expected symmetries [e.g., Becchi-Rouet-Stora-Tyutin (BRST) invariance] without the need for
introducing an ad hoc improvement procedure.
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I. INTRODUCTION

The energy-momentum tensor (EMT) has recently
become a major focus of both theoretical and experimental
efforts in hadron physics. It is widely believed that a deeper
understanding of the EMT in quantum chromodynamics
(QCD) and empirical knowledge of its matrix elements for
physical hadron states will illuminate major puzzles such as
the origin and decomposition of the proton’s mass [1–7]
and the distribution of its spin [8–11].
Despite this concerted focus, the EMT of QCD appears

to be constructed on unsure ground. The so-called canoni-
cal EMT is defined as the conserved current associated with
global spacetime translation symmetry via Noether’s first
theorem [12]. However, the canonical EMT lacks sym-
metry properties of the underlying theory, such as con-
formal invariance and gauge or Becchi-Rouet-Stora-Tyutin
(BRST) invariance. This appears to be a defect with
Noether’s first theorem, and the situation is typically
rectified through an ad hoc Belinfante improvement
procedure [13].
The Belinfante improvement procedure produces an

EMT with the desired symmetry properties by adding
the divergence of a superpotential to the canonical result.
This additional term is defined so that its divergence
trivially vanishes, meaning it can be added to the EMT
multiplied by any factor and produce a conserved
current (though one that will be asymmetric in general).

The freedom of choice for the superpotential gives one the
liberty to obtain different EMT operators which produce
different results for hadronic matrix elements. This is not
merely a hypothetical concern: different versions of the
QCD EMToperator exist in the literature (see Ref. [11] for
a review). Matrix elements of different EMT operators can
differ in the number of form factors they produce in the
matrix elements of hadronic states [14,15] or even in what
values these form factors take [16]. Additionally, the
canonical and Belinfante-improved EMTs entail different
angular momentum densities for electromagnetic fields
[9,10], which may open the question of which EMT is
physically correct to experimental determination with an
optical measurement [17]. This is clearly not an ideal
situation; it would be greatly preferable to have an
unambiguous method for arriving at a predetermined
EMT operator from the start.
Such an unambiguous method does in fact exist: it is the

direct application of Noether’s second theorem, which
pertains to local symmetries, such as local gauge trans-
formations and local translations. In fact, several popular
quantum field theory textbooks [18,19] approach the der-
ivation of canonical energy-momentum tensor through local
coordinate transformations rather than global transforma-
tions, but apply the approach inconsistently by treating the
components of nonscalar fields as a collection of scalar
fields under these local translations. Several works over the
last few decades have found that accounting for the correct
transformation properties of vector fields when considering
local spacetime translations gives an EMToperator with the
expected symmetry properties for classical electromagnet-
ism [20–23], classical Yang-Mills theory [23,24], and
classical Proca theory [23]. In fact, an early and neglected
work of Bessel-Hagen [25] found the correct physical EMT
for electromagnetism as early as 1921.

*afreese@uw.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 106, 125012 (2022)

2470-0010=2022=106(12)=125012(9) 125012-1 Published by the American Physical Society

https://orcid.org/0000-0002-0688-4121
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.125012&domain=pdf&date_stamp=2022-12-26
https://doi.org/10.1103/PhysRevD.106.125012
https://doi.org/10.1103/PhysRevD.106.125012
https://doi.org/10.1103/PhysRevD.106.125012
https://doi.org/10.1103/PhysRevD.106.125012
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


The findings of Refs. [20–25] unfortunately remain
obscure in the hadron physics community, and one of my
purposes with this manuscript is to rectify this. This paper
additionally contains new findings: I use Noether’s second
theorem to directly derive the correct EMT operator—with
the expected symmetry properties—for theories that include
spinor fields, including quantum electrodynamics (QED)
and QCD.
This work is organized as follows. Section II opens with

a derivation of a general formula for the EMT obtained
through Noether’s second theorem. Section III illustrates
the application of this general formula to several simple free
field theories; this is primarily a didactic section, with the
scalar and vector results existing elsewhere in the literature.
I obtain the EMT operators for both QED and QCD in
Secs. IV and V then concludes the work.

II. DERIVATION OF THE
ENERGY-MOMENTUM TENSOR

In Ref. [12], Noether proved two theorems related to
symmetries of the action. Her first theorem entails the
existence of a conserved current associated with any
continuous symmetry of the action, while her second
theorem applies only to infinite-dimensional groups. In
particular, Noether’s second theorem can be used to derive
conserved currents if the symmetry of the action is encoded
by an arbitrary function (or set of functions), rather than a
finite set of parameters. The crucial difference between the
theorems is that surface integrals are not dropped in the first
theorem, but they are in the second theorem. For careful
treatments and a full exposition of the two theorems, see
Refs. [26–28], as well as Noether’s original paper [12].
The canonical EMT is obtained by applying Noether’s

first theorem to global spacetime translations, i.e., x ↦
xþ ξ for constant ξ. The well-known result is [18,19,27,29]

TμνðxÞ ¼
X
i

∂L

∂ð∂μϕiÞ
∂
νϕi − gμνL ; ð1Þ

where the sum is over all fields in the theory, and for
nonscalar fields (e.g., vector fields) field components
are also summed over. The canonical EMT for nonscalar
fields is asymmetric in its indices, and for gauge theories
is infamously gauge dependent. Both issues are conven-
tionally fixed using the Belinfante improvement pro-
cedure [13].
The standard quantum field theory textbooks by Itzykson

and Zuber [18] and Weinberg [19] covertly employ
Noether’s second theorem rather than her first to derive
the energy-momentum tensor, since they use spacetime-
dependent translations x ↦ xþ ξðxÞ and drop surface
integrals in the course of the derivation. These derivations
lead to the same EMT for scalar fields as the canonical
derivation via Noether’s first theorem, namely Eq. (1).

The authors then assume this result likewise applies to
vector and spinor fields, but this assumption is incorrect, as
I will show below. In fact, by using Noether’s second
theorem and carefully accounting for the transformation
properties of the fields, the resulting EMT will automati-
cally be symmetric in its indices, and for gauge theories will
also be gauge invariant.
Let us proceed to show how an energy-momentum tensor

can be obtained using Noether’s second theorem. The
transformation employed is an infinitesimal spacetime-
dependent translation:

xμ ↦ x0μ ¼ xμ þ ξμðxÞ; ð2aÞ

which is depicted visually in Fig. 1. In addition to
spacetime being translated, the total variation of any scalar
field must remain unchanged:

ϕ0ðx0Þ ¼ ϕðxÞ: ð2bÞ

The last stipulation is that the total variation of the metric
tensor is zero:

g0μνðx0Þ ¼ gμνðxÞ: ð2cÞ

This last stipulation is made to avoid any discussion of how
the action depends on the metric, and therefore of gravi-
tation. It additionally makes the local translation a physical
transformation rather than a mathematically trivial repar-
ametrization. Recall that in Minkowski spacetime, the
metric gμν ¼ gμν ¼ diagð1;−1;−1;−1Þ is invariant under
Lorentz transformations and global translations.
The condition on scalar fields requires that the functional

form of the scalar field changes:

ϕ0ðx0Þ ¼ϕ0ðxþξðxÞÞ≈ϕ0ðxÞþξλðxÞ∂λϕðxÞþOðξ2Þ: ð3Þ

Thus the total variation of the field is zero, but its functional
variation is not.

Δϕ≡ ϕ0ðx0Þ − ϕðxÞ ¼ 0 ð4aÞ

δϕ≡ ϕ0ðxÞ − ϕðxÞ ¼ −ξλðxÞ∂λϕðxÞ: ð4bÞ

This assumption has implications for how nonscalar fields
transform. For the derivative of a scalar field, for instance,

FIG. 1. Depiction of a local spacetime translation.
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Δð∂μϕÞ≡ ∂ϕ0ðx0Þ
∂x0μ

−
∂ϕðxÞ
∂xμ

¼ ∂ϕðxÞ
∂x0μ

−
∂ϕðxÞ
∂xμ

¼ −ð∂μξλðxÞÞ∂λϕðxÞ þOðξ2Þ: ð5Þ

Just as with the familiar case of Lorentz transformations,
∂μϕ is said to transform covariantly—and likewise is any
other field that obeys the transformation rule ΔAμ ¼
−ð∂μξλðxÞÞAλðxÞ. Under Lorentz transforms, a field with
an upper index Bμ transforms contravariantly, such that
AμBμ is a scalar and remains invariant. As usual, the metric
can be used to raise and lower indices, such as in
Aμ ¼ gμνAν. However, under the local translations consid-
ered in this work, a field that transforms covariantly under
Eq. (2) does not in general transform contravariantly when
its index is raised. For instance,

Δð∂μϕÞ ¼ Δðgμν∂νϕÞ ¼ gμνΔð∂μϕÞ
¼ −ð∂μξλðxÞÞ∂λϕðxÞ þOðξ2Þ:

Another consequence of this is that the contraction of a
field with itself is not in general invariant under Eq. (2). For
instance, if AμðxÞ is a covariant field, then

ΔðAμAμÞ ¼ AμðxÞðΔAμÞ þ ðΔAμÞAμðxÞ þOðξ2Þ
¼ −2gμνAμðxÞð∂νξλðxÞÞAλðxÞ þOðξ2Þ:

This is in stark contrast to the familiar case of Lorentz
transforms, for which AμAμ ¼ gμνAμAν is invariant. For
lack of a better term, I will say that Aμ ¼ gμνAν transforms
upper covariantly when Aμ transforms covariantly. For
Lorentz transforms, “upper covariantly” can be considered
a synonym of “contravariantly,” but this is not the case for
general local translations.
A field Vμ is said to transform contravariantly under

Eq. (2) if, for any covariant vector field Aμ, the four-product
AμVμ is invariant under local translations, i.e., if
ΔðVμAμÞ ¼ 0. Since infinitesimal differences obey a prod-
uct rule,

0 ¼ ΔðVμAμÞ ¼ VμðxÞðΔAμÞ þ ðΔVμÞAμðxÞ
¼ −Vμð∂μξλðxÞÞAλðxÞ þ ðΔVμÞAμðxÞ
¼ ð−VλðxÞð∂λξμðxÞÞ þ ðΔVμÞÞAμðxÞ;

and since this is true for any covariant vector field AμðxÞ, it
follows that

ΔVμðxÞ ¼ ð∂λξμðxÞÞVλðxÞ: ð6Þ

Again, since the metric remains unaltered by the trans-
formation of Eq. (2), Vμ ¼ gμνVν does not transform
covariantly, and for lack of a better term I say it transforms
lower contravariantly. Note that under Lorentz transforms,

“lower contravariantly” can be considered a synonym
of “covariantly.” transforms contravariantly rather than
covariantly.
In general, it is helpful (as a space-saving and book-

keeping measure) to raise and lower indices at will, as is
common practice in the broader physics community. As we
have seen, this does not turn covariant vector fields into
contravariant vector fields and vice versa. It is thus
necessary to keep track of whether a vector field is a
covariant field (meaning it transforms covariantly when its
index is lowered) or a contravariant vector field (meaning it
transforms contravariantly when its index is raised).
The following key results summarize the transformation

properties obtained so far:

Scalar field Δϕ ¼ 0; ð7aÞ

Covariant vector field ΔAμ¼−ð∂μξλðxÞÞAλðxÞ;
ð7bÞ

Contravariant vector field ΔVμ ¼ ð∂λξμðxÞÞVλðxÞ;
ð7cÞ

Rank 2-covariant tensor field ΔFμν ¼−ð∂μξλðxÞÞFλν

− ð∂νξλðxÞÞFμλ: ð7dÞ

Rules for upper-covariant and lower-contravariant trans-
formations can be obtained by simply raising or lowering
the indices in the rules given above. The formula for the
rank-2 covariant tensor field is helpful in particular for
derivatives of covariant vector fields, ∂μAνðxÞ. It is worth
noting that all of these variations are linear in first
derivatives of the translation function ξνðxÞ.
These transformation rules are peculiar, but they are

essentially a formalization of the local translation used by
Itzykson and Zuber [18] to obtain the EMTof a scalar field.
To help ground the reader a bit, it is interesting to note that
infinitesimal Lorentz transforms are a subset of local
translations when the translation field is given by

ξμðxÞ ¼ ωμ
νxν;

where ωμ
ν ¼ −ων

μ is a small constant antisymmetric
tensor. Using Eq. (7) with these infinitesimal Lorentz
transforms, covariant and upper-covariant transformations,
respectively, can be written:

ΔAμ ¼ −ων
μAν ¼ ωμ

νAν;

ΔAμ ¼ −ων
μAν ¼ ωμ

νAν;

where the antisymmetry of ωμ
ν was used. Similarly,

contravariant and lower-contravariant transforms can be
written:
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ΔVμ ¼ ωμ
νVν;

ΔVμ ¼ ωμ
νVν:

Comparing these transformation rules, it should be clear
that in the case of infinitesimal Lorentz transforms, the
upper-covariant and contravariant transformation rules are
the same, and likewise the lower-contravariant and covar-
iant rules are identical. The antisymmetry of ∂νξμðxÞ ¼ ωμ

ν

is what allowed this to happen. For general local trans-
lations, however, ∂νξμðxÞ is not antisymmetric, and for this
reason it is necessary to distinguish between covariant and
contravariant vector fields.
Another curiosity is that all of these variations can be

expressed in terms of a mathematical concept called the Lie
derivative. In particular, if L ξ is the Lie derivative along
ξμðxÞ, then for any kind of field Ψ

ΔΨ ¼ ξλðxÞ∂λΨðxÞ −L ξ½ΨðxÞ�; ð8Þ

under the transformation of Eq. (2). Formal definitions and
expositions of the properties of Lie derivatives can be found
in Refs. [30–36]. I will not require the Lie derivative in the
derivation to follow, but since several works on the relation
of the EMTwith Noether’s theorems use them [22–24], it is
worth making note of how they can be related to this work.
Now I will proceed with the derivation. Let L be a

function of several fields Ψl. The action is

S ¼
Z

d4xL ½ΨlðxÞ; ∂μΨlðxÞ�: ð9Þ

The transformation in Eq. (2) is performed, giving a new
action:

S0 ¼
Z

d4x0L ½Ψ0lðx0Þ; ∂0μΨ0lðx0Þ�: ð10Þ

The change in the action is just ΔS ¼ S0 − S. It is helpful to
note that to leading order in ξμ, the Jacobian of the variable
change is

���� ∂ðx
00; x01; x02; x03Þ

∂ðx0; x1; x2; x3Þ
���� ¼ 1þ ð∂μξμÞ: ð11Þ

Thus the action variation is

ΔS ¼
Z

d4xfΔL þ ð∂μξμÞL g: ð12Þ

The chain rule is applied to the variation, giving

ΔS ¼
Z

d4x

�X
l

�
∂L

∂Ψl
ΔΨl þ

∂L

∂ð∂μΨlÞ
Δð∂μΨlÞ

�

þ ð∂μξμÞL
�
: ð13Þ

Since ΔΨl and Δð∂μΨlÞ are always linear in derivatives of
ξνðxÞ, I can define

Dμ
ν½Ψl�≡ −

∂

∂ð∂μξνÞ
�
∂L

∂Ψl
ΔΨl þ

∂L

∂ð∂μΨlÞ
Δð∂μΨlÞ

�
; ð14Þ

and write the action variation as

ΔS ¼
Z

d4x

�
−
X
l

Dμ
ν½Ψl�ð∂μξνÞ þ ð∂μξμÞL

�
: ð15Þ

Now, I employ the symmetry assumptions behind
Noether’s second theorem. Firstly, the transformation of
Eq. (2) is hypothesized to be a symmetry of the action, so
ΔS ¼ 0. Secondly, the translation function ξνðxÞ is
assumed to be arbitrary, aside from the requirement that
it vanish outside some compact region of spacetime [12].
This second assumption allows surface terms to be dropped
when employing integration by parts:

Z
d4xξνðxÞ∂μ

�X
l

Dμ
ν½Ψl� − δμνL

�
¼ 0; ð16Þ

and the arbitrariness of ξνðxÞ means that the rest of the
integrand must always be zero:

∂μ

�X
l

Dμ
ν½Ψl� − δμνL

�
¼ 0: ð17Þ

Therefore,

Tμ
νðxÞ ¼

X
l

Dμ
ν½Ψl� − δμνL ð18Þ

is a conserved quantity, and a candidate for the energy-
momentum tensor. Of course, since transformation proper-
ties under Eq. (2) are unaltered by raising and lowering
indices, we can raise the ν and use these equations to
calculate Tμν as the EMT.

III. THE ENERGY-MOMENTUM TENSOR
OF SIMPLE THEORIES

In this section, I will consider several simple quantum-
field theories and derive the second theorem EMT for each.
This is meant primarily as a didactic warm-up exercise
before I proceed to QED and QCD.
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A. Scalar field theory

Consider a scalar field theory where the Lagrangian
depends only on a scalar field ϕ and its derivative ∂μϕ. It is
helpful to note the following variations:

Δϕ ¼ 0; ð19aÞ

Δð∂μϕÞ ¼ −ð∂μξνÞð∂νϕÞ: ð19bÞ

Using the definition of the coefficients Dμν in Eq. (14),

Dμν½ϕ� ¼ 0; ð20aÞ

Dμν½∂ϕ� ¼ ∂L

∂ð∂μϕÞ
ð∂νϕÞ: ð20bÞ

Using Eq. (18) thus gives

Tμν ¼ ∂L

∂ð∂μϕÞ
ð∂νϕÞ − gμνL ; ð21Þ

which in this case coincides with the canonical EMT
obtained through Noether’s first theorem.

B. Covariant vector field theory

Consider a vector field theory, in which the Lagrangian
depends only on a covariant vector field Aμ and its
derivative ∂μAρ. From Eq. (7), note in particular

ΔAμ ¼ −ð∂μξνÞAν; ð22aÞ

Δð∂μAρÞ ¼ −ð∂μξνÞð∂νAρÞ − ð∂ρξνÞð∂μAνÞ: ð22bÞ

Using the definition of the coefficients Dμν in Eq. (14),

Dμν½A� ¼ ∂L

∂Aμ
Aν; ð23aÞ

Dμν½∂A� ¼ ∂L

∂ð∂μAρÞ
ð∂νAρÞ þ

∂L

∂ð∂ρAμÞ
ð∂ρAνÞ: ð23bÞ

Using Eq. (18) gives

Tμν ¼ ∂L

∂ð∂μAρÞ
ð∂νAρÞ þ

∂L

∂ð∂ρAμÞ
ð∂ρAνÞ þ ∂L

∂Aμ
Aν − gμνL ;

ð24Þ

which does not coincide with the canonical EMT found
through the first theorem. In fact, only the first and last of
these terms is present in the canonical EMT, with the
other two terms apparently being a correction to this. The
result obtained here is in agreement with the results of
Refs. [20–24].

Let us consider the free electromagnetic field specifi-
cally. The four-potential Aμ is a covariant rather than
contravariant vector field, since the covariant derivative
DμϕðxÞ should transform the same way as ∂μϕðxÞ. The
Lagrangian is given by

L ¼ −
1

4
FμνFμν; ð25Þ

where Fμν ¼ ∂μAν − ∂νAμ. Using the formula in Eq. (24),
the EMT is right away

Tμν ¼ FμρFρ
ν þ 1

4
gμνF2: ð26Þ

This result is identical to the Belinfante-improved EMT
[13], and is the result widely accepted as the physical EMT
of electromagnetism [37]. Noether’s second theorem gave
this result automatically, without the need for an improve-
ment procedure.

C. Spinor field theory

Let us consider a theory of a free fermion field next. The
Lagrangian depends on a single spinor field ψ , along with
its conjugate ψ̄ and the derivatives of both fields. As is
standard, the conjugate field is treated as an independent
field with respect to variations.
The variations Δψ , etc. are needed to proceed. These can

be obtained under the combined requirements that ψ̄ψ
transforms as a scalar field, ψ̄γμψ transforms as a contra-
variant vector field, and so on, as well as that local
translations of the form ξμðxÞ ¼ ϵωμ

νxν reproduce the
known behavior of spinors under infinitesimal Lorentz
transforms. Transformations which satisfy these require-
ments are

Δψ ¼ i
4
ð∂αξβÞσαβψ ; ð27aÞ

Δψ̄ ¼ −
i
4
ð∂αξβÞψ̄σαβ; ð27bÞ

Δð∂μψÞ ¼
i
4
ð∂αξβÞσαβð∂μψÞ − ð∂μξλÞð∂λψÞ; ð27cÞ

Δð∂μψ̄Þ ¼ −
i
4
ð∂αξβÞð∂μψ̄Þσαβ − ð∂μξλÞð∂λψ̄Þ; ð27dÞ

where σαβ ¼ i
2
½γα; γβ�. It is worth remarking these are

consistent with the pattern found in Eq. (8), where
variations are related to Lie derivatives, if compared to
the spinor Lie derivative results found by Kossmann [38].

NOETHER’S THEOREMS AND THE ENERGY-MOMENTUM … PHYS. REV. D 106, 125012 (2022)

125012-5



Using the definition of the coefficients Dμν in Eq. (14),

Dμν½ψ � ¼ −
i
4

∂L

∂ψ
σμνψ ; ð28aÞ

Dμν½ψ̄ � ¼ i
4
ψ̄σμν

∂L

∂ψ̄
; ð28bÞ

Dμν½∂ψ � ¼ ∂L

∂ð∂μψÞ
ð∂νψÞ − i

4

∂L

∂ð∂ρψÞ
σμνð∂ρψÞ; ð28cÞ

Dμν½∂ψ̄ � ¼ ð∂νψ̄Þ ∂L

∂ð∂μψ̄Þ
þ i
4
ð∂ρψ̄Þσμν

∂L

∂ð∂ρψ̄Þ
: ð28dÞ

Using Eq. (18) with Dμν as the sum of these coefficients
gives

Tμν ¼ Tμν
scl þ Tμν

spin; ð29aÞ

Tμν
scl ¼

∂L

∂ð∂μψÞ
ð∂νψÞ þ ð∂νψ̄Þ ∂L

∂ð∂μψ̄Þ
− gμνL ; ð29bÞ

Tμν
spin ¼ −

i
4

�
∂L

∂ψ
σμνψ − ψ̄σμν

∂L

∂ψ̄

þ ∂L

∂ð∂ρψÞ
σμνð∂ρψÞ − ð∂ρψ̄Þσμν

∂L

∂ð∂ρψ̄Þ
�
; ð29cÞ

where I have decomposed the EMT into a “scalar” (scl)
piece and a spin-correction (spin) piece. The scalar piece
corresponds to what the result would be if the spinor field
transformed as a scalar. The primary reason for performing
the separation is as a calculation aid: these pieces can be
calculated separately and then combined.
For the Dirac Lagrangian in particular,

L ¼ ψ̄

�
i
2
∂

↔
−m

�
ψ ; ð30Þ

where f ∂
↔

μg ¼ fð∂μgÞ − ð∂μfÞg. The scalar and spin pieces
of the Dirac EMT are

Tμν
scl ¼

i
2
ψ̄γμ ∂

↔
νψ − gμνψ̄

�
i
2
∂

↔
−m

�
ψ ; ð31aÞ

Tμν
spin ¼

1

8
fψ̄ ½γσ; σμν�ð∂σψÞ − ð∂σψ̄Þ½γσ; σμν�ψg: ð31bÞ

To proceed, the following identity is helpful:

½γσ; σμν� ¼ 2iðgσμγν − gσνγμÞ: ð32Þ

The spin-correction piece can then be written:

Tμν
spin ¼

i
4
ψ̄ðγν ∂↔μ − γμ ∂

↔
νÞψ ; ð33Þ

and adding both pieces together gives

Tμν ¼ i
4
ψ̄γfμ ∂

↔
νgψ − gμνψ̄

�
i
2
∂

↔
−m

�
ψ ; ð34Þ

where the brackets signify symmetrization over the indices,
e.g., afμbνg ¼ aμbν þ aνbμ. Just as in the covariant vector
case, this is identical to the Belinfante EMT [13], but was
obtained directly through Noether’s second theorem.

IV. APPLICATION TO PHYSICAL
GAUGE THEORIES

I will now proceed to the ultimate purpose of this work:
obtaining the energy-momentum tensors for quantum
electrodynamics and quantum chromodynamics using
Noether’s second theorem. These theories are considered
in a form that is used for actual field-theoretic calculations,
which includes gauge-fixing terms needed to make the
quantized theory well defined.

A. Quantum electrodynamics with photon mass

The QED Lagrangian is defined to contain a nonzero
photon mass μ which regulates infrared divergences [39,40],
aswell as a gauge-fixing term thatmakes the quantized theory
well defined. I use the Gupta-Bleuler formalism [41,42] in
particular for thegauge-fixing terms (although theNakanishi-
Lautrup formalism [43–46] exists as an alternative).
The QED Lagrangian is given by

L QED ¼ ψ̄

�
i
2
D
↔
−m

�
ψ −

1

4
FμνFμν þ 1

2
μ2AμAμ

−
λ

2
ð∂μAμÞ2; ð35Þ

where fD
↔

μg ¼ fðDμgÞ − ðDμfÞg, and where the gauge-
covariant derivative takes the forms

D⃗μψ ¼ ∂⃗μψ þ ieAμψ ; ð36aÞ

ψ̄D⃖μ ¼ ψ̄ ∂⃖μ − ieψ̄Aμ: ð36bÞ

The Lagrangian depends on the spinor fields ψ and ψ̄ ,
the covariant vector field Aμ, and the derivatives of all
three fields. The results for the Dμν coefficients defined in
Eq. (14) are

Dμν½A� ¼ −eψ̄γμAνψ þ μ2AμAν; ð37aÞ

Dμν½∂A� ¼ FμρFρ
ν − λð∂fμAνgÞð∂ρAρÞ; ð37bÞ

Dμν½ψ � ¼ −
1

8
ð∂ρψ̄Þγρσμνψ þ

i
4
eψ̄=Aσμνψ þ i

4
mψ̄σμνψ ;

ð37cÞ
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Dμν½∂ψ � ¼ i
2
ψ̄γμð∂νψÞ þ 1

8
ψ̄γρσμνð∂ρψÞ; ð37dÞ

Dμν½ψ̄ � ¼ −
1

8
ψ̄σμνγρð∂ρψÞ −

i
4
eψ̄σμν=Aψ −

i
4
mψ̄σμνψ ;

ð37eÞ

Dμν½∂ψ̄ � ¼ −
i
2
ð∂νψ̄Þγμψ þ 1

8
ð∂ρψ̄Þσμνγρψ : ð37fÞ

Adding the spinor pieces together gives

Dμν½ψ � þDμν½∂ψ � þDμν½ψ̄ � þDμν½∂ψ̄ �

¼ i
2
ψ̄γμ ∂

↔
νψ þ i

4
ψ̄ðγνD↔μ − γμD

↔
νÞψ : ð38Þ

Adding these to the photon pieces and using Eq. (18) for
the EMT gives

Tμν
QED ¼

i
4
ψ̄γfμD

↔
νgψ þ FμσFσ

ν þ μ2AμAν − λð∂ · AÞ∂fμAνg

− gμνL QED: ð39Þ

This EMT is symmetric in its indices, and in the case μ ¼ 0
and λ ¼ 0 is also clearly gauge invariant. The result is
moreover consistent with the previous Proca theory result
in Ref. [23] (taking λ ¼ 0) and with the result (found via the
Belinfante improvement procedure) for massive QED with
gauge fixing found in Ref. [47].

B. Quantum chromodynamics

Lastly, I will use Noether’s second theorem to obtain the
EMT for quantum chromodynamics. For the quantized
theory to be well defined, there must not only be a gauge-
fixing term, but also gauge-compensating terms that sub-
tract off contributions from counting unphysical gluon
modes. This is done by introducing Faddeev-Popov ghosts
[48], which are Lorentz scalar fields that are quantized with
Fermi statistics. The full QCD Lagrangian can be written
[49–52]1:

L QCD ¼
X
q

q̄

�
i
2
∂

↔
þ g=AaTa −mq

�
q −

1

4
Fa
μνF

μν
a

− ð∂μBaÞAμ
a þ α0

2
B2
a − ið∂μc̄aÞðDμ

abc
bÞ; ð40Þ

where Ba are Lagrange multiplier fields and ca and c̄a are
the Faddeev-Popov ghosts. Unlike with QED, a gluon
mass cannot be introduced to QCD without breaking

renormalizability [53,54], so I will not consider a gluon
mass term here. The different representations of the gauge-
covariant derivative are

D⃗μq ¼ ∂μ
!
q − igAa

μTaq; ð41aÞ

q̄D⃖μ ¼ q̄∂μ
 þ igq̄Aa

μTa; ð41bÞ

Dab
μ cb ¼ ðδab∂μ þ gfacbAc

μÞcb; ð41cÞ

and the gluon field strength tensor is

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν: ð42Þ

Here, Ta are the generators of the color suð3;CÞ algebra
and fabc are the totally antisymmetric structure constants
defined by

½Ta; Tb� ¼ ifabcTc: ð43Þ

Because gauge-fixing terms are present, the QCD
Lagrangian is not gauge invariant. However, it is invariant
instead under the larger BRST transformation group
[49–51], which allows for simple proofs of Ward identities
and ensures renormalizability of the theory [55]. The
infinitesimal actions of these transformations on the fields
in the QCD Lagrangian are [49–52]

δAa
μ ¼ δλDab

μ cb; ð44aÞ

δca ¼ −
1

2
δλgfabccbcc; ð44bÞ

δca ¼ iδλBa; ð44cÞ

δBa ¼ 0; ð44dÞ

δq ¼ iTaδλcaq; ð44eÞ

where δλ is a Grassmann number-valued parameter.
Since ca is also Grassmann number valued, this effectively
transforms the quark and gluon fields in the same manner
as an infinitesimal gauge transformation. It is also
straightforward to see that such a transformation leaves
Eq. (40) invariant. (For a full explication of the formalism,
see Ref. [52].)
It is natural, therefore, to expect the EMT of QCD to be

BRST invariant. Additionally, what remains of the EMT
when gauge fixing and ghost terms are dropped should be
gauge invariant too.

1Multiple formulations of the QCD Lagrangian exist in the
literature, which are equivalent when equations of motion are
applied. I am using the Lagrangian of Kugo and Ojima [52]
because it is invariant under BRST transformations, while other
formulations are only invariant up to a total derivative.
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Using Eq. (14), the nontrivialDμν coefficients evaluate to

Dμν½q� ¼ −
1

8
ð∂ρq̄Þγρσμνq −

i
4
gq̄=AaTaσμνqþ i

4
mq̄σμνq;

ð45aÞ

Dμν½∂q� ¼ i
2
q̄γμð∂νqÞ þ 1

8
q̄γρσμνð∂ρqÞ; ð45bÞ

Dμν½q̄� ¼ −
1

8
q̄σμνγρð∂ρqÞ þ

i
4
gq̄σμν=AaTaq −

i
4
mq̄σμνq;

ð45cÞ

Dμν½∂q̄� ¼ −
i
2
ð∂νq̄Þγμqþ 1

8
ð∂ρq̄Þσμνγρq; ð45dÞ

Dμν½A� ¼
X
q

gq̄γμAνTaqþ gfabcF
μρ
b Ac

ρAν
a

− igfabcð∂μc̄cÞAν
acb − ð∂μBaÞAν

a; ð45eÞ

Dμν½∂A� ¼ Fμρ
a ð∂ρAν

a − ∂
νAa

ρÞ; ð45fÞ

Dμν½∂B� ¼ −Aμ
að∂νBaÞ; ð45gÞ

Dμν½∂c� ¼ −ið∂νc̄aÞð∂μcaÞ; ð45hÞ

Dμν½∂c̄� ¼ −ið∂νc̄aÞðDμ
abc

bÞ: ð45iÞ

The remaining coefficients are zero. Summing the quark
contributions and using Eq. (32) gives

Dμν½q� þDμν½∂q� þDμν½q̄� þDμν½∂q̄�

¼ i
2
q̄γμ ∂

↔
νqþ i

4
q̄ðγνD↔μ − γμD

↔
νÞq: ð46Þ

Adding all of the contributions together gives an EMT that
is symmetric in its indices and BRST invariant:

Tμν
QCD ¼

X
q

i
4
q̄γfμD

↔
νgqþ Fμρ

a Faν
ρ − Afμa ∂

νgBa

− iðDfμcÞð∂νgc̄Þ − gμνL QCD: ð47Þ

Demonstrating BRST invariance is algebraically involved,
but is nomore difficult—and in fact, is essentially identical—
to proving BRST invariance of the Lagrangian in Eq. (40)
itself. If the physical sector alone is considered (i.e., the ghost
and gauge-fixing fields dropped), then the remaining terms
are locally gauge invariant. The necessary symmetries are
therefore automatically satisfied from applying Noether’s
second theorem alone, without the need to apply an ad hoc
improvement procedure.

It should be noted that Eq. (47) agrees with the EMT
found using the Belinfante improvement procedure in
Refs. [11,52].

V. DISCUSSION AND CONCLUSIONS

Ultimately, Noether’s first and second theorems both
imply conserved currents that can be identified as an
energy-momentum tensor. The first theorem identifies
the EMT as the conserved current associated with global
spacetime translations, while the second theorem identifies
it as a conserved current associated with local spacetime
translations.
In this work, I derived the EMT following from

Noether’s second theorem and local translation invariance,
for both quantum electrodynamics in Eq. (39) and quantum
chromodynamics in Eq. (47). The EMT operator for both
theories is symmetric in its indices and invariant under the
expected symmetries (gauge or BRST invariance). It is
identical for the Belinfante-improved EMT in both cases, as
well as to the EMT of general relativity that one would
obtain through metric variations [56].
Although the form of the EMT thus derived is not new,

the ability to derive it directly from one of Noether’s
theorems—without need for an improvement procedure—
puts this form of the EMT on surer theoretical ground.
Additionally, the decomposition of the EMT into the Dμν

coefficients defined in Eq. (14) may provide a new
perspective on how to decompose components of the
EMT into quark and gluon contributions, at least for
components for which −gμνL is zero. The Dμν terms
for each field arise directly from its variation under local
translations, and should accordingly relate to generators of
translations and rotations for the field in question.
However, since the −gμνL term in the EMT arises from
the Jacobian of a coordinate transformation, the method
explored here does not provide a clear way to decompose it
into quark and gluon contributions.
A possible avenue of future research is to study the

momentum and spin decompositions suggested by this
method of derivation, and to compare these with the well-
known Jaffe-Manohar [9] and Ji [10] decompositions.
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