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Quantum field effects on a classical background spacetime may be obtained from the semiclassical
equations of general relativity with the expectation value of the stress-energy tensor of the quantum field as
a source. This expectation value can be calculated from Hadamard’s elementary two-point function, which
in practice is given in terms of sums of products of field modes evaluated at two spacetime points. We
derive expressions for the two-point function for a massless scalar field in the Unruh state on a Kerr black
hole spacetime. Our main result in this paper is a novel expression valid when the two points lie inside the
black hole; we also (re)derive, using a new method, the known expression valid when the two points lie
outside the black hole. We achieve these expressions by finding relationships between Unruh modes,
defined in terms of the retarded Kruskal coordinate, and Eddington modes, defined in terms of the
Eddington coordinates. While our starting expression for the two-point function is written in terms of the
Unruh modes, we give our final expression in terms of the Eddington modes, which have the computational
advantage that they decompose into factors that obey ordinary differential equations. In an appendix we
also derive expressions for the bare mode contributions to the flux components of the stress-energy tensor
for a minimally coupled massless scalar field inside the black hole. Our results thus lay the groundwork for
future calculations of quantum effects inside a Kerr black hole.

DOI: 10.1103/PhysRevD.106.125011

I. INTRODUCTION

In the semiclassical framework of quantum field theory
on a curved spacetime, a gravitational field is treated
classically, whereas matter fields on the corresponding
(background) spacetime are quantized. In practice, the
Einstein field equations of general relativity are sourced
by the renormalized expectation value of the stress-energy
tensor (RSET) for the matter fields in a certain quantum
state. This framework is expected to provide a good
approximation to the physics when the scales of the system
are above the Planck scales and it has yielded results as
important as the emission of quantum (Hawking) radiation
by astrophysical black holes (BHs) [1,2].

Within quantum field theory on a curved spacetime, one
can define Hadamard’s elementary two-point function
(HTPF) as the expectation value of the anticommutator
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of a (say, scalar) ﬁeldAti) in a certain quantum state |¥):
G\(}})(x,x’) = ({@(x),®(x')})y, where x and x’ are space-
time points, and curly brackets denote symmetrization
with respect to x and x"." The HTPF is a solution of the
homogeneous wave equation satisfied by the field ® and is
an important object for various reasons. First, it is physically
relevant in its own right, since it yields the quantum
correlations between different points on the background
spacetime. Second, when subtracting from it an appropriate,
purely geometric, renormalization term (also called the
counterterm) [3] and taking the limit X’ — x, the renormal-
ized Wick product (®?(x))¥ is obtained, which is a
manifestation of the quantum vacuum fluctuations. Last
but not least, by applying a certain differential operator on
the HTPF minus the renormalization term [4,5], and then
taking the limit x — x, the RSET is obtained, which is a
source in the semiclassical Einstein equations.

In principle, it is possible to define various states for a
quantum field on a BH background spacetime. In the case of

'More explicitly, {£(x), {(x')} = E(x)E(x) + E(x')¢(x), where
& and ¢ are two quantities that depend on the spacetime point.
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a spherically symmetric (e.g., Schwarzschild) BH, the most
commonly used states are (i) the Boulware state [6,7],
which is meant to model the surroundings of a starlike
object, since this state is empty at (past and future) null
infinity and it diverges on the (past and future) event horizon
(EH); (ii) the Unruh state [8], which models an evaporating
BH via the emission of Hawking radiation; and (iii) the
Hartle-Hawking state [9], which models a BH in equilib-
rium with its own radiation. When the BH is rotating (Kerr),
however, the corresponding Boulware state [10,11] is no
longer empty at future null infinity, as it contains the so-
called Unruh-Starobinskii radiation (essentially, the quan-
tum version of classical superradiance [12,13]). Also, for
bosons, no state in thermal equilibrium with the rotating BH
can be constructed, i.e., no Hartle-Hawking-like state exists
for bosons in Kerr [11,14].2 Finally, the Unruh state can be
constructed in Kerr ([11] for a scalar field, [15] for a fermion
field, and [16] for the electromagnetic field) similarly to the
spherically symmetric case.

In this paper we shall focus on the Unruh state in Kerr
spacetime, which is the state of relevance for astrophysi-
cal BHs.

Our treatment of the Unruh state in Kerr is also significant
for the following reason. Often, in spherical symmetry, one
first calculates quantities in the Hartle-Hawking state since
it allows for the Euclideanization technique, whereby one
merely needs to sum over a discrete set of field modes thus
facilitating the calculation; then, if one wishes to calculate
the quantity in another state—such as Unruh—one just
calculates the difference between that quantity in that other
state and in the Hartle-Hawking state (such difference needs
no renormalization and so, in principle, it can be carried out
relatively easily). In Kerr, however, this method of Hartle-
Hawking state subtraction is not applicable, because no
Hartle-Hawking-like state exists in Kerr.

Most calculations for quantum fields on a BH spacetime
have focused on quantities outside the EH of the BH—after
all, we are observers located far away from any BH.
Expressions for the HTPF with the two points outside
the BH are known in both the nonrotating [17,18] and the
rotating cases [11,19] and they have been used to calculate
®? and the RSET. While in the nonrotating case the RSET
outside the BH has been obtained in various physical
settings, in the rotating case the calculation is a lot more
technically involved and in fact it has been achieved only
recently and in one instance: [20].

In its turn, the investigation of effects of quantum fields
inside the EH of a BH may serve to address questions of
fundamental conceptual importance. Most notably, the
question of whether the inner horizon (IH) of a rotating
and/or electrically charged BH is stable under quantum

2For fermions, on the other hand, a state in thermal equilibrium
can be constructed sufficiently close (specifically, within the
so-called speed-of-light surface) to the rotating BH [15].

perturbations. Beyond the IH, the Cauchy initial value
problem is not well posed and so the Einstein field
equations of general relativity cease to be deterministic.
Quantum effects have been seen to destroy the regularity of
the IH of a nonrotating and electrically charged (Reissner-
Nordstrom, RN) BH [21]. A similar behavior was also
found in RN—de Sitter BHs [22] and for quantum pertur-
bations approaching the IH -at least- from the inside of a
2 + 1-dimensional rotating Bafiados, Teitelboim & Zanelli
(BTZ) BH [23,24]. In all these cases the HTPF was known
for the two points inside the EH and served to calculate the
RSET. However, in the most important case of a Kerr BH,
an expression for the HTPF with the two points inside the
BH was not known until the current work and, conse-
quently, no quantitative investigation of the quantum effects
on its IH has yet been carried out.?

The main result in this paper is an expression for the
HTPF Gg}) (x,x') = ({®(x), d(x')}),, for a quantum mass-
less scalar field in the Unruh state |0),, with the two points
x and x’ located inside the Kerr BH between the EH and the
IH. One of the main values of this expression is that it is
given in terms of (Eddington) field modes which decom-
pose into factors that obey ordinary differential equations
and so are relatively easy to calculate, at least numerically.
Thus, our expression for the HTPF is of practical use for
potential future calculations of the RSET inside the EH of a
Kerr BH in the Unruh state. (We perform a step in this
direction in Appendix B, where we derive expressions for
the bare mode contribution to the flux components in the
BH interior.) Furthermore, once one achieves renormaliza-
tion in the Unruh state via the HTPF provided in this paper,
one can use that as the fiducial state with respect to which to
calculate differences and thus easily achieve renormaliza-
tion in another state. Prior to obtaining this new expression
for the HTPF inside a Kerr BH, we derive an expression for
the HTPF outside a Kerr BH; although this latter expression
was already known, we (re)derive it by employing a new
method, which is the one that we subsequently apply inside
the BH. Moreover, in order to achieve these expressions
for the HTPF, we obtain relationships between the Unruh
family of modes (which are defined in terms of the retarded
Kruskal coordinate and serve to define the Unruh state) and
Eddington families of modes (which are defined in terms of
the Eddington coordinates and, as mentioned, decompose
by factors). These relationships between families of field
modes are useful in their own right in that they may be
readily applicable to the calculation of two-point functions
other than the HTPF, such as the Wightman function (which
is relevant, for example, for the calculation of the transition
probability rate of an Unruh-DeWitt quantum particle
detector [26]). For the reader who is just interested in the
new expression for the HTPF inside the BH, that expression
is given in Eq. (6.37) or, equivalently, in Eq. (6.41).

3There have been, however, qualitative investigations, see [11,25].

125011-2



TWO-POINT FUNCTION OF A QUANTUM SCALAR FIELD IN ...

PHYS. REV. D 106, 125011 (2022)

The rest of this paper is organized as follows. Sections
II-IV lay the foundations for the subject of the paper: the
Unruh HTPF for a scalar field on a Kerr BH interior. In
Sec. II we review the Kerr metric and the associated wave
equation satisfied by a massless, uncharged scalar field.
Section III introduces the various families of field modes
which are relevant to this paper. The modes allow us to
define the Unruh quantum state in Sec. IV and to derive the
(already known) expression for the HTPF outside a Kerr BH
in Sec. V [specifically, Eq. (5.29)]. The paper culminates in
Sec. VI, where we obtain the (new) expression for the HTPF
inside a Kerr BH [specifically, Eq. (6.37) or Eq. (6.41)]. Our
main results are briefly discussed in Sec. VIIL. The paper also
has two appendixes: Appendix A addresses the issue of IR
regularity (i.e., regularity at small frequencies) of our final
expressions for the HTPF, and Appendix B presents a
derivation of the bare mode-sum expressions for the flux
components of the RSET, based on the HTPF expression
derived in this paper for the BH interior.

We use units where ¢ = G = 1 (while 7 is not taken to
be equal to 1) and metric signature (—+++).

II. THE KERR METRIC AND THE
WAVE EQUATION

A. The Kerr metric and coordinate systems

The Kerr metric is a vacuum solution to the classical
Einstein field equations, describing a BH of mass M
rotating with angular momentum J. It is given by the line
element in Boyer-Lindquist coordinates (z, r, 0, ¢),

oM 2
ds? = —<1 - zr)dﬂ + 24+ prae?
P

2Mra®
+ <r2 +a?+ T sin? 9) sin? 0dg?
p

4M
"4 Gin2 0dgdr,

(2.1)

where a = J/M and

p? =1’ + a*cos’ 6,

A=r?—2Mr+ da

The horizon radii correspond to the roots of the equation
A =0, yielding an EH at

r:rJFEM—f—\/MZ—a2

and an IH at

r=r_=M—\/M?*—- a2

FIG. 1. A portion of the Penrose diagram of the analytically
extended subextremal Kerr spacetime, with three systems of
coordinates: the Kruskal U and V [Egs. (2.9) and (2.10)], the
outer Eddington u.,; and v [Eq. (2.7)], and the inner Eddington
uy: and v [Eq. (2.8)]. The spacetime regions relevant for this
paper are within the red frame, consisting of the BH exterior and
interior.

Note the resulting restriction on the BH parameters:
|a|/M < 1. Throughout this paper we shall only treat the
subextremal case, corresponding to |a|/M < 1, and restrict
our attention to the region bounded by r > r_. We refer to
the region r > r, (outside the EH) as the external universe
or BH “exterior,” whereas the region bounded by the
horizons r_ <r <r, is to be referred to as the BH
“interior.” Note that we might occasionally use the term
exterior for » > r, (namely, including r = r ), and like-
wise the term interior for r_ < r < r,, depending on the
context. See Fig. 1 for (a portion of) the Penrose diagram of
the analytically extended subextremal Kerr spacetime.
We shall now briefly discuss the behavior of the standard
Boyer-Lindquist coordinates (r,r, 6, ) for a free-falling
observer approaching the EH. As in the case of spherical
symmetry (e.g., in the Schwarzschild and RN metrics), the ¢
coordinate diverges at r = r, for an infalling observer,
which motivates the definition of Kruskal coordinates given
below in (2.9) and (2.10). However, in Kerr, not only does ¢
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diverge on approaching r = r, but, unlike in spherical
symmetry, also the azimuthal coordinate ¢ diverges there.
In other words, a geodesic approaching the EH undergoes
(fictitious) infinite spiraling when presented in the ¢
coordinate (which is, however, a mere coordinate artifact).
One may compute the (constant) angular velocity with
which the EH rotates (or, more precisely, the geodesic’s
limiting value of dg/dt at r — r,) to be

a a
) 2"
2Mr,  ri+a

Q,

(2.2)

This quantity can be used to construct a coordinate that
remains regular on approaching r — r., defined by
pr=0—-Q.t (2.3)

Similar considerations apply at r — r_, where we
analogously define

a

Q .
T 2Mr_

(2.4)

For later use, we shall hereby define the tortoise
coordinate r, in Kerr via dr/dr, = A/(r* + a*). We
choose the constant of integration such that*

1 |r—ry| 1 |r—r_|
. = —log| —— | —=—log[—— |, (2.5
re=re 2K, 0g<r+ - r_) 2K_ o2 <r+ —-r_ (2:5)
where k. are the two corresponding surface gravity
parameters, given by
ry—r_

Ky = m. (2.6)

Note that r = r__ corresponds to r, — —oo, while r = r_
(like r — oo outside the BH) corresponds to r, — 0.

From here we may define the Eddington coordinates,’
given in the BH exterior by

Uext =T — Ty, V=141, (27)
and in the BH interior by
U =1y — I, v=r, +1. (2.8)

The coordinate v is continuous across the EH (and
parametrizes it), whereas u. and u;, diverge there. The
regularity of the metric at the EH may be seen by

*We note that, although this choice of constant of integration is
common in the literature, it differs from other common choices
such as that used in [27].

>While these coordinates are usually known as “Eddington-
Finkelstein coordinates,” we use “Eddington” for abbreviation.

transforming to a set of Kruskal coordinates, which we
shall denote by U and V, given in the BH exterior by

1
U(uext) =- K—exp (_K—‘ruext)’

+
1
V(v) = —exp (k.v), (2.9)
K+
and in the BH interior by
1
U (tin) = —exp (K4 tiny),
Ky
1
V(v) = —exp (k. v). (2.10)
K

-+

Note that both Kruskal coordinates U and V are
continuous at the EH: The former vanishes there (from
both sides), whereas V, just like v, regularly parametrizes
the EH. Furthermore, the metric in the (U,V,0,¢.)
coordinates is regular and smooth across the EH.

The locus r = r, marks a four-arms cross in the Penrose
diagram in Fig. 1. Out of these four arms, in this paper we
are only concerned with the three included in the red frame,
being the EH (or “right horizon”, denoted Hy), the “past
horizon” H, (the white hole horizon), and the “left
horizon” H;. The other arm, the one at the bottom left,
will not concern us here as it is located outside the domain
of dependence relevant to the Unruh state (namely, the red
frame in Fig. 1).

We note that the IH is also a “Cauchy horizon” in the
sense that it is the boundary of validity of the Cauchy initial
value problem formulated on a spacelike hypersurface
extending from i% to i9, where i% (i) is spacelike infinity
of the external universe at the right (left) side of Fig. 1.
However, in the more physically realistic case of a BH
formed by gravitational collapse, which lacks a past
horizon as well as the entire left-side external universe,
it is only the ingoing section of the IH (see Fig. 1) which
retains the causal nature of a Cauchy horizon.

In Kruskal coordinates, the past horizon H,, is found
at V =0 and U < 0, the right horizon Hy corresponds to
U =0 and V > 0, and the left horizon H; corresponds
toV=0and U > 0.

In the BH exterior there are, in addition, two null
asymptotic boundaries located at infinity: past null infinity
(PNI) is found at U = —oo0 and V > 0, and future null
infinity (FNI) is at V =00 and U < 0. See Fig. 1 for
locating all the mentioned null surfaces.

We now make a couple of related observations, relevant
to constructing the families of field modes further on in
the paper.

Each of the above mentioned asymptotic null surfaces
(the three at r = r and the two at spacial infinity) can be
regularly parametrized by three coordinates—which may
be chosen to be two angular coordinates (¢ and either ¢ or
@) and one Eddington coordinate—as follows: H, by
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(Uext: 0. 90), Hr by (v,0,9), Hy by (uin. 6, ), PNL by
(v,0,¢), and FNI by (ue, 60,9). We note that the
Eddington coordinate in each of these null surfaces may
also be replaced by the corresponding Kruskal coordinate.

We also specify here the affine parameters along null
geodesics generating each of these asymptotic null surfa-
ces: U along H i and H (both with fixed & and ¢ ) and V
along Hy (again with fixed 6 and ¢, ). At PNI and FNI,
asymptotic flatness implies that the affine parameters along
these surfaces are simply the Eddington coordinates » and
Uey, Tespectively (both with fixed € and ¢).

B. Separation of the wave equation

An uncharged scalar field ®(x) of mass m and coupling

£ to curvature obeys the Klein-Gordon (KG) equation,
(O -m?—ER)D = 0, (2.11)
where [ is the covariant d’ Alembertian associated with the
background metric with Ricci scalar R. In the case of a
massless field which is minimally coupled (¢ = 0) and/or
vanishing Ricci scalar (in particular, a vacuum spacetime),

this equation becomes

0o =0. (2.12)

Considering Eq. (2.12) on a Kerr background, one
readily obtains the following explicit form:

(r? + a*)? *®  4aMr PP
o= (—— 0
< A b

n a’ 1 D 0 (0D
A sin?0) op>  or \ or
1 0

-— 2 (sin0Z) =0.
sin96€( 69)

We shall refer to this equation as the scalar Teukolsky
equation, after the general-spin field case in [28]. Utilizing
the axial symmetry and time-translation invariance of the
metric and of the master equation, we may decompose the
field into modes

(2.13)

Y wim (I")

NeE:

indexed by the frequency w € R, the azimuthal number
m € Z, and the multipolar number / € N> )5 where x is a
spacetime point and y,,;,,(r) is the so-called radial func-
tion; the (r*> + a*)~!/2 factor has been introduced to yield
a convenient one-dimensional scatteringlikeequation for
Woim(r) [see Eq. (2.18) to follow]. The angular functions
Zp (0, @) are the “spheroidal harmonics,” given by

lm (6 (P)

@, (x) = const - e 1z? (0,¢),  (2.14)

(27)71/289 (0)e™?, (2.15)

where S} (0) is the spheroidal wave function [29] solving
the eigenvalue problem,

1 d
. sin edSlm (9)
sin 6 d6 do

+< 2% cos? 6 —
si

2

in2 60

+ Elm(aa))> 59.(6) =0,
(2.16)

with E,,,(aw) the corresponding eigenvalue, obtained by
imposing regularity at 6 = 0, 7. Note that the angular
equation is real, and we shall only be concerned here with
real angular functions S7, .

For a given w, the functions Z{,, form a complete basis of
orthonormal functions on the two-sphere, fulfilling

/ d(p/ d@sin0Z%(0.9) 27 (0.) =61ySpye.  (2.17)

There is no known closed form for the spheroidal
harmonics,” but in the spherical case (corresponding to
aw = 0) they reduce to the well-known spherical harmon-
ics Y,,(0,9), whence the spheroidal wave functions
reduce, up to a normalization, to Legendre functions—
and the eigenvalue E,,,(aw) simplifies to [(I + 1).

The radial function y,,;,,(r) solves the radial equation

d W{U m
dr 21 + lem( )l//a)lm =0 (218)
with the effective potential
Ko (r) =Am(aw)A —  dG(r)
= - — 2.1
Va;lm(r) (rz +a2)2 G (r) dr* s ( 9)
where
Kom(r) = (r* + a®)w — am,
Am(aw) = E,,(aw) — 2amo + a*o?
rA
G(r)=———5—. 2.20
)=y (220)

From Eq. (2.16) it is evident that flipping the signs of @
and/or m leaves the angular equation invariant. Since the
imposed boundary conditions (regularity at the two poles)
has no explicit reference to either @ or m, it follows that
both the eigenvalue E;,,(aw) and the angular function S7,
are invariant (modulo a sign) under such sign flips. For our
purposes, we focus on a simultaneous sign flip of m and o,

®In fact, spheroidal harmonics may be expressed in terms of
confluent Heun functions but only with coefficients which are to
be determinable numerically.
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S—w — (_l)mS(u

1(—=m) Im? (221)

El(—m)<_aw) - Elm (aa))’
where we have chosen the sign (—1)" for S, so that, for
aw = 0, the spheroidal harmonics agree with the standard
sign for the spherical harmonics: (Z’I‘Eff;))* =(Y;") =
(—I)mY;n — (_l)mzy;nzo'

The situation with the radial equation is slightly more
delicate. This equation, too, is real, as can be seen in
Eqgs. (2.18)—(2.20). Therefore, if y,,,,(r) is a solution, its
complex conjugate is a solution too. However, we are
physically motivated to choose complex boundary con-
ditions to the radial solutions (which would correspond to,
e.g., ingoing or upgoing waves)—Ileading to complex radial
functions. The radial equation (2.18), too, is invariant under
a simultaneous change of signs of @ and m. This implies
that if w,,;,, (r) solves Eq. (2.18), it will also be a solution of
the radial equation with @ - — and m — —m, and so will
be its complex conjugate. As will become evident in the
next section [see Egs. (3.4)], from the way the boundary
conditions for the various modes are defined, flipping the
signs of both @ and m will actually take us from the original
mode function y,,,(r) to its complex conjugate.

Examining the effective potential [Eq. (2.19)] in the
asymptotic domains of the exterior region, r, — oo (cor-
responding to r — o0) and r, —» —oo (corresponding to
r—ry), we find

. @, r— 7, = 00
youtside _, { 5 ( ) . (222)
oy, r—ry (r,—>-x)
where we define
o, =w—-mQ,. (2.23)

Thus,’ the asymptotic behavior of solutions to the radial
equation [Eq. (2.18)] outside the BH is generally of the
form e*® at r, - oo and eT®+’ at r, - —oo, corre-
sponding to free waves in both these domains.

Similarly, when considering the effective potential in the
BH interior, we obtain

2
yinside _, {w" o el
a)i, rory (r,— -0
where we define
o_=w—mQ_. (2.25)

This is a crucial point for the definition of our modes in
Kerr (see Sec. III), and it differs from the spherically
symmetric case (similar to the m = 0 case here), where the

"To be more precise, this is a consequence of the fact that the
potential is short range: V., = @* + O(1/r?) as r — oo and
Vim = @2 + O(e*+"*) as r — r,_ (corresponding to r, — —o0).

asymptotic behavior of the effective potential leaves @? in

all asymptotic domains of the BH exterior and interior.

III. FAMILIES OF MODES

It is convenient to decompose the field into sets of
modes, each providing a complete set of solutions to
Eq. (2.12) on some spacetime region, which are orthonor-
mal with respect to the standard KG scalar product, defined

by

<l//’ ¢> = iLdU”(‘//*Qﬁ;y - ¢W§4)’ (31)

where X is the spacelike hypersurface under consideration
and do* is a future directed normal to X. Note that the
prefactors of the various modes [e.g., the analog of the
“const”. appearing in Eq. (2.14)] are chosen such that
orthonormality with respect to the KG inner product is
satisfied.

Three families of modes are of particular importance for
our purposes: the outer and inner Eddington modes and
the Unruh modes. Each of these three families consists of
two distinct sets, a “left-moving” and a “right-moving” one,
as specified below. We begin here with a brief general
description of the three families of modes, to be followed
by a more detailed presentation. The various families of
modes are illustrated in Fig. 2.

The “outer Eddington modes” (see Sec. I A) are
defined with respect to the Eddington coordinates on the
BH exterior, and consist of two sets of modes: the outgoing
“up” modes f, . which emerge as free waves from H g,
and the ingoing “in” modes f%, , which emerge as free
waves from PNL

The “inner Eddington modes” (see Sec. IIIB) are
similarly defined with respect to the Eddington coordinates
on the BH interior and consist of two sets of modes: the
outgoing “left” modes fL, ~which emerge as free waves
from H;, and the ingoing “right” modes f% =~ which
emerge as free waves from Hp.

The “Unruh modes” (see Sec. III C) are defined on the
entire combined interior and exterior domain (i.e., the
entire red frame in Fig. 1) and consist of two sets of modes:
the outgoing “up” modes gz)pz N (the indices & I i are to be
introduced later on) which emerge from H i U H; as free
waves with respect to the affine parameter there, the
Kruskal coordinate U; and the ingoing “in” modes g,
which emerge from PNI as free waves with respect to the
affine parameter there, the Eddington coordinate v (see the
end of Sec. IT A).

The Unruh modes are of crucial physical importance for a
quantum scalar field evolving on a BH background. See, in
particular, the definition of the Unruh vacuum in Sec. IV C.
Our motivation for considering the Eddington modes is
of a different kind: Remarkably, both outer and inner
Eddington modes are entirely decomposable in terms of
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in

FIG. 2. Penrose diagrams for various field modes on Kerr spacetime: the outer Eddington modes f5 (3.8) and f, (3.7); the inner

wlm wlm

Eddington modes £, (3.19) and f%, (3.18); the Unruh modes gzpm (3.30) and ¢, (3.24). All modes start with unit amplitude on

wlm wlm wlm
whichever hypersurface (PNI, H, or Hy) the corresponding dot lies; part of the wave is reflected and part is transmitted, with the

in/up
wlm

reflection p and transmission 7 coefficients indicated for f,_; . The modes gz)p? ;, are defined equally throughout H,, U H, in terms of
U but they may also be constructed as the sum of g, _ [Eq. (3.31), with no support on Hy,,] and gi’)alsfn [Eq. (3.32), with no support on

H, ], respectively colored in blue and dashed orange on the diagram for gszm.

angular, radial, and temporal variables and have a general ~ decomposition of the Unruh modes—whereas the Unruh
form analogous to Eq. (2.14). Owing to this decomposition, =~ modes do not generally admit such decomposition.

the Eddington modes are easily handled numerically Throughout the rest of the paper, whenever we have both
which makes them convenient as a mathematical tool forthe =~ @, and @ appearing in the same equation, they should be
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understood to be related via the standard relation,
®=w, +mL,, or vice versa, via o, = w—mQ,. In
all of these cases, there will always be a well-defined m
value, enabling this transformation between @ and w, .

A. Outer Eddington modes

For the sake of separation of the wave equation (2.13) in
Kerr, we considered a particular decomposition of the field
into modes [Eq. (2.14)], which was given in terms of the

spheroidal harmonics Z¢, (0, ¢) = \/LZ—ES?;I(Q)e"”"/’, the tem-

poral dependence e~’, and the radial function w,, ().
This decomposition provides the basis for the definition of
the Eddington modes, which we shall generally denote by
foim- In this subsection, we introduce the outer Eddington
modes /i, and f.) defined exclusively on the BH exterior.

Based on the asymptotic behavior of the effective
potential in the BH exterior [as given in Eq. (2.22)] we
define two spanning sets of solutions to the radial equa-
tion (2.18), y", (r) and y,b (r), uniquely determined by

their boundary conditions,

in Tg;lme_iahrr*’ Iy > —
W(,;[m(r) = —iwr, in iwr, ’ (32)
e + Pyim€ " s Ti > ®
eiuurr* + up e—iaurr* 7. — —00
up (r) ~ Pwim ’ * (3 3)
Yoim - up iwr, ’ :
Tolm® ’ Iy = 00

A A . . : T3Pt 13 it}
where 7)), and p2, . with A denoting either “in” or “up”,

are the transmission and reflection coefficients, respec-
tively. Determination of these coefficients thus requires
numerically solving the one-dimensional scattering of the
wh, mode off the effective potential (2.19). We use the
symbol “~” to denote asymptotic equivalence.

When the signs of @ and m are flipped simultaneously,
so does the sign of @, . This means that the emerging free
waves that initiate the in and up modes (e~™"~ or e/®+",
respectively) simply undergo complex conjugation under
this transformation. We also recall from the previous
section that the radial equation is real and is invariant
under such a simultaneous sign flip of @ and m. Therefore,
the following symmetry relations are satisfied:

l'(/E\—(J))l(—m) = Wg?m (34)
for the radial solutions and
pé\—m)l(—m) = pg?m’ Té\—m)l(—m) = Tg;km (35)

for the corresponding reflection and transmission coeffi-
cients, where A stands here for either “in” or “up”.

Having introduced the radial functions w'%, and y})
and specified their boundary conditions in Egs. (3.2) and
(3.3), the complete orthonormal family of outer Eddington
modes are defined in accordance with Eq. (2.14),

. 1 . .
1an x) = Z(J))n 9’ (ﬂ e—l{l)flll:n r ,
)lm( ) 4ﬂ|a)|<l‘2 T a2) I} ( ) ulm( )

i
Fom(x) =

Vo, (P + @)

X Z?;n (6’ qo) e_iwtwl(-ll)l;n‘l ( r) ’

(3.6)

satisfying the boundary conditions [as emerge from
Egs. (3.2) and (3.3)]%:

in 1
wlm ()C) = > 5 7
V87| w|(r* + a?)
e—iaweimga , PNI
x 8¢ (0) . (3.7)
O, Hpast
1
fz)pm X)
) e P
52 (6 0 PN 3.8
x S¢ . . .
lm( ) e_lw+uexlelm¢+’ Hpast ( )
Equation (3.8) makes use of the relation

eiWleimy — giwiloimey - also useful later in the paper.
Note that, in accordance with the discussion toward the
end of Sec. II A, the past asymptotic forms given above
[as well as the future asymptotic forms given below in
Egs. (3.14) and (3.15)] are always expressed in terms of the
three regular coordinates on each of the asymptotic null
surfaces.

For future use, we also find it beneficial to write
Egs. (3.7) and (3.8) in a slightly different manner by
absorbing the ¢- and ¢ -dependent factors into the angular
functions,

in () 1 7 (0.9) e~iv PNI (3.9)
X)—rre—— w , , .
ol dr|w|(r* +a?) i\ 0, H g
Footm (%) ! 7o (0.9.) 0 PNI
wlm \¥) = “;” P —iw, u ’
[ 4ﬂ|(0+|(r2 +a2) 1 + e + exl, Hpast
(3.10)
where
1 )
Z5,(0.9,) = —=5},(0)e™+. (3.11)

/_2” Im

$0n the rhs of Eq. (3.8), being nonzero only at H,,, we could
have replaced r in the prefactor by r,. However, in Eq. (3.7) this
is not the case, as well as in similar equations that follow, being
nonzero both at r = r, and at infinity. We thus choose, for the
sake of uniformity, to keep r (rather than r, ) in the prefactor on
the rhs of Eq. (3.8), as well as in all similar instances that follow.
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Clearly, for any fixed w € R, Z7 (0,¢,) is a complete
family of functions on the two-sphere, orthonormal in the

sense that

2n 3
A d(p+ A dfsin 92?1); (0’ (er)Z?’)m’(e’ (/)+) = 511'5mm"
(3.12)

By inspecting Eq. (3.6) along with Egs. (3.4) and (2.21)
we conclude that the exterior Eddington modes are invari-
ant (modulo a sign introduced by the angular functions)
under simultaneously flipping the signs of @ and m along
with complex conjugation. That is,

ff\—wﬂ(_m) = (=1)"f N (3.13)

where A stands for either “in” or “up”.

For future use, we also provide the asymptotic behavior
of the in and up Eddington modes on the future null
hypersurfaces,

1 in e—ia)uexleim(p FNI

(1) SO
V87 |w|(r* +a?) T eTiWveimi  Hp

(3.14)

1
B0 + a)
TUP e—iwuexleim(p FNI
<510

S (%)

wlm

(3.15)

up o —iw, v ,im
Poim€ € 7+, Hpg

The in and up outer Eddington modes are illustrated in the
top row of Fig. 2. The in mode may be interpreted as a
(properly normalized) monochromatic spherical wave
propagating inward from infinity (PNI) and being partially
reflected back to infinity (FNI) and partially transmitted
across the horizon (Hy), with the relative coefficients of
transmission and reflection being respectively 7, ~and
pn . Similarly, the up mode may be interpreted as a
monochromatic spherical wave propagating upward from
the past horizon (H ) and being partially reflected back to
the future horizon (Hy) and partially transmitted to infinity
(FNI), with the relative coefficients of transmission and
reflection being respectively 7z, and p.f .

B. Inner Eddington modes

In a similar manner to the definition of the in and up
modes outside the BH, we may additionally define two sets
of Eddington modes confined to the BH interior. Note that,
in this spacetime region, the r, coordinate serves as a
temporal coordinate, whereas ¢ has a spatial role. This
means that a single initial condition is required for the
radial equation (2.18), which we simply take as a free wave
at r, — —oo (corresponding to r — r,),

int  ~ ,—iw,r,
Yolm =€ ’

(3.16)

r—ry.

With this radial function we now define the right (R) and
left (L) sets of orthonormal modes,’

1 o
o (X) = PRI Zp, (0, p)e™ it (r),

+

| -
(X)) = Z (0, @)e~ "yl (r).

" Vo (7 + )

(3.17)

These modes admit the following asymptotic forms at the
right and left horizons:

R 1 . Oa HL
a)lm(x)2 ‘S‘Z)n(e)elm«br i n ’
V87w, |(r* + a?) e v Hp

(3.18)
1 . iw+uim7 H
L) sp@eme- {7 T
V872w |(r* + a?) 0, Hpg

(3.19)

As for the exterior Eddington modes, we shall find it
beneficial when constructing the HTPF to present a slightly
different form for Egs. (3.18) and (3.19) by absorbing the
@-and ¢ -dependent factors into angular functions,

1 07 HL

) = 2O s
Var|lo, |(r* + a*) e~ Hp

(3.20)

1

Vazlo (7 + )

eim+ Uine , HL
0, Hyp
(3.21)

é;lm ()C) =

Z40.0.)]

Analogously to the symmetry in Eq. (3.13) satisfied by
the exterior Eddington modes, the interior Eddington
modes satisfy

fg\—w)l(—m) = <_1)m Sfm’ (3'22)

*Note that, in the treatment of the analogous RN case in
Ref. [30], the right and left modes are defined with an essentially
different temporal dependence [see Eq. (2.16) therein]: the right
mode is decomposed with respect to e~ while the left mode is
decomposed with respect to ¢'®’, and both share the same radial
function. This was possible since, in RN, the wave equation is
invariant under @ — —w. In Kerr, however, the latter symmetry
does not apply, hence we stick with the canonical decomposition
of Eq. (2.14). This difference also leads to some differences
between several equations below and their counterparts in
Ref. [30].
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where A stands here for either R or L. The right and left
inner Eddington modes are illustrated in the middle row
of Fig. 2.

We have readily settled the definition of the inner
Eddington family of modes. However, it is interesting to
also inspect the form of the radial function '™ (r) atr, —
oo (i.e., on approaching the IH). In correspondence with the
asymptotic behavior of the effective potential (2.24), the
solution of Eq. (2.18) admits the free asymptotic form

int

Yolm = Awlmelmir* + Bwlme_lmj*» r—r_, (323)

where A, and B, are constant complex coefficients.

C. Unruh modes

The Unruh modes are the basic modes for the field
expansion involved in the definition of the Unruh quantum
state (see Sec. IV C). There are two distinct sets of Unruh
modes and both inhabit the entire union of the BH interior
and exterior (namely, the red frame in Fig. 1). We shall
occasionally refer to this domain as the “united domain.”
This domain has two null boundaries in its past: The one on
the right is PNI. The other boundary, on the left, is located
at r = r; it is the union of H,y and H, . Recall that, as
discussed at the end of Sec. Il A, the corresponding affine
parameters are Eddington v along the past-right boundary
(PNI) and Kruskal U along the past-left boundary
(Hpast U Hp). We also note that both these affine param-
eters span the entire range (—oo, 00) along their respective
past null boundaries (namely, » along PNI and U
along Hpy,q U Hp).

The two sets of Unruh modes naturally emerge from
these two past null boundaries, with positive frequencies in
each set defined with respect to the affine parameter along
the corresponding boundary. This is unlike the Eddington
modes (introduced above), which are always defined
asymptotically with respect to the corresponding
Eddington coordinates v and u.'"” We now introduce the
two sets of Unruh modes, in and up, as outlined above.

1. The in Unruh modes

The in Unruh mode :}lm originates at PNI as a free wave

with respect to the affine parameter there, the Eddington v
coordinate (i.e., o< e7*?) and vanishes on both H .y and
H; . Thatis, it is endowed with the following past boundary
conditions:

'%Since the Unruh modes are introduced here directly for the
construction of a quantum state, we only need to define them with
positive frequencies. The Eddington modes, however, were
introduced to be utilized as a mathematical tool for decompo-
sition. Thus, the latter were defined in Secs. III A and III B for
negative frequencies as well (hence the absolute value in their
normalization constant).

o 1 " e~i@v  PNI
gwlm(x) = Zlm(g’(p)

47ra)(r2—|—a2) 07 HpastUHL.
(3.24)

Recall that here w attains only positive values (see foot-
note 10). The in Unruh modes are illustrated in the bottom
right diagram of Fig. 2.

Evidently, these boundary conditions are regular. Since
the d’Alembertian operator in Eq. (2.12) is regular as
well, the regularity of the ¢, ~—modes is guaranteed
throughout the (interior of the) united domain.

We now restrict our attention to the BH exterior. Notably,
the in Unruh mode 91£1m’ when constrained to the BH
exterior, has the same boundary conditions (on the past
asymptotic null surfaces PNI and H ) as the in Eddington

mode iglm: compare Eqgs. (3.9) and (3.24). That is,

Guoimlpxt = Fooimpnr-

gg}lm'Hpas‘ =0= $1m|11pﬂs‘-
Since ¢, and fin, satisfy the same wave equation (2.13),
it follows that these two quantities are identical not only on
the initial null hypersurfaces H, and PNI but at every
spacetime point in the BH exterior,
(3.25)

Jomn(X) = Lo (), rzre

In order to find the behavior of g™, in the BH interior,
we carry it using Eq. (3.25) to Hy, where it fulfills

in |6()+| in R

9$1m|HR = wlm|HR = P Toolm a)lm|HR

(3.26)

[for the last equality, compare Eq. (3.14) with Eq. (3.18)].

Again, since ¢, and /%l ¢k

coincide on Hy and
on H; as well [since they both vanish on the latter
hypersurface, see Eq. (3.24) and Eq. (3.18)], these solutions

are identical everywhere in the BH interior,

. [lo]
G (X) = T+Tz?lm f}lm(x)’ ro<rsry.

Equations (3.25) and (3.27) demonstrate a useful prop-
erty of the in Unruh modes, namely, that we may match
each in Unruh mode, at any given neighborhood, with a
particular Eddington mode: with an in mode at » > r, and
with a right mode (up to a specified multiplicative constant)
at r_ < r <r,. In particular, this means that, throughout
the united domain, £lm decomposes into radial, angular,
and temporal terms, as may also be anticipated from its
initial conditions given in Eq. (3.24) (because e '’
decomposes naturally into a temporal factor e~ times
a function of r, and this separable form of the 7 dependence

(3.27)
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is preserved as gwlm evolves according to the #-independent
wave equation). This situation changes when considering
the up Unruh modes, as we shall do next.

2. The up Unruh modes

The up Unruh modes are solutions to Eq. (2.13) emerg-
ing from H, U H; with positive frequency, which we
denote by & (to distinguish it from the Killing frequency
). That is, the up Unruh modes originate from (the ingoing
arms of) r = r, as « e~®V_ with the Kruskal U as defined
in Egs. (2.9) and (2.10).

The desired orthonormal set of up modes is conveniently
defined by specifying the initial value of each of the modes
at the initial null hypersurface H,, U H;—as a function of
the three regular coordinates U, 0, ¢ which span it (see the
end of Sec. IT A). This initial value setup for the up modes is
complemented by requiring these modes to vanish at PNI,
see Eq. (3.29) below. In order for the up modes to provide
(when combined with the in modes defined in the previous
subsection) a complete KG-orthonormal set of solutions to
the wave equation, the aforementioned three-parameter set
of up-modes initial functions has to be in itself a complete
KG-orthonormal set of functions of U, 8, and ¢, on
Hp, U Hp. We already chose the modes’ initial U
dependence at Hp,i U H; to be o eV 50 all that is left
is to specify a complete orthonormal set of functions of the
remaining coordinates @ and ¢ on the two-sphere. This set
can be chosen quite arbitrarily (and, in principle, it could
also depend on &). It should depend on two discrete
parameters (reflecting the dimensionality of the two-
sphere), which we here schematically denote by 1, in; hence
we may generally denote such a set of “initial” angular
functions as Z;"m (0,¢.)."" We choose it to be orthonormal
in the usual sense,

2 n A A
/0 do. A dOsin 027" (0.9.) 2% (0.¢,) = 53

(3.28)

The set of up modes is then generally defined via its initial
conditions at Hp,q U H; and PNI by

HAs mentioned, the Unruh modes introduced here are to be
utilized in Sec. IV C for construction of the Unruh quantum state.
Generally speaking, what determines a quantum state is the
frequency (and thereby the implied choice of positive—frequency
modes), which was here chosen to be the parameter @ appearing
in 7Y, Then, the remaining choice of angular functions
Z“’ (0,¢,) for the up Unruh modes’ initial conditions does
not affect the resultant quantum state. In particular, the final
mode-sum structure of the Unruh-state HTPF, as appears in
Eq. (5.4) or (6.37), does not depend at all on the choice of Z‘”
we show this explicitly in Secs. VB and VIB.

0 0. 0, PNI
( (P+) e_i(;)U, HpastUHL.

(3.29)

r2+a)

Recall that @ attains only positive values (see footnote 10).
The up Unruh modes are illustrated at the bottom left
diagram of Fig. 2.

We shall choose our arbitrary angular functions
Z;"m (0,9, ) to be the simplest complete orthonormal set
of angular functions on the two-sphere—namely, the
conventional spherical harmonics,

where P are the associated Legendre polynomials.
Thus, we define g7, . as a solution to Eq. (2.13) with the
initial conditions

Conveniently, any given up mode may be written as a

sum of two other solutions to Eq. (2.13), denoted @as;n

and gf) " which are endowed with the following initial
conditions:
0, PNI
1
gAlA(X) = Y?rh(ng-&-) O’ Hpash
o 4rir(r? + .
i ( ) e—le’ HL
(3.31)
| 0, PNI
g}:aftA X Q—YAm e’(p e—ir})U’ H o
"’lm( ) 4nd(r? + a?) 146 €+) 0. Hzat
(3.32)

That is, while the initial support of gAp (x) is on the entire
null surface H i U H , the function gA m( x) has its initial
support on H; alone, whereas gpmt (x) is initially sup-
ported on H,  only.

One might be slightly confused about our choice of
spherical harmonics as the angular functions here, because
it is customary to use the spheroidal harmonics for a Kerr
BH. But the only reason for this common use of spheroidal
harmonics in Kerr is to achieve angular separability of
the wave equation, as in Eq. (2.14). Recall, however, that
since the spheroidal harmonics explicitly depend on w,
this angular separability can only be achieved when the
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temporal dependence is precisely of the form e~ (multi-
plying some function of r, 8, and ¢). Quite unluckily, an up
Unruh mode admits a more intricate temporal dependence,
which does not fit any single Killing frequency w. Instead,
each such mode is a superposition of Eddington modes
with potentially all possible @ values; this may be seen
already at the initial hypersurface H i U H;, where an up
Unruh mode is o ™Y, recalling that U cannot be
expressed as a sum of 7- and r-dependent pieces, unlike
the Eddington coordinates. Since angular separability
cannot be achieved anyway in this case, there is no
advantage in using the spheroidal harmonics for the up
Unruh modes—and we choose the much simpler (and
frequency-independent) spherical harmonics instead.

We point out, however, that despite our choice of
spherical harmonics for the definition of the up Unruh
modes, our final mode-sum expressions (in Eddington
modes) for the HTPF are actually given in terms of
spheroidal harmonics (as one would naturally expect for
Kerr)—as may explicitly be seen in Eqgs. (5.4) and (6.37)
[along with Egs. (3.6) and (3.17)]. In fact, these final mode-
sum expressions for the Unruh-state HTPF are entirely
independent of the choice of angular functions Z;"m 0,9.,)
at this stage of constructing the up Unruh modes, see
footnote 11 above.

It is clear from the discussion above that, unlike what we
did for the in Unruh modes [see Egs. (3.25) and (3.27)], it is
not possible to match a specific up Unruh mode with a single
Eddington mode (neither in the exterior nor in the interior
of the BH). This reflects our inability to reduce the partial
differential equation (PDE) (2.13) to an ordinary differential
equation (ODE) [such as (2.18)] for the up Unruh modes.
Therefore, in order to allow a convenient numerical imple-
mentation involving the solution of ODEs rather than PDEs,
we shall later Fourier decompose the ¢~ (x) modes in
terms of the (separable) Eddington modes.

D. Wronskian relations

The absence of a first derivative in the radial equa-
tion (2.18) leads to r, independence of the Wronskian of
any pair of solutions. This Wronskian conservation yields
well-known relations involving the exterior reflection
and transmission coefficients p,;, and 7, [defined via
Egs. (3.2) and (3.3)], as well as relations involving the
interior near-IH coefficients A,;, and B,;,, [defined
via Eq. (3.23)].

1. Relations involving p,,, and t,;,

Using the Wronskian conservation on pairs of solutions
chosen from %, . w'b i and y'" [in particular,
equating their Wronskian at r, - —co with their
Wronskian at r, — oo, using the asymptotic forms given
in Egs. (3.2) and (3.3)], yields the following constraints on
the reflection and transmission coefficients:

|pwlm|2 |Toulm|2 = 17

|pmlm|2 |T(u/m|2

wp _ P+ i

wlm W wlm>®

o, )
pa}lm Tolm

The last equation yields, in particular, |p.5 | = [p, |.
Notably, from the first (second) constraint, modes with
ww, <0 have |p" 1>>1 (|p,) |>>1). That is, the
reflected in (up) wave has, at FNI (Hp), an amplitude
greater than it originally had at PNI (H ). Th1s is the
classical phenomenon of “superradiance” [12, 131."12

2. Relations involving A, and B,

Similarly, Wronskian conservation of the interior radial
function w = [see Eq. (3.16)] and its conjugate w'Ii*
relates the internal scattering coefficients A, and B,

[defined through Eq. (3.23)] as follows:

A i [? = 2 (3.34)

|Bwlm|2 -

IV. QUANTUM STATES IN A KERR SPACETIME

All topics outlined in the paper so far were basically
purely classical. We shall now promote our scalar field
from a classical field ® to a quantum field operator o.
We first provide a brief review of its decomposition via
annihilation and creation operators and then introduce
various quantum states in Kerr spacetime.

A. Generic construction of quantum states

Consider a space of generic positive-frequency mode
solutions ®; with respect to some temporal coordinate
(clearly, in curved spacetime, this choice is not unique).
These solutions fulfill the following orthonormality rela-
tions with respect to the KG inner product,

(@;, ;) =6, <d>jf,<l)j.>:—5,-j, <d),»,(I);f>:O, (4.1)
so that the union of the set ®; (for all i) and the set d);f (for
all j) is a complete family of orthonormal solutions to the
KG equation (2.12). We may now expand the field in terms
of this basis of solutions via creation (&j) and annihilation

(a;) operators as follows:

"Note that in RN we have o = o +, which leads to the simple
analogous relation |p,,|> + |74|* = 1, implying that there exist
no superradiant modes.
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@;(x) + aj@; (x)).

The vacuum with respect to this family is a state |0)
such that

a;|0) =0, for all i.

Acting on the vacuum state with the creation operators 21:
yields the one-particle states

1;) = 724 0),

and from here one may construct the entire many-particle
Fock space.

B. The Boulware and (lack of) Hartle-Hawking
quantum states

The outlined decomposition scheme is utilized in the
construction of quantum states for a scalar field. As a
concrete example, consider the field decomposition in the
Kerr BH exterior in terms of the outer Eddington modes
[Eq. 3.6)]

= Z/ dw b(ulm wlm( ) bl(:)ll"‘m E}Tm('x))
1=0 m=-1
0 ] s
E33 [T 00+ BT )
1=0 m=-1
(4.2)

for some operator coefficients b, and B;‘f}m. Note that the
up modes are defined with respect to the positive frequency
o, rather than o [this is a direct result of the asymptotic
behavior of the effective potential (2.22)]. Therefore, the
corresponding integration is over positive @, . The decom-
position in Eq. (4.2) serves to define the so-called (past)
Boulware state |0) (see Refs. [6,7] for the Schwarzschild
case and Refs. [10,11] for Kerr) via

giar)llm |O>B = 0’
0)5 =0,

for all w > O;

by for all w, > 0.

In nonrotating BHs (i.e., Schwarzschild and RN), this state
is irregular on both H,y and Hy and is empty on both
PNI and FNI (and so it is said to model a cold star); in
the rotating case, it continues to be empty on PNI but it
contains quantum superradiance at FNI (the Unruh-
Starobinskii effect).

The focus of this paper is another state: the Unruh state,
which we define in the next subsection. Before turning to
the Unruh state, however, we wish to give the following
remark on another, third state. In nonrotating BHs, one may
consider the Hartle-Hawking (HH) state [9,31], which
corresponds to a BH in thermal equilibrium, coupled to
an infinite bath of radiation. Although not too realistic, the
HH state provides (in the nonrotating case) relative sim-
plicity due to its time-reversal and time-translational
invariance, and so historically it was used to make some
progress in the study of the RSET. However, a state
analogous to HH is ill-defined in Kerr (see Ref. [14], as
well as Refs. [11,19]). This may be intuitively understood
from the existence of superradiant modes (see Sec. III D),
for which waves are reflected back to infinity with
increased amplitude, conflicting with the feasibility of a
state of thermal equilibrium. We shall thus consider only
the (highly physically relevant) Unruh state from now on.

C. The Unruh quantum state

The Unruh state [8] is widely recognized as a physically
realistic vacuum quantum state, describing an evaporating
BH (and thus, by definition, is not time-reversal invariant).
The Unruh state is constructed to resemble the quantum
state arising at late times for a BH formed by gravitational
collapse. It is defined by taking positive frequencies with
respect to the affine parameters along both initial null
hypersurfaces (see the formulation of the Unruh modes in
Sec. III C). That is, positive frequencies are defined with
respect to v (the affine coordinate on PNI) for incoming
modes and with respect to U (the affine coordinate on H
and H;) for outgoing modes.

For a straightforward definition of the Unruh vacuum
state, we decompose the metric in terms of the Unruh
modes [Egs. (3.24) and (3.30)],

00 ] o ) )
d)(x) = § § [) dw(aiglmglwlm( ) + Awleng}l*m (X))
=-1

o 1
®© . AUp up Aup’r up
+Z ZA dw(%m%m<x)+ wzmgwlm( %)),

(4.3)

where a", and & (4™, and asz;m) are the creation and

wlm wlm olm

annihilation operators corresponding to the in (up) Unruh
modes, and the set of quantum numbers @& /7 classifying
the up Unruh modes are as discussed in Sec. III C 2.

The Unruh state |0); is then defined as the vacuum state
with respect to the Unruh decomposition (4.3), namely, it is
the state annihilated by all Unruh-modes annihilation
operators,
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am.10yy, =0, forall w>0;
a, 10)y =0, forall® > 0.

The Unruh state involves no incoming flux at PNI and an
outgoing flux of thermal radiation at FNI, in correspon-
dence with Hawking radiation of an evaporating BH. The
corresponding RSET is expected to be regular across
the interior of the united domain (since the united domain
is the future domain of dependence of the two Unruh-state
initial null hypersurfaces, PNI and H, U H). In particu-
lar, this expectation for regularity applies at Hg, but not
at Hp,q U Hp.

V. CONSTRUCTING THE UNRUH-STATE HTPF
IN THE EXTERIOR OF A KERR BH

From the decomposition of the field ® in terms of Unruh
modes [Eq. (4.3)], applying the commutation relations
[ah, &? "] = #8801 (where I denotes the set of all three
quantum numbers and A is either “up” or “in”), we obtain
the mode-sum expression of the Unruh-state HTPF in terms
of the Unruh modes g3, and ¢’ . [defined in Egs. (3.24)

and (3.30)],

Il
—
S
—
=
N—
o
—
R\
SN—

(5.1)

where x and x' are spacetime points and we denote

Gm X )C / dw{gmlm g::}ll*m( )}’ (52)

—hZ/ (0. 45,0, (53)

and, recall, {¢(x), {(x")} = E()L(X) + ()L (x).

Throughout the paper, we shall use the shorthand
notation »_,, =>2,> !, (and likewise for }; .).
Remarkably, it has been found [see Eq. (3.22) in
Ref. [19], as well as Eq. (3.18c) in Ref. [11]," with the
analogous Schwarzschild case in Refs. [17,18]], that the
mode-sum expression in Eq. (5.1) may be decomposed
in terms of the more manageable outer Eddington modes
(defined and discussed in Sec. Il A), yielding the
expression

BNote that Ref. [11] considers a slightly different two-point
function (TPF) from our G§}> (x, x"), namely, the nonsymmetrized
TPF, usually called the Wightman function G*(x,x') =
(d(x)®(x')) rather than the Hadamard two-point function
G (x,x') = ({®(x), ®(x)}). In particular, it is trivial to derive
the symmetrized TPF from the nonsymmetrized one provided in
Ref. [11], thereby obtaining Eq. (5.4).

)=y [ ot 2,00}

+ [ docom (72 ) (18, (0.5} |

+

(5.4)

In what follows in this section, we shall present the
derivation of Eq. (5.4) in the Kerr BH exterior via a
procedure different from the methods previously used in
the mentioned references. This procedure is the same as
that which we use later on to derive the HTPF in the Kerr
interior and is an extension to Kerr of the procedure used in
Ref. [30] for the interior of a RN BH. In doing so, we
recover the known result [Eq. (5.4)]. Proceeding in this way
will allow us to demonstrate our method on a Kerr BH
background in a simpler case (i.e., outside the BH) before
delving into the BH interior and to handle various issues
special to Kerr that arise already in the BH exterior.

A. Mode decomposition of the exterior Unruh HTPF

Concentrating on the BH exterior, we wish to express
Egs. (5. 2) and (5.3) in terms of the exterior Eddington
modes, f and f,) . defined in Sec. III A.

In various stages of the computation to be carried out, it
turns out to be very useful to define a new version of fw >
which carﬂes an index w, rather than . We shall use the

notation fw . as the w, -indexed version of f, . That s,
for a certain set wlm, we define
up(+) _ cup
fm+lm = fw(aq,m)lm’ (55)

where w on the rhs is related to @, and m on the lhs by the
standard relation, w(w,,m) = w, +mQ,. All relations
and equations from the previous sections that include f)

may now be carried to this section with the simple

up(+) 14
replacement fwlm fw -

use the object fw o (rather than £

reach the final expression [Eq. (5.28)], which will then be
reexpressed in terms of the usual f)) .

We begin with the in contribution. We may readily use
the equality presented in Eq. (3.25) between g, and fin o
in the BH exterior to express Eq. (5.2) as the mode sum

In what follows, we shall

o) as a tool until we

“A clarification regarding our notation may be in order here
(particularly related to the interchangeability of /. and f

Once the object f . ,m ) has been defined here [in Eq. (5.5)], our
notational rules allow us to write equations of the form, e.g.,
FPU) = U (Gust to give a simple illustrative example). The
exact meaning of an equality of this type has been clarified in
Sec. III, and we repeat it here for clarity: Whenever a part of a
given equation depends on @ and another part depends on @, , the
latter is to be viewed as given by @ — m€ . (Or, if one prefers, the
other way around: @ may be viewed to be given by w, + mQ,.)

wlm
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Gi(x. x) / dof (), 1 (N}, (5.6)

Likewise, the up counterpart G;' (x,x") requires estab-
lishing a relation between the up Unruh modes gA 5 and
the exterior Eddington modes. However, as discussed at the
end of Sec. III C 2, that task is a more complicated one—
compared to the in Unruh modes, but also compared to the
spherical symmetry counterpart.

We shall now introduce a notation to be used occasion-
ally throughout the rest of the paper. In determining a
quantum state, the frequency has a special role over the
other quantum numbers. Let us then denote collectively all
other quantum numbers by J (or sometimes J). Here, more
specifically, J = (I,m) and J= (7, i) (where the latter
indices were introduced in Sec. III C 2). Then, we shall also
use the shorthand notation Y, =%, =>® 5! .
and likewise for ) ;.

To relate the up Unruh modes ¢.", and the Eddington
modes on the BH exterior, we turn our attention to the
relevant asymptotic surfaces. Recall that on the past
horizon, we have [see Eqgs. (3.30) and (3.10)]

1

P = Y:(0,¢, )e @Vl (57
9oy Hpag 4ﬂ&)(ri+a2) 70, 9.) (5.7)
and
£, = : Z9(0.0,)e . (58)
o™ Jalw, (7 + )

As was already spelled out in Eq. (3.12), the set of
spheroidal harmonics Z%9 (6, ¢, ) is a complete orthonormal
family on the two-sphere for any fixed w. For the analysis
below, it is important to note that this set also forms a
complete orthonormal family for any fixed w,. It is
orthonormal in the sense

2r
/ d(p+/ dfsin9[Z "””* 10, 0.)]"

x Z;} ”’}+ " (6 §0+> - 511’5mm s

(5.9)
where, as usual o(w,,m)=w, +mQ,. This is so
because [; 27 il ’”)‘/’+drp = 270,,,, hence the 6 integral
in Eq. (5.9) needs only to be carried out for m’ = m—in
which case the equality of @, (in the two Z functions) is
fully equivalent to the equality of w. A fairly similar
argument may be used to show that the completeness of the
family Z7(6, ¢ ) with fixed @ also implies its complete-
ness with fixed o, ..

Now, in order to decompose g in terms of £ J) on
H s> We introduce two sets of coefﬁcrents Uiy, and c5s
aimed at handling the frequential and angular factors,

respectively. The Fourier coefficients ay,,,
the inverse Fourier transform

are given by

(5.10)

© - .
A, E/ duexte_“”U(Mex[)elaqum.
—00

This integral may be evaluated as described in Ref. [30],15
yielding

- L <ﬂ> 1w+/’<+eﬂw+/2k‘+r‘<_l‘&). (511)
Ky \Ky K

Similarly, C(f)+ the coefficients translating between the
two bases of orthonormal functions on the two-sphere, Z9
and Y3, are defined by

2r Fd "
Cw; E/) d‘ﬂ+A stinG[ZJ( h >(9, 9:)] Y;(0.9,)
(5.12)

[recall that in the square brackets the information about the
value of m in w(w,,m) is encoded in J].

The a;,,, and Cj); coefficients, as defined in Egs. (5.10)
and (5.12), allow a translation from the Unruh to the
Eddington frequential and angular factors via the relations

. 1 [
e—l(uU<Mexl) — 5/ dw+a&)w e
-0

IOy Uext

(5.13)

and

z : Cw+ Zm w,m

where, recall, in the last equality the sum over J is carried
out with fixed w,. The first of these relations is just the
inversion of the (inverse) Fourier transform in Eq. (5.10).
To derive the second relation, we use the (fixed-w,)
completeness of the spheroidal harmonics to decompose
the spherical harmonics as

2 : Puur Za) wy.m

where P?* denote the coefficients of the decomposition.
Substituting this decomposition into the rhs of Eq. (5.12),
and recalling the spheroidal harmonics orthonormality, one
readily sees that C; = P, hence Eq. (5.15) reduces to
the desired relation (5.14). In a similar manner (this time
employing the orthonormality and completeness of the
spherical harmonics), one can decompose the spheroidal
harmonics and show that

(5.14)

70, 94) 9 @),

(5.15)

0 (/7+ ‘9 §0+)’

PSee Eq. (3.3) therein and apply the notation change
O 0,0 b.

125011-15



ZILBERMAN, CASALS, ORI, and OTTEWILL

PHYS. REV. D 106, 125011 (2022)

Z0 @m0, g.) = Zc“’“‘y 0.0,). (5.16)

For future use, we also note that the following relation
holds:

Zc‘”+ Co =6,y (5.17)

To see this, we substitute Eq. (5.14) into the rhs of
Eq. (5.16) (with index renaming J +— J' in the latter)
and obtain

Zu) ®,.m (9 §0+ Z |:ZC,0)Jr C‘(;); :| Z‘(;) .. )(9, §0+)
(5.18)

Recalling the orthonormality of the spheroidal harmonics,
the term in square brackets must be the identity matrix with
components §;, yielding Eq. (5.17).

Substituting Eqs. (5.13) and (5.14) in Eq (5 7) and
comparmg to Eq. (5.8), the decomposition of gA in terms

of f ) on the null hypersurface H . may now be written

as follows.
vV wJ Hyus 27 Z/ e |a)+|aww+ (;); o] )|Hm'
(5.19)

In addition, recall that both g A and f up(+ L ) vanish on PNT:
see Egs. (3.10) and (3.30). Thus

Z / do. \/anm (;J w+J |PNI'

(5.20)

~ _up
‘gm.] PNI

Since gA , and fw J satlsfy the same wave equation (2.13),

it follows that these two quantities are related as prescribed
in Egs. (5.19) and (5.20), not only on the initial null
hypersurfaces H,, and PNI but throughout the BH
exterior. That is,

T2z Z / da)+

r>r,.

+f(u+J (x)’

(5.21)

e>
\)

Next, the HTPF up mode contribution G;7 (x, x') in terms
of Eddington modes is achieved by substituting Eq. (5.21)
in Eq. (5.3),

. ) w dé ® )
Gy (x.x') :4—”22[) EZ/_ da v/ |w+|a[;,m+c(}lj

/ da)+

x {f:‘,‘fﬁ <x>,f2:1<;’*<x/>}.

' *
Ylag, ,Cj;,

(5.22)

We conveniently rearrange Eq. (5.22) as follows'®:
Gy ) Z / do, |w+
/ ot Jlol A ), 725 ()
xzkxﬁ;/‘f%ma

We can now perform the @ integral appearing in the
above equation, using Eq. 5.1

(5.23)

o da A 4n? 1 5 ,
0 Ea‘z’“bra(bwﬁr - a)—+1 — o2y /Ky (60+ - Cl)+).
(5.24)

With this identity, Eq. (5.23) reduces, after performing the
trivial integration of the & function over o/, to

P(x,x') = hZ/
x Z{f w+l w+!’

\w+| 1

—271(1)+/K+

DY

Next we use Eq. (5.17) to obtain

1
G (
(x,x) = hZ/ dw sign a)+)1 o270, /K

L0 (). £ () (5.25)

Finally, we would like to “fold” the w, integral in this
equation so that only modes with @, > 0 show up. To this

o This rearrangement involves interchanges of the summation
over J and the integration over & with all subsequent operations
(summations and integrations). We do not attempt to rigorously
justify this manipulation (or similar ones that appear later on).
Nevertheless, after implementing this rearrangement, we do
recover the correct, well-known result quoted in Eq. (5.4) above.
This may be considered a justification for the manipulations
entailed.

"To obtain this integral, one may rewrite it as
Ki el 0T/ 2 (—jg , [k, T (ia, [k,) [, dse(@=®%) where
s=2LIn(®/k;), and use the relation |F(l(u+/l<+)| =

K+7‘0+ )/sinh (zw, /x).
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end, we note that since the mapping (0, m) — (-, —m) is
equivalent to (w,,m) > (—w,,—m), we may rewrite
Eq. (3.13) (with A taken as “up”) as

fl(lggz:))l(—m) = ( )mwam : (526)

We now recall that Y, =%, >"! _, and concentrate on
the summation over m. For each given [ we have

Z {f —(mr lm u:))*lm (xl)}

m=-1

= Z () @) £C ()}

- Z {f(u+1m

m=-1

w+lm ()C/)},

where the first equality follows from Eq. (5.26), and the last
equality simply involves a renaming of the summation
index m +— —m. Using the group index J, this may be
expressed as

Z{f P ) (x) = Z{f,,,ﬂ

Equation (5.25) can thus be rewritten as

G 1
p X )C/) - hZ/ da)+|: —27rw+/1<+ - 1= e2ﬂa)+/l(‘+:|
<AL 0 LT

As one can easily see, the term in square brackets is
coth (zw, /). Our final result for G} is, therefore,

Gl (x,x) = hz /oo dw, coth (%)
X LFP) (o) £ () )

As prescribed in Eq. (5.1), we may now put together the
up and in mode contributions, as given in Egs. (5.6) and
(5.27), to yield G\ (x. x'),

(x) =030 | [ dot 780120, 0))

ILm

+ / ” dw, coth <%>
0 Ky

X {10 (), f:,'fr,,f*w)}]

(u+.l ()C/)}.

(5.27)

(5.28)

Finally, we may retrieve the standard w-indexed nota-

tion, replacing fw lm by fib (since, as mentioned above,

they represent the same object). Then, the mode-sum
expression of the Unruh-state HTPF outside a Kerr BH,
in terms of Eddington modes, is as previously quoted [in
Eq. (5.4)],

)= | [ a0

I.m
n / * dw, coth <%> 0 (). £ (1)}
0 Ky
(5.29)

It may be shown (however, outside the scope of this
paper) that at small @, , the up radial function y/wlm behaves
(to leading order) as w,, which ensures regularity of the
J¢° dw, integral at small w,. (Regularity of the [;°dw
integral at small w is similarly ensured.)

B. Invariance to the choice of the angular

functions Z;”m @, 9.)

Finally, we comment on the invariance of our final result
(5.29) in the exterior of a Kerr BH with respect to the choice
of the angular functions Z: . (0.¢), used for prescribing
the up Unruh-modes initial data at Hy, U Hp. As discussed
in Sec. IIC2, Z‘” " (0,¢,) can be any set of angular
functions which is orthonormal and complete on the two-
sphere (and, in particular, it may depend on the mode’s
Kruskal frequency @). However, for the sake of concrete-
ness (as well as simplicity and brevity), in the analysis above
we made the specific choice Zif’m(g, py)=Y;,(0,0.).
Here we shall briefly consider how the analysis would
proceed and ultimately what would be the final resultant
mode structure of the HTPF, if one chose to work with
generic angular functions Z“’m rather than the specific
functions Yj .

Let us examine the consequence of replacmg Yy,
everywhere by Z‘” (and likewise Y; by Z ), starting at
Eq. (5.7). The C coefficients, relating the spheroidal
harmonics with the up Unruh-modes initial angular func-
tions (which now depend on @), accordingly acquire an
extra index @. That is, Eq. (5.12) is replaced by

Cwm _/ dfﬂ+/ d@'sin 0[Z wm m>(9 ) Z?(Q,(pﬁ,
(5.30)

and every instance of C; is replaced by C;'}"*. Under these
replacements, all equations up to Eq. (5.22) (inclusive) hold
in their new analogous form. For later use, we quote, in
particular, the new form of Eq. (5.17), simply adding the
index @ to both coefficients,
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Z Cw(u+ Cr;;,)+ =68,. (5.31)

Things become slightly more delicate when arriving at
(the Y; > 2’7’ counterpart of) Eq. (5.23): Here, the
w + Cw \

term ) ; C 3 Car

> C ww* C[;;,)* Naively, one might be concerned that
since thls term exhibits explicit dependence on &, it would
be necessary to keep it inside the @ integral [i.e., the
integral at the very end of the rhs of Eq. (5.23), which is
then evaluated in Eq. (5.24)]. It is therefore crucial to note
that (as we shall shortly justify)

should of course be replaced by

ZC(U{U+ C‘!;;A/)Jr C;)‘;w *’ (532)
where C?} * is defined by
{o+w 2r /) *
C,y +—/ dqo+/ d@sin 0[Z @, 9,)]
x 2“0, p.). (5.33)

which by construction is independent of @."

Note that taking o/, = @, on the rhs of Eq. (5.33)
reduces to the lhs of the orthonormality relation (3.12).
Hence

[0)
C" = o

(5.34)
and Eq. (5.32) thus reduces appropriately to Eq. (5.31).
In order to establish Eq. (5.32) we first note [using an

argument similar to the one employed above for the
justification of Eq. (5.14)] that C;]}, “are actually the
coefficients relating the two sets of spheroidal harmonics

w(w' m' .
Z‘}’@*‘m) and Z J,( ) , via”

27" 0.9 = 3 C" 2 0.90). (539)

7

18As one can easily see by performing the integration over ¢,
C " vanishes for any m’ # m; but this specific property is not
needed here.
Explicitly, the derivation is as follows: From the (fixed-w, )
completeness of the spheroidal harmonics, one can write [in
analogy to Eq. (5.15)]

wa}+m [H (l) m
Z, 0,9.)

@
z :PJJ/

where PZ*,(”* are the coefficients of the decomposition.
Substituting this decomposition into Eq. (5.33), and using
the orthonormality of the spheroidal harmonics, one obtains

o0, o o
P, =Cy,

(0, 0),

Then, Eq. (5.32) naturally follows from the completeness
and orthonormality of each of the three involved families of
angular functions, namely, Zw(w+ ™) Zj),w*’mI), and Zg’, bya
slight generalization of the argument described right after
Eq. (5.17).%

Now, owing to Eq (5.32), we are allowed to place the
term Y ; C w“’* C’;;,’*
Eq. (5.23). From this point on, the analysis proceeds in
a completely analogous manner [recalling Eq. (5.31)] to the
previous subsection, and the final result (5.29) is again
obtained, this time using the generic angular functions Z’”m

out of the & integral, just as in

rather than the spherical harmonics Y; ;.

To avoid confusion, we also emphasize that, in this final
expression for the mode structure of the Unruh-state HTPF,
the modes that appear are the Eddington modes fi“ and

o .» which are of course separable in terms of spheroidal
harmonics [this is regardless of the nature of the angular
functions 2;"”1 (0,¢,) that were chosen earlier in the
process].

VI. CONSTRUCTING THE UNRUH-STATE HTPF
IN THE INTERIOR OF A KERR BH

In this section we shall finally construct the mode-sum
expression for the Unruh-state HTPF inside a Kerr BH in
terms of Eddington modes. We shall follow here an
analogous procedure to the one carried out in Ref. [30]
in the RN case, while noting that the presence of rotation
induces some essential differences. Basically, it is the
procedure demonstrated already in Sec. V for the exterior
of a Kerr BH, although there are some notable technical
differences. In the first subsection we shall carry out the
actual derivation of the expression for the HTPF and in
the second one we shall prove that the expression is
invariant with respect to the choice of the initial angular
functions.

“More precisely, one would need to combine the Y; — Z“’
counterparts of Egs. (5.14) and (5.16), taking J +— J’ and W, —
@', in the former, to yield the (slightly generalized) counterpart of
Eq. (5.18),

Z(;(aur.m) 0. ¢+ Z |:ch:0;+¥ l;)‘;t/)+:| w/(w’,vm’) (9’ (p+)

Recalling the coefficients of the decomposition in Eq. (5.35) are
unique, one obtains

(. (l)(l) (l)(l)
§C“+C N opand

Jr

The desired result, Eq. (5.32), is then achieved by complex
conjugation.
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A. Mode decomposition of the interior Unruh HTPF

In the analysis to follow, just like in the exterior
counterpart presented in Sec. V, we shall use the
o, -indexed versions (that is, objects carrying an index
w,. rather than w) of the Eddington modes f®, . fL  and
fw[m The w, version of fwlm has been introduced in
Eq. (5.5), and for the interior modes we define in a similar

manner

A() A
faurlm f o(w, m)lm’

where A is either R or L, and w(w,,m) = 0, + mQ,. In
addition, we shall use the notation

up(+) _ up

o, Im — pa)(aur.m)lm

as the w,-indexed version of p.b . All relations and
equations containing fX, . fL, . f | and p, =~ are to
be carried from previous sections to this section along with
a simple replacement of the w-indexed objects with their
. -indexed counterparts, as defined above (see also
footnote 14).

We begin with Eqgs. (5.1)—(5.3), which are valid in the
interior as well as the exterior of the BH, aiming for a
mode-sum decomposition of both the in and up contribu-
tions in terms of the interior Eddington modes. Starting
with G (x, x'), we may readily use the relation between the
in Unruh modes and the R Eddington modes, as given in
Eq. (3.27), which holds throughout the BH interior. Then,
Eq. (5.2) may be written as

G (x. ) =

A3 [ ol e P00 )
6.1)

The contribution from the up Unruh modes is, as
expected (see discussion in Sec. III C), less straightforward
to decompose in terms of Eddington modes. We find it
convenient to start by writing Gy7 (x,x’) in Eq. (5.3) in

up . past
terms of the two 9,7, components: g.- and g(f) " [see
Egs. (3.31) and (3.32)]. Recalling that
I () = g () + g (),

wlm wlm @

which is valid throughout the united domain, and sub-
stituting this relation into Eq. (5.3), we readily obtain

up x x/) _ hZ/ dé {gpdst pdbt*(x/)}

+{g5; (). 955N} + {55 (). 955 (x)}
+1{g5;(). gpajt*(x’)}}, (6.2)

where the integration is over the Kruskal frequency @ and
we use the notation previously introduced, J = (I, n%)

aft and g%, in
terms of Eddington modes, we shall follow the same
reasoning as in Sec. V, where we defined coefficients
relating the frequential and angular factors of the Unruh
and Eddington modes under consideration, constrained to
the relevant asymptotic null surfaces. The angular coef-
ficients C%* 37 defined in Eq. (5.12), will be utilized in the
BH interior exactly as they were in the BH exterior.
However, as we shall see, adjusting the various frequential
factors will require defining an additional set of Fourier
coefficients, along with the ones already defined in the BH
exterior. For future use, we rename the a,,, coefficients, as

Aiming for a decomposition of both

defined in Eq. (5.10), by o Ef;}t (adding a superscript “past”).
That is,

and it is explicitly given by [see Eq. (5.11)]
1 o\ i /xy )

a2 = — [ — e /2 [ —j—1 ), (6.4)
w4 Ky \K, K.

We shall begin with gga;t, emerging from H and
vanishing on H; and PNI, hence identical to gz)pj when

restricted to the BH exterior [compare Egs. (3.30) and
(3.32)]. This allows us to relate to the analysis carried out in

Sec. V and replace g, by gpaSt in the lhs of Eq. (5.21).

Explicitly, this relates gpaSt and f ) throughout the BH

exterior as follows:

1 0
~ past L / past ~w, pup(+)
\/5 @] 271'2 dw+ |(1)+ &Iw+C]j w.J

Aiming at the BH interior, we carry the above relation over
to the common boundary of the BH exterior and interior—
namely, the hypersurface Hy (the EH). This yields

gi)aSt He  2g Z/ dw., |w+|065f£§ ;); w+l)|HR'
(6.5)

Now, we wish to reexpress this in terms of the interior
Eddington modes instead of the exterior up modes. By
comparing Eq. (3.15) with Eq. (3.18), we register their
relation on Hp,

R
£, =R, (6.6)
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Substituting this into Eq. (6.5) we find
~ a) R(+
Vé C;,aSt Hy 2 Z/ dw, |w+\ 5;1511 J} 2}11 )fw51)|HR‘ (6.7)

In addition, both gpa‘gt and fi(;) vanish on H; [see Egs. (3.32) and (3.18)], implying that this relation actually holds
throughout the BH interior,

Vag(x Z/ do /o Jofe Cor o fi ) (0, o <r<r,. (6.8)

We now proceed similarly with gé} ;3> Whose form on H is [see Eq. (3.31)]

p __Y00) it

~(x =
53 )|HL dzd(r’ + a?)
aiming to relate it to the left Eddington mode, whose form on H; is [see Eq. (3.21)]

Z7(0.94)
drlw,|(r3 + a?)

eia)+L‘int

L
o ()], =

This resembles the case of decomposing gA . in terms of f J Jon H past> as carried out in Sec. V, with a modification in
the frequential factors: here we have e"“’UWml) and e/+“n as the Unruh and Eddington frequential factors, respectively,
instead of e~@U(te) and e~i®+en respectively.

We thus define new Fourier coefficients relating e~®V(#m) and e'@+"n, which we shall denote by aé}m’ given by the
inverse Fourier transform

o E/oo duime_i(bU(uim)e_iwwim' (6.9)

[olom
oo

This integral may be found by inspecting Eq. (6.9) alongside Eq. (6.3), changing the integration variable from u;, t0 —tey
[which also implies U (utin) > —U (ttex,), see Egs. (2.9) and (2.10)], which results in afs,, = alf?t* - Applying this relation
to Eq. (6.4) then yields 2

1 N\ i, [k
a(%)w+ = — (2) +e—ﬂ(0+/2K+r‘< a)"r) . (610)

Comparing Eq. (6.10) with Eq. (6.4), we find o}, in terms of apd“ 2
(%)uur = as)ii e_”w+/’<+' (611)

*'This expression is also given in Eq. (3.5) in Ref. [30], however, there are some notational differences in this case that need to be
bridged: Basically, the notation in Ref. [30] is related to ours as prescribed in footnote 15, namely, @ — @, , w — &. However, on the
rhs of Eq. (6.10) our @, should actually be mapped to —@ (this extra change of sign has to do with the issue discussed earlier in
footnote 9).

One might be concerned about the notable difference between our Eq. (6.11), describing the relation between %m and a,, , and
the nghtmost side of Eq. (3.5) in Ref. [30] (which states that pdSt*) To reconcile this dlfference note that when transformmg our

@
" and at  to the notation of Ref. [30], the former becomes apf)l but a”” is translated to a% & (see footnotes 15 and, 21 as well as

ww . (l)()

past

9). Indeed, considering the relation between af; (s and a’™' therein would yield the analog of Eq. (6.11) (namely,
ak _ aPaSte—zm)//q)
(-d)
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The two H -projected functions g@ (%) H, and f i(t) (x)] 5, Ay now be related using the conversion coefficients ak
past

=a,, bya ]

ma}

and C;)* [in full analogy with Eq. (5.21), replacing ay

ww

Hp, __Z/ de. |a)+|aww+ ]j m+J |H . (6.12)

a)J

Since both the left Unruh and Eddington modes vanish on Hp, this relation between ggA and f J actually holds
throughout the BH interior,

2 5 (%), ro<r<r,. (6.13)

a)abr ]] . J

=52 [ oo

Now, substituting Eqs. (6.8) and (6.13) into Eq. (6.2), G} (x,x’) may be written as

Gy (x,x') =h(lgg + Iy + Iy + 11g), (6.14)

where

Irr=

Z/w 4o Z/ dw, |CU+|0‘Z;::+ 3); uaij Z/ da)+
w* / do/,

o dd as w u / L(+)*
IRL - Z/ Z/ dw+ |w+‘asm)t+ J}r wrjrl Z/ dw+ a&m/ _/_]/ {f(u+l( )’fng‘r]? ()C/)}, (617)

B e . £ ()Y, (6.15)

Lake, C L (0. £ (@Y (6.16)

ILL—Z:/O0 4o Z/ da)+

astx ~@' % u R(+)*
ae S PR ) Fa () (6.18)

o do uur
ILR = ZA 4”2,\ Z/ dw+ |a)+|aw(mr JJ / dw-‘r
J

We rearrange Eqgs. (6.15)—(6.18) into a form similar to that of Eq. (5.23),

1 o W, 0 © dd
_ / AL past _pastk
Irr = A2 E der |CU+ dCoJr |CO+ pm+J p(,) J/ {fm+1 (u J’ } E :CJJ CJJ/ o awozhr a(bwﬁr ’
7 J-o

(6.19)

1 0 W, 0, do .
=g [ o Vely / daf | (125 0115 VY € |G b ay (620)
J —0o0
1 o e @y O dd 6 *
IRL:WZ/ da)+\/|a)+|2/ da', |a)+pw+J {fa)+J fa, J, }ZC“C“,/ Eagwiagw;, (6.21)
—o0 J/ —o0

1 o R(+)* + w+ da astx
Ik ZQZ/ dw+\/|w+|2/ dal\ /el [ (S (o)l ) }ZC‘JUJ i / —ab, ah. (6.22)
J —00

/
+

At this point it becomes clear (after renaming the indices @, <> @/, and J <> J' in the last equation) that I = I}, .
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In order to proceed as we did in the BH exterior, we need to perform the integrals on the rightmost side of each equality,
of the form [ 42! al} 2 with A , either ¢ past” or L. The result of the integral [ %2 o ff;i a azt* has already been given in
Eq. (5.24). Next, we ‘use the relation between af  and ab ast , given in Eq. (6.11), along with the previously mentioned

integral [Eq. (5.24)], to find o

w dé , ©dd sy w4721
—ak agz), = e (@10 )/xy —ab abh = — (0, — @) (6.23)
0 @ + 0 @ L e /Re -]
and
o d@ 0 d® past pas 472 1
¢ e ¢ past
—aboakr = e /K —al ab = — — 5w, — ). (6.24)
0 @ + + ) + + ., e”{”+/’<+ —e W, /Ky

Performing a computation very similar to the one carried out in Eq. (5.25) in the BH exterior, substituting the integrals in
Egs. (5.24), (6.23), and (6.24) into Egs. (6.19), (6.20), and (6.21), respectively, and making use of Eq. (5.17), we obtain,
after translating the exponential factors into corresponding hyperbolic-geometric functions,

o =557 o B2l o (52 ) | 2P 0.2 ) (6.25)

=557 [ a0, 2 feom (2 ) -1 [ {rL 012 0 (6.20)
and
o = 1 =557 [, 2] coseen (%20 | |0 125 0,125 )1, (627)

where cosech = 1/sinh.
Next, we would like to fold these three integrals through @, = 0, just as we did in Sec. V for the BH exterior. To this end,
we first note that in all three equations (6.25)—(6.27), the rhs is of the general form

=3 Z / H(@:)Fy,,(x.x) = %%; /_ z do sign(w, ) H (@, )F, j,(x.x'). (6.28)

where H(w. ) and F,, ;,(x,x'), respectively, stand for the first and second terms in square brackets in each of these three
equations. Furthermore, we once again note that since (@, m) — (—w, —m) is identical to (0, m) > (—w,, —m), we may
rewrite Eq. (3.22) as

A m e\ *
f<—(2)1(—,n) = (-1) wa,l (6.29)
(with A either R or L) and the invariance relation of p"P included in Eq. (3.5) as
Pl(]i?)z(—m) =0 (6.30)
Equations (6.29) and (6.30) may now be used to show that the function F w, Im (x,x") in all three cases (6.25)—(6.27) satisfies

F(_w+)lm ('x’ 'x/) = Fz)+1(_m) ('xv x’)’

Then, summing over [ and m (recalling »_,,, = >, >/ __)), we obtain
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ZF_m,mxx ZFw lmxx)—ZFmex

Therefore, by folding the w, integral in Eq. (6.28), we
obtain the following explicit form:

1 0
= EZA da)+|:H(a)+)F(IJ+J('x’ xl)
J

~ H(-0,)F},_,(x.¥)] (6.31)

Note that the function H(w,.) potentially has both a part
that is an even function of @, and a part that is an odd
function. Then, from Eq. (6.31) it is clear that the even part
of H(w,) leaves out the imaginary part of F, ,(x,x'),
while the odd part of H(w,) leaves out the real part of
F, ;(x,x'). Applying this general folding structure to
Egs. (6.25)-(6.27) and noticing that F,, ;(x,x) is actually
real for Ixg and I;; [Egs. (6.25) and (6.26), while for
Eq. (6.27) this is not the case], we obtain the three desired
folded integrals,

IRR—Z/ dw+coth< >| w+(1)|2

x LA () £ (a0}, (6.32)

=Y [ docom () 125 0. 125 (),
(6.33)

and

Ip, =11 = ZAOO dw_ cosech <HK&>
X< (P THI ) £ 0Y). (634)

Notably, all four individual contributions to Gy (x,x'),
namely, Igg, I;;, and Ix; = I, are real. Combining now
Egs. (6.32)—(6.34), we obtain the up contribution,

GP(x,x) =

doo, | coth (25 ) ({FEC Ce). FEC (Y 4+ S LR (o), A2 ()
3 ) con ()

+ 2cosech <7M)+ (6.35)

Kt

) L) () £ ey .

Finally, combining the in contribution [Eq. (6.1)] with the up contribution [Eq. (6.35)], we obtain the full HTPF in the BH
interior,

6§y =3 [ dw+[coth( )<{fw+,,,,< ) FEO) + P PR (), 2R ()

Im

- h( ) ML) (), £ ()

0 [ a0 e, P 0.7 ) (6.3
Lm
and, translating back to the standard w-indexing notation, we reach our final result,
1 %
61 ) = 1Y [ o com (% )({f,,,,m<> £ )} + 0 P (0. 725, )
Lm

1)

+ 2cosech (" )05, (12100 57, }MZ |7 a2 e st 0. 58,0000 (637
+

B. Invariance to the choice of the

angular functions Z

One may be concerned about the apparent singularity of g
7.0, 9.,)

the mode-sum at w, — 0 (and, similarly, at @ — 0). In
Appendix A, we address this issue and show that the
integrands in Eq. (6.37) are in fact entirely regular at both
limits.

In Sec. V B we established that in the construction of the
HTPF outside the BH, the final result remains unchanged if
in the definition of the up Unruh modes (described in
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Sec. IIC?2) one replaces the spherical harmonics

Y,(60,9,) by any other complete orthonormal set of
angular functions Z“’ (0, ¢.) [fulfilling Eq. (3.28)]. As
one can easily Ver1fy, "all the arguments and considerations
made there are equally valid for the interior.

More specifically, in order to carry out this generaliza-
tion in the construction of the interior HTPF, throughout the
analysis in the present section one simply has to replace

everywhere Y;,, by Z7. and Cor by C“””+ (and similarly
replace Y, by Z’;’). Then, recalhng Eq. (5 .32), in (the Y
Z‘f’ counterparts of) each of the four equations (6.19)—

(6.22), the factor > ; C “”"* C,," may be justifiably kept
out of the @ integral. From that point on, making use of
Eq. (5.31), the analysis proceeds with no further
modifications.

We conclude that the result in Eq. (6.37) for the mode-
sum expression of the Unruh HTPF inside the BH is
invariant with respect to the choice of the initial angular
functions Z?’m(é, @) in the up Unruh modes, as
anticipated.

(1}(1) *

() _ © do,
e =0y [

+ 2cosech (ﬂw+
Ky

where we note that the first integral is over positive w
only, crucially allowing us to replace |w, | by @ there.

Recall that there are two parts making up GEJI) (x,x): the
J§° dw, integral arising from the up modes contribution
Gy (x,x') and the [®dw integral corresponding to
G (x,x'). We now concentrate on the former.

Inspecting the form of the integrand of Gy} (x,x') as
written in the first part of Eq. (6.39) (namely, the
integrand of [$°dw, there), we find that it is invariant
under the simultaneous sign changes m +— —m and
o +— —w. To see this, apply the symmetries given in
Egs. (3.22) and (3.5) along with the odd nature of the coth
and cosech functions [recalling that (@, m) — (-, —m)
also implies o, — —w_].

We shall now establish the following statement: Given a
function E,, (@) with the property

E ) (-0) = Ey(0),

we may formally write

Z/ dw E,,(0) = Z/ dwE,,(

m=— m=—

(6.40)

)R P, T () Wz | i e P8

C. Alternative forms of the final result

We propose here alternative forms of the final result for
the HTPF given in Eq. (6.37), which may prove to be useful
in future applications. In particular, we shall provide an
expression in which the integral over w_ (arising from the
up contribution) is replaced by an integral over w. To this
end, we shall proceed as follows:

We begin by introducing the functions £, and fE,
related to the standard interior Eddington modes f%, and

wlm [see Eq. (3.17)] by eliminating the normalization
factor, that is,

- 1
R __ / _
wlm = 4ﬂ|w+|f§)lm = ﬁzfm (9’ (p)e lwtl//g)lltm’

1 - "
oim = VA0 i = 7 700 0. 0) 7 W

- feom (%2 )({fwzmu i)} 1o AT (). P32 1)

(6.38)
Rewriting Eq. (6.37) in terms of fX, and fE, = w
obtain
wlm('xl)} (639)

|
That is, one may replace Y, ,, [¢°dw, (in the case of a
symmetric integrand as described) by >_;,, [¢° do.

To see this, we may denote

Im = /oo dw+En1(w)’
0

and then express /,, and /_,, as follows:

0

0 0
I, :/ dwE.,,(w) +/ dwE., ().
+mQ,

We now concentrate on the finite-domain integration
term of 7_,

0 0
/ dwE_, (0)) = _/ da)E—m(_w)
—m&2, me,
0
=- / dwE, (),
me,

where we have changed variables from w to —@ and then
used the symmetry of E,,(w). We readily see that this term
exactly cancels the finite-domain integration term in the
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corresponding expression for /,,. Summing over m in pairs
of £m (and noting that the m = 0 term does not contain
such a finite-domain integration piece), we are thus left
with the desired relation (6.40).

|

W © dw
El - h
ACEDY / —

+2 cosech(
+

The integrand in this equation is regular at both @ — 0 and
o, — 0, as mentioned after Eq. (6.37).

One can also modify the form of Eq. (6.41) [or likewise
Eq. (6.37)] by various applications of the Wronskian
relations, given in Eq. (3.33). In particular, one may replace
2ol |2 by 1—|pmb,|° thereby entirely eliminating t
from the final expression.

In Appendix B we harness Eq. (6.41) in order to
construct the bare mode-sum expressions for the Unruh
fluxes (T,,)V and (T,,)Y (where T, is the stress-energy
tensor) for a minimally coupled massless scalar quantum
field, starting at a general r value in the BH interior and
then taking it to the horizons r — rp. The resulting
expressions will serve as a basis for future research.

VII. DISCUSSION

In this paper, we have derived expressions for
Hadamard’s elementary two-point function G()(x, x') for
the Unruh state inside a Kerr BH in the domain between
the EH and the IH (that is, with both points located at
r_ <r <r,; note that the Unruh state is not defined
beyond the IH, because the latter is a Cauchy horizon).

In order to introduce and facilitate our approach, we first
rederived the (already known) expression for the HTPF in
the BH exterior (namely, r > r_ ), with the result given in
Eq. (5.29). This expression consists of an (nonthermalized)
in contribution as well as a thermalized [« coth (7w /k, )]
up contribution. A similar (though more intricate) approach
is then applied to the BH interior.

The main result of the paper (the HTPF in the BH
interior) appears in its most useful form in Eq. (6.41) [also
in slightly different forms in Egs. (6.37) and (6.39)]. This
expression may naturally be divided into three terms: (i) a
term proportional to |7, >, which emerges from the in
modes (see the bottom right panel of Fig. 2). These modes
arise from PNI, penetrate the potential barrier at r > r_,
and then cross the EH and propagate in the BH interior (this
term is evidently the counterpart of the in contribution in
the BH exterior, but here only the transmitted part remains,
hence the |z |> factor), (i) a term proportional to
coth (zw, /x. ) arising from the up modes (see the bottom
left panel of Fig. 2), composed of a left contribution

)mzm{fwzm() FLin()}) + 25 e (P ). T () |

Following the discussion above, this property may now
be applied to the integral [° dw, in Eq. (6. 39) replacing it

by an integral [5°dw. Then, the entire G\ )( x') may be
written in terms of an integral over w,
10) -
ot (%225 ) (7 0 i )} + PP 0. 50 )
+
(6.41)

|

originating at H;, and a « |p,) | past contribution arising
from H,, then being reflected outside the BH and
crossing the EH [this may be viewed as the interior
counterpart of the thermalized piece « coth (7w, /k,) in
the BH exterior], and (iii) a term proportional to
cosech (zw, /x,) coming from the up modes and involv-
ing interference between left and reflected past modes, thus
not having a counterpart in the BH exterior (where the up
modes consist only of a past contribution).

The expression (6.41) for the HTPF in the BH interior
includes factors (such as 1/w, 1/w_, as well as hyperbolic
functions that diverge at w, — 0) which may raise con-
cerns regarding potential IR divergencies. In Appendix A
we analyze both the @ - 0 and w, — 0 limits of
G (x,x') and show that both these limits are regular, that
is, no IR divergence is present.

Our result (6.41) is expressed in terms of the computa-
tionally favorable Eddington modes (whose determination
only requires solving ODEs), and thus lays the ground for
an array of useful applications, such as the computation of
(®?) or (T in the physically motivated Unruh state in the
interior of a Kerr BH. Of special interest are the flux
components of the RSET, (T,,,) and (T,,), where u and v
denote the standard Eddington coordinates in the BH
interior. In Appendix B, we use our expression for the
HTPF to develop explicit expressions for the “bare” mode
contributions to these flux components inside a Kerr BH, at
a general r value between the two horizons. These general r
expressions, given in Eqgs. (B34)—-(B38), provide the basis
for a future paper of ours [32], in which we compute (7',,,)
and (T,,) between the EH and the IH of a spinning BH.
Then, we take the (physically interesting) IH limit, leading
to Egs. (B49) and (B50). These limiting expressions are
readily applied in our subsequent paper [33], in which we
compute the Unruh-state fluxes (T,,) and (T,,) at the IH
vicinity of a Kerr BH, hence shedding light on the
remarkable open question regarding the fate of the IH
inside a spinning BH under quantum perturbations.

The Kerr geometry admits the well-known superradiance
phenomenon: all in modes in the “superradiance band” 0 <
o < m&, (for m > 0) are amplified when scattered off the
BH, that is, they satisfy |pl", | > 1. Although this is

| 2
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basically a purely classical phenomenon, it also has some
interesting implications at the quantum level. One such
remarkable implication is the fact that the semiclassical
quantum outflux emitted from a Kerr BH to infinity (in the
Unruh state) does not vanish at the extremal limit, on which
we shall focus in the remainder of this section: There
remains a nonvanishing contribution (known as the
“Unruh-Starobinskii radiation”) coming from the super-
radiant modes. It is interesting to note that a closely
analogous superradiance-related phenomenon also occurs
inside the BH (again in the extremal limit), as may be seen
in Eq. (B52) at the end of Appendix B. As pointed out
there, the integrand in that equation is negative throuéghout
(off the pole), which implies (T75,) %, — (T,)4, < 0. This
last inequality guarantees that at least one of the fluxes at
the IH (and possibly both of them) does not vanish. [This
situation may be confronted with the extremal RN limit, in
which both (T,) and (T},) vanish [34]. Y This non-
vanishing flux (or possibly fluxes) at the IH in the extremal
limit is a clear signature of the superradiance phenomenon
inside the BH.

ACKNOWLEDGMENTS

M. C. acknowledges partial financial support by CNPq
(Brazil), process No. 314824/2020-0 and by the Scientific
Council of the Paris Observatory during a visit. A. O. and
N.Z. were supported by the Israel Science Foundation
under Grant No. 600/18. N. Z. also acknowledges support
by the Israeli Planning and Budgeting Committee.
|

GP

+ 2cosee (25 M5, 75, 0. 1 (1))

where x = (¢,7,0,¢) and x' = (¢, 1,0,
St=t—rand Sp=¢—¢'.

Equation (A2) is composed of the inner Eddington
modes fR (x) and fZ, (x), given in Eq. (3.17). These
mode functions involve in their definition a factor |w. |~'/%.

¢'). We denote

PRecall that this inequality refers to the flux components
(Tuu)en @a0d (T3,).en>» Which (as indicated by their superscript
“~7; see Sec. B3) are associated with the coordinate system
(u, v,60, ¢_). If we were to use the coordinate system (u, v, 6, @)
instead [e.g., in order to relate to the Hawking outflux, via the
conserved (i.e., r-independent) quantity displayed in Eq. (B42)],
we would then have a factor o rather than w_ in the integrand in
Eq. (B52). This would in turn lead to a positive (rather than
negative) flux difference (T, )%, — (T,,)Y,—consistent with the
positive sign of the outflux emitted from the BH to infinity.

*The vanishing of both (Ty,) and (T5,) in the extremal limit

also applies in the Kerr case at the pole, as demonstrated in the
Supplemental Material of Ref. [33].

APPENDIX A: THE HTPF INTEGRANDS
AT SMALL FREQUENCIES

Equation (6.37) expresses the HTPF as a sum of an up
part, involving an integral over positive @, , and an in part,
which involves an integral over positive @. The expressions
appearing in Eq. (6.37) for these two integrals may raise
concerns about possible divergences at two specific
frequencies: The up piece includes terms proportional to
coth (zw, /k,) or cosech(zw, /k,), both diverging at
@, — 0; the in piece includes a 1/ factor, which diverges
at ® — 0. In addition both the up and in pieces include
products of fX, —and/or fZ, functions, each entailing a

factor of 1/1/|w | in its definition [see Eq. (3.17)], which
also contribute to a potential divergence at @, — 0. Our
goal in this appendix is to analyze these potential diver-
gences and to show that no divergence actually occurs in
neither @, — 0 nor the @ — 0 limit. We shall show this
separately for the up and in pieces.

1. The up integrand
We begin with the up part of the HTPF, given by

GPr) =ny [Tdo. Gl (Al

with the individual mode contribution

:,,m<x,x>—coth< )({fwlmm Lo ()} L% () %0 ()} 0 )

(A2)

In order to explicitly reveal this divergent factor, we shall
here rewrite /X, (x) and fZ, (x) in the form

A() = — e in®) () (A

V8l [(r* +

(for A either R or L), where we denote

_glm (x) = eim(/;e—zwtll//\lm( )

(A4)

As before, w’, ~is the radial function and we have
wh, =k =yt At this stage it becomes clear that
there is a potential divergence in G”Sm that goes like 1/a? .
due to the |w,| factor appearing in the radical in
the denominator of Eq. (A3), combined with the

coth (zw, /x,) or sinh™! (zw, /k, ) factors in Eq. (A2).
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In order to facilitate the analysis of this potential
divergence at @, — 0, we next write {f> (x), 22" (x')}
(with A, A, either R or L) as

80, (0)S7,(0')

7o, [V + )7+ )

{Fhs(X). i (X)} =

X {fwlm( ) 2%;;( /)} (AS)
Then {f™ (x), f2*(x')} is given by
{Fon (). Foin ()} = eyt (P)yain ()
My (MWt (). (A6)

where K = wdt — mog.

In what follows, we suppress the superscript “int” for
brevity (that is, l//g)‘,‘m is to be denoted by w,im)- Explicitly,
the three relevant cases for {f! (x), Fo2* (x')} are

{}‘cLolm ()C), _5)?111 (X/)} = 29{[ _lKl//Zzlm( )l//wlm(r/)]’ (A7)
{F im0 Fagim (6} = 2R [e™ Ky (N (7). (A8)
{F im (X)- Fagim (x)} = 208K W (F)W i (7). (A9)

Recalling the small-w, expansions coth (rw, /k,) =
k,/nw, + O(w,) and cosech (zw, /k,) =k, /70, +

0(w+) al(/)\ng with Egs. (A7)-(A9) for the various
{ fwzm( x), foi (x')} factors, we obtain
0 (o) ShO)SH(O
Gt 872/ (r? + &) (r? + a®)
X % [Gwlfn (r I"/) + Ga}l}(n)(r’ r/>
+ G (r )]+ 0(), (A10)
where
up(A) N 2 iK * /
Gwlm (r’ r) = a)_zm[e l//wlm(r)wwlm(r )}’ (All)
+
Gt (r,7) = |pw1m|2%[ Y i (W1 ()], (A12)

OS(K)ER[pigml//(ulm(r)u/wlm(r/)]‘ (A13)

We next resort to the small-w, expansion of y,,,,(r) and
pzsm. For y,,;,,(r), the analysis in Sec. A 3 below [see, in
particular, Eqs. (A37) and (A47)] implies that

(0) (1)

ll/wlm(r) =Vim (r) + Yim (r)a)+ + 0(w+)’ (A14)

where ll/;rn)( r) is a real function, and o(w..) denotes terms

whose decay rate at w, — 0 is faster than . For p, . it
can be shown” that

= 1+ pj o, +o(.).

Naturally, the expansion coefficients wgi)n)(r), lpgrln) (r), and
phln) are independent of w (or @, ), as their lower indices
(being solely /m) also indicate.

To facilitate the analysis below, we now rewrite
Egs. (A14) and (A15) by absorbing their o(w_ ) parts into

the first-order coefficients y/frln)(r) and pgrln) . As a result,

these first-order coefficients now become @ dependent, and
correspondingly we denote them by y/f‘%(r) and Pi;lz)m-

[Nevertheless, this dependence on @ will not cause any

Poim (AIS)

complication: The only relevant fact is that both z//((”ll)m(r)
)

and p,; remain finite as @, — 0.] Thus, we rewrite
Eqgs. (A14) and (A15) as follows:

Voin(r) = Wi (1) + Wi, (Do, (Al6)
P = =1+ plno.. (A17)

The last equation also implies
P8P =1=20.0R(pl),) + O(a2).  (A18)

We now plug the expansions (A16)~(A18) of 1, po.
and |p} |* into Egs. (A11)~(A13). The three quantities

G G ) and G then split accordingly into terms

olm > Y wlm ° wlm
multiplying @72 and w7! [plus an O(w" ) term], and they all
take the form

(r.7)

1
wlm ( r) *_2G25m
+

—|——G up(X— )(r,r'

where X stands here for either A B, or C. The computation
of the 2 x 3 coefficients G*\*) and G"\*~") is straightfor-

ward [and uses the fact that l//§m> (r) is real]. For X = A the
two coefficients are

GuP(

A2 () = 2cos(K)ywll (Myi () (A20)

and

»We analytically derived this small-w, expansion of p'F .
both for m # 0 and m = 0 (in which case @, — 0 means w — 0).
We also verified this small-w, expansion numerically. We do not
provide the analytical derivation here, as this issue (being solely
related to wave scattering outside the BH) is beyond the scope of
the present paper.
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wlm (I" r) = ngrrz( )(h[ _lKl/}wlm< ,)]

+ 21// (r’)%[e l//wlm(}")] (A21)
for X = B the coefficients are
G (r, 1) = 2cos(K )iy (N () (A22)
and
G (r, 1) =291y ()R [e Xy, ()]
+ 20 ()R e Kyl ()]
—dcos(K)R[ply, Jyin (M) (7). (A23)
and for X = C,
G () = —4cos(K)y\ Nyl (#)  (A24)
and
G\ () = —4cos<1<><w§?2<r>%[w£,‘zn<r/>]
+ l//Im ( )Sx[w(ulm(r)])
+ deos(K)R[p\) i) (rwi (7). (A25)

Concentratln first on the three o 1/w? coefficients,

namely, Gwlm , notice that
up(C_
Gwlfn ? + G(ulfn Gasr(n 2)’ (A26)

so they cancel outin G, . Turning next to the three « 1/,

coefficients GUP(X"), we see the same structure here again,
up(C_y)
G(ulm + G(ulm Gwlm : ’ (A27)

so that partis canceled out as well. Substituting this back into
Eq. (A10), we are left with
G (x.X') = O(a?) (A28)
atw, — 0; that s, the potential divergence of the individual
up mode contributions at @, = 0 is gone.
Finally we consider the behavior of G, (x,x') at
o — 0. Both v, and pwlm are regular at that limit.*®
For m # 0 (in which case @ — 0 implies that w, stays

remote from zero), no divergence can occur in G, = at

*For W, 0 the case m # 0, this regularity naturally follows
from the definition of y,;, based on boundary conditions
specified at the EH in terms of @, rather than . For p.) in
the case m # 0, we analytically computed p.5 ~at @ — 0 and
found it to be finite and well defined (and it satisfies
|p (=0) m] = D, but again, this analysis of p is beyond the

scope of this paper. We also numerically verified smoothness of
pun at the limit @ — 0. In the other case m = 0, the limit @ — 0
coincides with the limit w, — 0, for which regularity of y,;,,, and
puy., has already been established above [see Eqs. (A14) and
(A15), and also footnote 25].

@ — 0. In the special case m = 0, taking the limit @ — 0
also implies @, — 0 (which in turn implies there are
potentially divergent terms in the above expression for
wlm) nevertheless, it was already shown above that the
overall expression for G5 is actually regular at w, — 0.
We therefore conclude that G, (x, x') is regular at both
limits @, — 0 and @ — 0.

2. The in integrand

We now consider the in mode contribution, which is
much simpler and is given by

G (x, x') / doG (x,x),  (A29)

with the integrand

Gglm( /) _| +|| wlm| {fa)lm( ) a)lm(x/)}‘ (A30)

The Wronskian relations in Eq. (3.33) yield

+m

mlm|2 =1- |:0mlm|2

and therefore (recalling |pi%, | = |piF |) also

losl |
ei* = sign(w, ) (1 = |ogp,, ).

Towolm

Plugging this relation along with Eq. (3.33) into Eq. (A30),
we obtain

Gin ( )—L(l—Lﬁup |2) S?;,(Q’)S}‘jn(e)
wlm 60+ wlm Sﬂz\/(r2+a2)(r/2+a2)

X {f(ulm( ) a)lm(x/)}’ (A31)

which highlights the potential divergence at w, — 0.
However, Eq. (A18) reads

1- |pwlm|2 = 2a)+gh<pl) + 0( )

and the w, factor on the right-hand side cancels out the
1/w, factor in Eq. (A31). Also, ff)lm isregular at o, — 0,
as directly follows from Egs. (A4) and (A14). We are
therefore left with

(A32)

G, (x. ) = O(a) (A33)

at the limit o, — 0.
The form of Eq. (A31) also guarantees that no irregu-
larity occurs at w — O either.

_ %7 As before, we use the fact that /)w 1 and Wolm (and hence also
fR,.) are regular at @ — 0. We also recall that, in the special case
m = 0, for which the 1/w__ factor in Eq. (A31) diverges asw — 0
(because now this limit also implies @, — 0), this potential
divergence is already handled in the above analysis, which

showed that G, is actually regular at w, — 0.

wlm
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3.yint at small w,
The function ., (r) [which, recall, denotes y™ (r) in

wlm
this appendix] satisfies the radial equation

= _lem(r)l//wlm7 (A34)

W(ulm,r* r.

with an effective potential V;,(r) given explicitly in
Egs. (2.19) and (2.20). The initial condition for this
ODE is specified at the EH (corresponding to r, — —o0) by

~ p—lwr, — (init)
Yolm =€ = Y oim (}"* - —OO).

(A35)

(Recall, the symbol ~ denotes equality at the relevant
asymptotic boundary, namely, r, - —oo in the present
case.)

Our goal is to analyze the behavior of v, (r) at small
o, . To this end, we first write the asymptotic behavior of
the initial condition (A35) at small @,

2

2

(init)

W = 1 —io r, —w% =+ . (A36)

The effective potential V,,;,,(r), too, can be decomposed in
a power series in @, around w, = 0 (see below). We are
therefore motivated to adopt the following ansatz for the
form of vy, (r) at small @, as a power series in @_:

Wi (1) =W (F) F i) (N, +wi) (Nl 4+ (A37)

Each coefficient 1//5,',’1) (r) in this expansion should satisfy its

own ODE (with its own initial condition at the EH), as we
shall now describe.

To find the specific ODE that each term 1//5:'”) (r) satisfies,
we have to expand the potential V() in powers of ..
Since V ,;,, depends on the angular eigenvalue 4,,;,,,, we first

expand this eigenvalue,*®

Awlm = ﬂ(o) + /15,1,3(1(04,_ + 1(2)(6160_’_)2 + e

Im Im <A38)
Then we can expand the effective potential in the same
manner,

Vi N =V )+ VI (Na, + VD (Rw? 4. (A39)

Im

The leading-order coefficient is given by

*For m # 0 it is trivial, as the formulation of the angular
eigenvalue problem is insensitive to the @, — 0 limit. Form = 0,
it has been shown [35] that such a power-series expansion exists.

2 2\2
0 r-—r
vinn = e (555) -6
(0)
A dG 29
& _Awmd  A40
rP+a*dr  (r* +d?)? (A40)

where, recall, Q. = a/(r% + a®) and G = rA/(r* + a?)>.
The first-order coefficient is

2 2 (1)

(1) re—ri aty,, A
\% =2mQ - , A4l
im (7) m 2 1 g2 (r2+a2)2 ( )

and the second-order coefficient is
2,(2)
@0 _ a Ay, A

Vii(r)=1- e 02)2. (A42)

[In fact, all higher-order coefficients are of the same simple
form: V"2 = —a" A" A/ (1 + a?)2].

It is important to recall that the potential V() is
(n)

real—and so are all its expansion coefficients szz

. In
addition, note that both coefficients V;?n) and V;rln) vanish at
the EH like « A « r — r,—hence, they both decay expo-
nentially with r, at the EH limit r, — —o0. In fact, at the
EH we have V,,;,, = coi.29

Inserting the ansatz (A37) for y,,, into the radial
equation (A34) with the expanded form (A39) of V,,
and grouping powers of w,, we obtain the following
hierarchy of ODEs:

0 0 0
Winrr, + Vin Wi =0,

1 0 1 1 0
wgzn>,r*r* + VEITZWEM) = _V;m)lllgm)’

Wi Vi) = Vil — vy

n Im ¥ Im

(A43)

Note that lllggl)(l") satisfies a homogeneous ODE, but all
other functions y/g,:?(r) satisfy inhomogeneous ones (hav-
ing V, ’ as their potential and a source term involving other
coefficients in the expansion of V ;).

The initial conditions for these ODEs are to be specified
at the EH limit, just like those of the original function
Waim (7). They are naturally obtained by the Taylor expan-

(init)

sion (A36) of the original initial data v, ,

(0)

Wi =1 (1. = —o), (A44)

y/gi) ~—ir, (r, > —),

(A45)

(2)

i (r) =1 at the EH, as one can also see

29Correspondingly Vv
from Eq. (A42).
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2 o _

Yim = <A46)

2
5 (r, > —o0),
etc.

Of particular importance to our analysis is the leading-

order function W(O)(r). It satisfies a real ODE (as V;SB is

Im
real), with real initial conditions. It therefore follows that

w}?n)(r) is a real function,

v\ (r) eR. (A47)

Although not necessary for the regularity analysis carried
out in this appendix, it may be interesting to consider the
properties of 1//(1> as well. It still satisfies a real ODE

Im
(0)

i and its source term

(because both its potential V

—VE,L) 1//(0) are real). However, its initial condition at the

Im
EH limit (~ — ir,) is imaginary. Therefore, wgr],?(r) is not

real. It is not purely imaginary either, because it is fed by a

real source term —V&)y/fn). All higher-order terms 1//5:,?1)

are expected to be complex too.

APPENDIX B: THE UNRUH-STATE BARE FLUX
EXPRESSIONS INSIDE THE BH

This appendix is dedicated to developing the mode-sum
expressions for the Unruh-state RSET components 7', and
T,, [where hereafter u = u;,, and v are the interior
Eddington coordinates given in Eq. (2.8)]. We first con-
struct this mode-sum expression at a general point r_ <
r < r, in the BH interior, then we concentrate on the
horizon limits r — r_ and r — r,.

We focus here on T,, and T,, because these two
components are especially meaningful for the semiclassical
study of backreaction on BH interiors (in particular, at the
IH vicinity). At the horizons, these components play the
role of energy fluxes,” and we shall thus refer to them as
the “flux components” or, in short, the “fluxes.” In addition,
these components reveal notable simplicity at the IH limit,
as we shall briefly note later on.

1. Bare fluxes at general r

Before we begin with the construction, we note that the
components of a tensor such as T clearly depend on the
underlying coordinate system. Here we shall particularly be
interested in three coordinate systems, which only differ
from each other by the choice of the azimuthal coordinate.
We collectively denote these three coordinate systems as

**Note that the Eddington coordinates u and v are spacelike at
r_ < r < r, but they become asymptotically null at » — r_ and
r — r,. (To be more precise, we can look at the corresponding
Kruskal coordinates, which are found to be spacelike between the
horizons and null at the horizons. These properties are then
carried over to the corresponding Eddington coordinates.)

(u,v,0,p), where @ stands for either ¢, ¢, or ¢_. Recall
that ¢ is the original Boyer-Lindquist azimuthal coordinate,
while ¢ and ¢_ are the two modified azimuthal coordi-
nates constructed to be regular, respectively, at the EH and
IH, and they are given by ¢ = ¢, — Q. (see Sec. I A).
Thus, we may generally define ¢ as

o=q-Q1 (B1)
where the constant Q is either zero, Q. ,orQ_, for g, ¢,
and ¢_ respectively.3 !

We shall restrict our attention here to a minimally
coupled massless scalar field [i.e, m=&=0 in
Eq. (2.11)]. Then, at the classical level, the stress-energy
tensor 7,4 of this field may be expressed as

(1/2)gaﬂTM7

where Taﬁ (the “trace-reversed” stress-energy tensor) is
given in terms of the first-order scalar field derivatives by

Taﬂ — Taﬂ - (B2)

Ta/} - chacD‘ﬂ. (B3)
For the analysis below, it will be useful to reexpress T, as a
second-order differential operator acting on a certain
quantity bilinear in @ [this form will later allow us to
conveniently express the quantum expectation value of 74
in terms of a differential operator acting on the quantity
GUI)(x,x' ) that is already available to us]. To this end, we
reexpress Taﬁ (still at the classical level) as

Top(x) = lim [©(x)D(x')] o

/ (B4)
X =X

The symbol ,» denotes differentiation with respect to x*

and x””, where 0/0x® acts on functions of the spacetime

point x, while 0/dx” acts on functions of the spacetime

point x’. We then further rewrite it in the form

Toylx) =5 Im@()(Y) + @)@ ()]

(BS)

(which, although trivial, sets the stage for the quantum
treatment that will now follow).

Transitioning from the classical- to the quantum-field
context, we want to compute the expectation value of
T ,3(x), for our minimally coupled quantum field @, in the

32 - .
Unruh state.” Applying the (...), expectation value

'we point out that, specifically, the choice of the azimuthal
coordinate @ does affect the values of the flux components 7,
and T,,. _

Note that in the quantum context, both 7,; and 7,4 are
treated as quantum operators. To avoid notational complications
(especially for T,5), we do not add any special symbol (e.g., an
overhat) to make this quantum nature explicitly visible. Never-
theless, in the equations below, the expectation value symbol
(...)Y will always reveal the quantum-operator nature of 7
and 7.
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operation to the two sides of Eq. (B5) (which are viewed
now as quantum operators) and recalling that ng) (x,x') =
(D(x)D(x') + D(x )@(x))U [see Eq. (5.1)], we obtain the

following formal expression for (T,5)Y -

1. 1
=3 lim [Gy(x, X') op]-

)CI —X

(Tap) e (%) (B6)

This is complemented by the quantum version of Eq. (B2),
namely,

(Tapdoure = (Tapdbue = (1/2)9ap(Tidoiwe- ~ (BT)

To avoid confusion we emphasize again that the split

appearing on the right-hand side of Eqs. (B4)—(B6) is not

|

Gmlm ()C, X/) = 0
+

+ 2cosech (2 )9, (0. P 0001) + 25 8 P T 0. P50 .

Correspondingly we may then rewrite Eq. (B6) as the mode

sum
<T bare / a/i (ulm (B 10)
where the integrand is defined as
_ . )
Taﬁ(wlm) = EE}E}V[Gwlm ()C, X ),aﬂ’]' (Bl 1)

From this point on we shall concentrate on the two flux
components, taking af to be yy, with y hereafter denoting
either u or v. The computation of Tyy(wlm) then involves two
simple stages: (i) differentiating G, (x, x') with respect to

|

aimed for regularization [recall we deal in Egs. (B4) and
(B5) with the classical expressions and in Eq. (B6) with the
bare quantum expression]: The only purpose of this split is
to allow differentiation with respect to x and x’ separately—
in order to eventually express the RSET in terms of the
already-known function G( ) (x,x).

To proceed, we write the Unruh-state HTPF G( (x,x")
(for points inside the BH) given in Eq. (6. 41) as the
mode-sum

Gg})(x, x) = hz /000 G yim (X, x')dw
I.m

(B8)

where

ot (%25 ) (75 (1) i 0} + PP 0. T )

(B9)

[
y and y', and then (ii) taking the coincidence limit x' — x.
The rhs of Eq. (BY) consists of several terms of the form

{F1(x), F2(x')} = Fi(x) Fo(x') + F1 (X)) Fa(x).

Applying these stages (i) and (ii) to the term F(x)F,(x')
simply yields F; F,, (evaluated at the point x), and
applying it to the other term F;(x')F,(x) yields exactly
the same result; that is,

)},ILI)IC{FI (x>’F2(xl)},yy’ = 2F1,yF2,y

(evaluated at the point x as mentioned above).
Implementing this in Eq. (B11), we obtain

= ) T ~ ~ ~
+ L 27R R
T y(wim) = — |coth| — +p .
yy(wlm) 1 . K. ( wlm,) a)lm Dy | wlml wlm,y azlm,y)

+ 2cosech <ﬂw+
K+

The functions £, (with A denoting either R or L) were
defined in Eq. (6.38). Recalling that
1 :
Z9 (0, 9) = —=S89 (0)e"™?,
lm( (p) \/E 1 ( )
we may rewrite these functions in the more explicit form,

~ 1 .

R _ 0] img ,—iwt,, int

wlm — > 0 Slm(g)e Pem! Y olm>
2n(r* + a*)

> (pwlmlem y wlm y) + N |Ta)lm|2 f)lm,y (Ifjm,y .

(B12)

~ 1
L _ w img@ ,—iwt,, intx
wlm — 277,'(}"2 T ) Slm (9) € Y wim-

We need to differentiate these functions with respect to y
with fixed ¢ (rather than fixed ¢). To this end, we define a
general frequency parameter @ of the form

o =w-mQ (B13)
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(the tilde “~” in @ links this frequency to the choice of the
azimuthal coordinate ). Noting that

e—iwteim(p — e—i&)teim(”p, (B 14)
we may now reexpress 2, as
~ 1 TN
glm ()C) = Esﬂl(g)elm(pfglm(t’ I"), (BlS)
where we define
1) = s g 1),
L — 2 e 0ty intx
fwlm(t’ I") S ll/a)lm( ) (B16)

VvVt + a?

(The variables ¢ and r should be viewed here as functions of
the coordinates u, v.) Substituting Eq. (B15) in Eq. (B12)
[recalling that S (6) is real], we may now entirely factor
out the angular dependence,

SO

yy(wlm) — 322 W, (B17)

y(wlm)»

where

T y(wlm) —COth( K, ) (fwlm )fa)lm y + |pwlm|2fwlm yfwlm y)

+2 COSCCh( +> (pmlmf(ulm vfwlm y>
Ky

+
|Twlm |2fwlm yfwlm y* (B18)
To further process this expression, we next specify the
four combinations entailed in ff,\,,m’y (corresponding to
A =1L, R and y = u, v). Using the relations

vV—u u-+v
9 r*: 9
2 2

as well as dr/dr, = A/(r* + a*), we find
e—i(?)t

Foimu = Noarap [(i@w i, + Wintn.r,) — H(rwii, Al

(B19)
ijl o e~ 1ot [( la)l//m[t + l//inlt ) H( )wmlt A]
wlm,v \/m wlm wlm,r, wlm
(B20)
L _ e—i&)t intx int intx A
f”’lm’” - ﬁ [(lwl//wlm + Yolm,r, ) H( )lem ]

(B21)

e—l(l)t

(B22)
where
r
H =
(r) CEWIE

Notice that fglm’v and f‘g,m.u are related by the trans-
formation & — —@,  — —t.>> Also, ff,lm,y and f,lf),m’y are
related by the transformation & +— —@® combined with
overall complex conjugation. These relations will be useful
below.

We now combine these derivatives to form the various

TNy * .
wlm,y appearing

in Eq. (B18), namely, the three combinations AjA, =
(LL,RR,RL). One immediately notices that the factors
e~'®" (and indeed the entire dependence on 7) cancel out in
all these combinations. It is convenient to express each of
these contributions in the form

bilinear combinations of the form fa)lm W

FotmsT oy = [AA ity = ZH(r)BY A

wlm,y wlm(y wlm(y

+ HZ( e, 82,

wlm(y

(B23)

By a direct substitution of Egs. (B19)—(B22), recalling
the Wronskian relation

int intx intx , int

l//wlmwwlm re l//wlmwa)lm r, 2lw+’

we obtain the following expressions for the .4 coefficients:

AR ) = Aty = Wit P+ @yl P + 2000,
(B24)

Af}le 1 = Af}fm u = |l//iur)l;m,r* 2|Wmt 2 2(1)60+,
(B25)

For the B and C coefficients we will omit the (y) subscript,
as they attain the same value for both y = v and y = u. We
obtain

3In @ > —@ we refer to any explicit occurrence of @—we do
not touch the indices w/m [as an illustration, see how the
described transformation relates Eqs. (B19) and (B20) or
(B21) and (B22)].

125011-32



TWO-POINT FUNCTION OF A QUANTUM SCALAR FIELD IN ...

PHYS. REV. D 106, 125011 (2022)

ShHIES

Bwlm = m(‘t’/g}}mwuﬂm r, ) Bwlm

int int

BRE

wlm — l//(ulml//wlm r?
(B27)
lem Cgfm = |l//gzlltm|2’ C(ulm - (wg)lltm)z (B28)

Note also that none of the B, C coefficients depend
explicitly on @ (but the A coefficients do).

We have mentioned above simple rules for the trans-
formations R <> L and u <> v in the expressions for 2, 3
We can use them to derive correspondlng rules for (overall)
interchanges R <> L and/oru <> vin f wlm.y f wim.y- 1t follows
that both transformations RR <> LL and u <> v amount to
changing @ — —@* (and therefore the combined trans-
formation RR < LL,u <> v leaves the expression
unchanged). One can easily verify that the above expressions
(B24)—(B28) indeed satisfy these simple exchange rules.

The next stage would be to substitute Eq. (B23) in
Eq. (B18) for 7'y (4m)- It is again convenient to rewrite the

TA o2 2 =
Tvv(wlm) - COth( K ) [|W$ltm r* ‘llllmlm| 2a)w+
+

int

+ |pwlm| (|l//wlm.r* :
)wpz‘;m[(wz:;m )
+o (Wg)l;m) ]) + - |Ta)lm|2(|l//2)l}m r,

+ @’y + 20"0+)-

&)2|w£;n1 |2 + Zd‘)er)}

+ 2 cosech (ﬂw+
Ky

(B31)

Finally, the 55 and C coefficients are given by

Thim = coth( . )% (winh i, ) (141025,

+ 2 cosech (m—+

N int ,int
K > R (pwlml//a)lmwwlm r*)
+

latter (just as we did in the former) explicitly in powers of + 2 |Tw,m|2‘){ (it wint ). (B32)
A, so we write
7 L . : 2
y(@im) 7'2 + a yy(wlm) T(tﬂliﬂ) = coth K+ ‘ll/mlm| ( + |pwlm|
- 2’H(r) (wlm) A +H2(r)T o A%, (B29)
o HO e . ( Voot
We find Tﬁl wim) © be given by ‘+
+ N |Ta)lm| ‘Wg}m ? (B33)
- W . T -
T:it(mlm) = coth (K+> [ l//z)l;m,r* 2 w2|l//gzlltm|2 + 20)CU+
7 ) Note that the 5 and C contributions are the same for uu and
+ o> (Winiy |7 + @i, [P = 2000, )] vv—and the same applies to 7°¢  defined below.
Finally, we substitute the expressmn (B29) for T (wim
+2 cosech [ 25 ) R(p™ [(pin )2 Eq. (B17) for T'y(pim)- A he lattor in
cosech | == J R (P | (Wi, into Eq. (B17) for T, (4,)- Again, we rewrite the latter in
+ powers of A,
+ao (V/gltm) ]) + N ‘Tmlm| (|W$ltm r*
7 _ A 2
+ @y ? — 2a)w+). (B30) Tyyim) = Tyy(om) + T(wlm)A + T(wlm)A ) (B34)
The vv counterpart, Tbb(a)lm is obtained by taking @ — The coefficients T;; (wlm)? walm>, and T(Cwlm> are then
—@ in the above expression, given by
|
_ NAGIE o\ o g
TA —h m th int 2 2yt 12 49
uu(wlm) 3271'2a)+(7‘2 4 aZ) co K. [l//wlm,r* w |l//a)lm| + 200,

int

+ ‘pwlm | (|l//wlm,r*

+ 2 cosech (ﬂw+> (%
K+

int

(1 - |pa)lm| )(ll//(ulm,r*

PNy *
wlm,y

**To this end, one should recall that (i) /! wimy),

P+ @y,

+a)2|wmt 2 2&)a)+)>,

> - 200,)]

wim.r. )’ T O Wein)?])

wlm,r

(B35)

is independent of ¢, and (ii) all these A, B, C coefficients for LL or RR are real.

125011-33



ZILBERMAN, CASALS, ORI, and OTTEWILL

PHYS. REV. D 106, 125011 (2022)

T [ m(e)] W i ~ i ~ i ~ i ~
T3 i) th coth K—: Wi | + @ Wi P = 200 + |pgy, > (Wih,, . [P + @i, | + 200, )]
+ 2 COSGCh( K >(R(pwlm[(1//1£}m r*)z Z(W:E;m) ]) (1 - |p(ulm| )('Wlal;lltnlr* ’ 6)2|W:E;m‘2 +2d)(l)+)> ’ (B36)
+
-5 (St (0)]2r T, :
T(wlm) - _h16ﬂ2a)f(r2 +a2) coth K, gﬂ(‘l’ﬂm’:‘/%mr )(1+ |Pw1m| )
+2cosech | T )R (p it yint ) 4 (1= [p% )Rty ), (B37)
K. pwlmwa)lmwwlm r, pwlm Y oim¥ olm, T,
7C —h [ Im( )]
(wlm) 3272 . 72

r
+a
1nl
a)lm

9 (coth(

where we made the substitution (w, /o),
1—|p.0 |* [see Wronskian relations, Eq. (3.33)] to elimi-
nate 7 from the final results.

This provides the desired mode-sum expression for
(Tyy)g o(x), see Eq. (B10). The translation from the
trace-reversed to the original bare RSET then proceeds
according to Eq. (B7) (although, this last stage requires
also the RSET trace mode sum, which we have not
addressed here).

We worked here in coordinates (u,v,6,@), with an
azimuthal coordinate $ whose general form is given in
Eq. (B1). Evidently, dependence on the choice of azimuthal
coordinate ¢ only appears (through @) in TW(w m)’ the part
that does not vanish at the horizons (in particular, for
@ = @, the parameter @ is replaced by w; and for ¢ = ¢,
the parameter @ is replaced by w., respectively).

> =

2. The difference 7', - T

Note that, as mentioned, the terms T(w m
shared by the uu and vv components.
difference between 74 w(wim f@_ (wlm)
of the three @ terms. The difference between (T',,) vy
and (T,,)Y . [which also equals the difference between
(T, and (T,)Y . since g,, =g,, in coordinates
(u,v,0,@)], therefore has a rather simple form,

vy
) are
n addition, the

is only in the sign
U

<T1}'1/‘>|(:;/al‘e

IsmOr
872 (r? + a?)

x [mh(%) }(1 — o 2.

Next we consider the renormalized version of Eq. (B39).
Performing a coordinate transformation from (u, v, 9, p) to
(t,r,,0,p) and then to (¢, r,,0,p) yields

<Tuu>}g]are -

(B39)

214 ) + 2eoseeh (22 )% (v, )7) +
+

(1= o, ) i ) (B38)

(Tuu - Tvv)(u.v,(i,(ﬁ) = (_T )(r r.0.p)

—(QT,, +T,

or. Y Tri)1r0y)  (B4O)

From Eq. (3.30) in Ref. [19], we see that the counterterms
T‘}‘Y and Tle vanish. Thus, the renormalized difference

—(T,, is equal to the bare difference
Tu)l, T u i qual he b diffi
<TW>gﬂIe - <Tw>gare, given on the rhs of Eq. (B39) [in

coordinates (u, v,0,9)],

<Tuu>U - >U

ren ren

_h;/ r+a)w

: {Coth(% -t

Evidently, (r> + a*)((T,.,)Y, — (T,,)%,) is independent of
r (reflecting energy-momentum conservation).

The mode-sum expression for the Hawking outflux
(per solid angle) may then be obtained from Eq. (B41) by
choosing the Boyer-Lindquist azimuthal coordinate ¢ = ¢
(that is, taking @ = w) and multiplying by (r*> + a?). This
yields the expression

(P +a*)(T, >r%’n—<T >§én)

:h; / DAC). [coth (”:’:) ](1—|pm,m| )

(B42)

]2

(B41)

This is a well-known result [see, e.g., Eq. (5.5) in
Ref. [117%].

PEquation (5.5) in Ref. [11] gives a quantity denoted by
Ky_(6), which coincides with —(r* + a®) ((T ) on — (T )ien)-
For comparison with Eq (B42), note that in Ref. [11] @ denotes

. and B, is our T“,m, and use the Wronskian relation relating

|T,,,zm| with [p%) | [see Eq. (3.33)].
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3. Bare fluxes at the horizons

We are particularly interested in the behavior of the
fluxes at the EH and IH of the BH. To this end, we take the
limits r — ry of the general r expressions for the fluxes
(Tvy> (where y is either u or v). Since A vanishes at

=ry, T“f‘,( Im) is the only piece that contributes at the

horizons [see Eq. (B34)].

Hereafter, a superscript + denotes r — r.. along with the
coordinate system in use—(u, v, 0, ¢..) at r., respectively
(recalling that the regular azimuthal coordinate at r is ¢.).
Note that since the coordinate system (at both horizons) is
chosen such that, in particular, g,, = g,, = 0 there, each
flux component coincides with its trace-reversed counter-
part at the horizons [see Eq. (B7)].%

We hereby introduce the summation/integration
operator,
) ! 2
: ® (S5, ()]
)=h £ ..)dw. (B43
Zi 0 ;n; 872(r2 + az)( )do. (B43)

4. The event horizon
At the EH, as prescribed in Eq. (3.16), the radial function
wit behaves as e7+". Also, in Eqs. (B36) and (B35) we
now substitute @ = w, (corresponding to the choice
Q =Q, and hence » = ¢, ). This leads to a remarkable

simplification, because now both  combinations
int int int 2 52, Ant |2
(Wa)lm r*> +a (l//(ulm) and |l//a)lm,r* +o ’ll/wlm| -

L‘Jz‘m,r*lz @* |yt |12 + 2@, simpli-

2@, vanish, and |y o

fies to 40)1. Equation (B36) then reduces to

. nw
itk = 2o (b o () =1 1)
+

(B44)
and Eq. (B35) to
(T Z W, coth( > (B45)

5. The inner horizon

We now turn to the IH. At r — r_, the radial function
int

Wi, behaves asymptotically as given in Eq. (3.23),
namely, lljgllltm ~ Amlmelwir + Ba)lm —z(u T

3%In the corresponding coordinate systems, g,, and g,, vanish
on approaching the horizons as 67> (where 6r = r — r,. denotes
the distance to the corresponding horizon). Thus, for the
Gyy (T)i) e term to vanish there, we assume that the trace diverges
at a sufficiently slow rate as 6r — 0. (This is, indeed, the case in
the RN counterpart—see Eq. (15) in Ref. [36], where the trace
divergence rate is weaker than 1/6r.)

We substitute @ = w_ in Egs. (B36) and (B35). Then,
using the Wronskian relation in Eq. (3.34), we find in the
r — r_ limit

Ol * + 20 0_+ Wy, [P = 402[Buw[?,  (B46)
D2 |wiginl? =200 + Wi, , [P = 402 Aul?, (B4T)
and
@2 (Wiin)® + Wiy, )? = 402 A 010 B i (B43)
For (T;,)Y .. this yields

A

<T1/1i>]§]a1-e = Z_a) |: oth < ) (|Amlm |2 + |pwlm |2|Ba)lm ‘2)
+ Ky
TOL\
+2c:osech( ; +> R(po, AwimBoim)
+

(1| >|Ba,,m|2]. (B49)

Turning now to (T, )Y ., we note again that Eq. (B30)
differs from Eq. (B31) by merely taking @ + —@. This
amounts here to taking w_ — —w_, which in turn inter-
changes Eq. (B46) and Eq. (B47). Consequently, (T;,){..

is obtained by interchanging A, and B,;, in Eq. (B49),

Tt = 32 oo (25 (18P

+
+ |pwlm| |Awlm| )

+ Zcosech< P >‘1‘( A wimBom)

(=] >|Awlm|2]. (B50)

Note how, through relations (B46)-(B48), all oscillatory
factors (of the form e*®-"+, as appear in the asymptotic
behavior of y™ at the IH) are canceled out—and, as a
consequence, the individual mode contribution to the flux
components have a well-defined limiting value at the IH,
which depends only on the scattering parameters stm’
A,ims and B, In this respect, the flux components are
simpler than other 7,3 components at the IH limit.

Equation (B41) for the renormalized difference also

applies at the IH [in coordinates (u, v, 8, ¢_)], yielding
<T;u>rlén - <T;y>rlén

=3 o {coth< < ) —1](1—|pwlm| ). (B51)

It may be interesting to explore how this quantity
behaves in the limit of extremal Kerr, ¢ — M. In this limit
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k, — 07 and hence coth(rw, /x,) reduces to sign(w,),
leaving only a contribution from negative @, in the
integrand. Therefore, recalling that (for positive w) a
negative @, requires m > 0 and ® < m€,, we obtain

<T;u>U - <T;L>U

ren ren

h : m/2M © 2 up 12
= 8”2MQZZ/O [Slm(g)] w—(lp(ulml - l)dw’

=1 m=1

1
(a > M),

(B52)

where we have used the fact that, in the extremal
limit, Q. = 1/2M.

Clearly, the rhs of Eq. (B52) vanishes on the pole, where
only m =0 modes could contribute, so hereafter we
concentrate on 6 # 0, r.

Recalling that in the superradiance band (0 < 0 < mQ
form > 0) we have w, < Oand |p,} | > 1 (see Sec. III D),
and that in the extremal limit w_ = w, we readily see that
in the last equation the integrand is negative throughout the
domain of integration. Thus, (T;,)Y, — (T;,)Y, is strictly
negative (off the pole) in the extremal limit (see also
footnote 23).
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