
Two-point function of a quantum scalar field in the interior region
of a Kerr black hole

Noa Zilberman ,1,* Marc Casals,2,3,4,5,† Amos Ori,1,‡ and Adrian C. Ottewill 4,§

1Department of Physics, Technion, Haifa 32000, Israel
2Institut für Theoretische Physik, Universität Leipzig, Brüderstrasse 16, Leipzig 04103, Germany

3Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, CEP 22290-180, Brazil
4School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland
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Quantum field effects on a classical background spacetime may be obtained from the semiclassical
equations of general relativity with the expectation value of the stress-energy tensor of the quantum field as
a source. This expectation value can be calculated from Hadamard’s elementary two-point function, which
in practice is given in terms of sums of products of field modes evaluated at two spacetime points. We
derive expressions for the two-point function for a massless scalar field in the Unruh state on a Kerr black
hole spacetime. Our main result in this paper is a novel expression valid when the two points lie inside the
black hole; we also (re)derive, using a new method, the known expression valid when the two points lie
outside the black hole. We achieve these expressions by finding relationships between Unruh modes,
defined in terms of the retarded Kruskal coordinate, and Eddington modes, defined in terms of the
Eddington coordinates. While our starting expression for the two-point function is written in terms of the
Unruh modes, we give our final expression in terms of the Eddington modes, which have the computational
advantage that they decompose into factors that obey ordinary differential equations. In an appendix we
also derive expressions for the bare mode contributions to the flux components of the stress-energy tensor
for a minimally coupled massless scalar field inside the black hole. Our results thus lay the groundwork for
future calculations of quantum effects inside a Kerr black hole.
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I. INTRODUCTION

In the semiclassical framework of quantum field theory
on a curved spacetime, a gravitational field is treated
classically, whereas matter fields on the corresponding
(background) spacetime are quantized. In practice, the
Einstein field equations of general relativity are sourced
by the renormalized expectation value of the stress-energy
tensor (RSET) for the matter fields in a certain quantum
state. This framework is expected to provide a good
approximation to the physics when the scales of the system
are above the Planck scales and it has yielded results as
important as the emission of quantum (Hawking) radiation
by astrophysical black holes (BHs) [1,2].
Within quantum field theory on a curved spacetime, one

can define Hadamard’s elementary two-point function
(HTPF) as the expectation value of the anticommutator

of a (say, scalar) field Φ̂ in a certain quantum state jΨi:
Gð1Þ

Ψ ðx; x0Þ ¼ hfΦ̂ðxÞ; Φ̂ðx0ÞgiΨ, where x and x0 are space-
time points, and curly brackets denote symmetrization
with respect to x and x0.1 The HTPF is a solution of the
homogeneous wave equation satisfied by the field Φ̂ and is
an important object for various reasons. First, it is physically
relevant in its own right, since it yields the quantum
correlations between different points on the background
spacetime. Second, when subtracting from it an appropriate,
purely geometric, renormalization term (also called the
counterterm) [3] and taking the limit x0 → x, the renormal-
ized Wick product hΦ̂2ðxÞiΨren is obtained, which is a
manifestation of the quantum vacuum fluctuations. Last
but not least, by applying a certain differential operator on
the HTPF minus the renormalization term [4,5], and then
taking the limit x0 → x, the RSET is obtained, which is a
source in the semiclassical Einstein equations.
In principle, it is possible to define various states for a

quantum field on a BH background spacetime. In the case of*noazilber@campus.technion.ac.il
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1More explicitly, fξðxÞ; ζðx0Þg≡ ξðxÞζðx0Þ þ ξðx0ÞζðxÞ, where
ξ and ζ are two quantities that depend on the spacetime point.
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a spherically symmetric (e.g., Schwarzschild) BH, the most
commonly used states are (i) the Boulware state [6,7],
which is meant to model the surroundings of a starlike
object, since this state is empty at (past and future) null
infinity and it diverges on the (past and future) event horizon
(EH); (ii) the Unruh state [8], which models an evaporating
BH via the emission of Hawking radiation; and (iii) the
Hartle-Hawking state [9], which models a BH in equilib-
rium with its own radiation. When the BH is rotating (Kerr),
however, the corresponding Boulware state [10,11] is no
longer empty at future null infinity, as it contains the so-
called Unruh-Starobinskii radiation (essentially, the quan-
tum version of classical superradiance [12,13]). Also, for
bosons, no state in thermal equilibrium with the rotating BH
can be constructed, i.e., no Hartle-Hawking-like state exists
for bosons in Kerr [11,14].2 Finally, the Unruh state can be
constructed in Kerr ([11] for a scalar field, [15] for a fermion
field, and [16] for the electromagnetic field) similarly to the
spherically symmetric case.
In this paper we shall focus on the Unruh state in Kerr

spacetime, which is the state of relevance for astrophysi-
cal BHs.
Our treatment of the Unruh state in Kerr is also significant

for the following reason. Often, in spherical symmetry, one
first calculates quantities in the Hartle-Hawking state since
it allows for the Euclideanization technique, whereby one
merely needs to sum over a discrete set of field modes thus
facilitating the calculation; then, if one wishes to calculate
the quantity in another state—such as Unruh—one just
calculates the difference between that quantity in that other
state and in the Hartle-Hawking state (such difference needs
no renormalization and so, in principle, it can be carried out
relatively easily). In Kerr, however, this method of Hartle-
Hawking state subtraction is not applicable, because no
Hartle-Hawking-like state exists in Kerr.
Most calculations for quantum fields on a BH spacetime

have focused on quantities outside the EH of the BH—after
all, we are observers located far away from any BH.
Expressions for the HTPF with the two points outside
the BH are known in both the nonrotating [17,18] and the
rotating cases [11,19] and they have been used to calculate
Φ2 and the RSET. While in the nonrotating case the RSET
outside the BH has been obtained in various physical
settings, in the rotating case the calculation is a lot more
technically involved and in fact it has been achieved only
recently and in one instance: [20].
In its turn, the investigation of effects of quantum fields

inside the EH of a BH may serve to address questions of
fundamental conceptual importance. Most notably, the
question of whether the inner horizon (IH) of a rotating
and/or electrically charged BH is stable under quantum

perturbations. Beyond the IH, the Cauchy initial value
problem is not well posed and so the Einstein field
equations of general relativity cease to be deterministic.
Quantum effects have been seen to destroy the regularity of
the IH of a nonrotating and electrically charged (Reissner-
Nordström, RN) BH [21]. A similar behavior was also
found in RN–de Sitter BHs [22] and for quantum pertur-
bations approaching the IH -at least- from the inside of a
2þ 1-dimensional rotating Bañados, Teitelboim & Zanelli
(BTZ) BH [23,24]. In all these cases the HTPF was known
for the two points inside the EH and served to calculate the
RSET. However, in the most important case of a Kerr BH,
an expression for the HTPF with the two points inside the
BH was not known until the current work and, conse-
quently, no quantitative investigation of the quantum effects
on its IH has yet been carried out.3

The main result in this paper is an expression for the

HTPFGð1Þ
U ðx; x0Þ ¼ hfΦ̂ðxÞ; Φ̂ðx0ÞgiU for a quantum mass-

less scalar field in the Unruh state j0iU with the two points
x and x0 located inside the Kerr BH between the EH and the
IH. One of the main values of this expression is that it is
given in terms of (Eddington) field modes which decom-
pose into factors that obey ordinary differential equations
and so are relatively easy to calculate, at least numerically.
Thus, our expression for the HTPF is of practical use for
potential future calculations of the RSET inside the EH of a
Kerr BH in the Unruh state. (We perform a step in this
direction in Appendix B, where we derive expressions for
the bare mode contribution to the flux components in the
BH interior.) Furthermore, once one achieves renormaliza-
tion in the Unruh state via the HTPF provided in this paper,
one can use that as the fiducial state with respect to which to
calculate differences and thus easily achieve renormaliza-
tion in another state. Prior to obtaining this new expression
for the HTPF inside a Kerr BH, we derive an expression for
the HTPF outside a Kerr BH; although this latter expression
was already known, we (re)derive it by employing a new
method, which is the one that we subsequently apply inside
the BH. Moreover, in order to achieve these expressions
for the HTPF, we obtain relationships between the Unruh
family of modes (which are defined in terms of the retarded
Kruskal coordinate and serve to define the Unruh state) and
Eddington families of modes (which are defined in terms of
the Eddington coordinates and, as mentioned, decompose
by factors). These relationships between families of field
modes are useful in their own right in that they may be
readily applicable to the calculation of two-point functions
other than the HTPF, such as theWightman function (which
is relevant, for example, for the calculation of the transition
probability rate of an Unruh-DeWitt quantum particle
detector [26]). For the reader who is just interested in the
new expression for the HTPF inside the BH, that expression
is given in Eq. (6.37) or, equivalently, in Eq. (6.41).2For fermions, on the other hand, a state in thermal equilibrium

can be constructed sufficiently close (specifically, within the
so-called speed-of-light surface) to the rotating BH [15]. 3Therehavebeen,however,qualitative investigations, see [11,25].
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The rest of this paper is organized as follows. Sections
II–IV lay the foundations for the subject of the paper: the
Unruh HTPF for a scalar field on a Kerr BH interior. In
Sec. II we review the Kerr metric and the associated wave
equation satisfied by a massless, uncharged scalar field.
Section III introduces the various families of field modes
which are relevant to this paper. The modes allow us to
define the Unruh quantum state in Sec. IV and to derive the
(already known) expression for the HTPF outside a Kerr BH
in Sec. V [specifically, Eq. (5.29)]. The paper culminates in
Sec. VI, where we obtain the (new) expression for the HTPF
inside a Kerr BH [specifically, Eq. (6.37) or Eq. (6.41)]. Our
main results are briefly discussed in Sec. VII. The paper also
has two appendixes: Appendix A addresses the issue of IR
regularity (i.e., regularity at small frequencies) of our final
expressions for the HTPF, and Appendix B presents a
derivation of the bare mode-sum expressions for the flux
components of the RSET, based on the HTPF expression
derived in this paper for the BH interior.
We use units where c ¼ G ¼ 1 (while ℏ is not taken to

be equal to 1) and metric signature ð−þþþÞ.

II. THE KERR METRIC AND THE
WAVE EQUATION

A. The Kerr metric and coordinate systems

The Kerr metric is a vacuum solution to the classical
Einstein field equations, describing a BH of mass M
rotating with angular momentum J. It is given by the line
element in Boyer-Lindquist coordinates ðt; r; θ;φÞ,

ds2 ¼ −
�
1 −

2Mr
ρ2

�
dt2 þ ρ2

Δ
dr2 þ ρ2dθ2

þ
�
r2 þ a2 þ 2Mra2

ρ2
sin2 θ

�
sin2 θdφ2

−
4Mra
ρ2

sin2 θdφdt; ð2:1Þ

where a≡ J=M and

ρ2 ≡ r2 þ a2 cos2 θ;

Δ≡ r2 − 2Mrþ a2:

The horizon radii correspond to the roots of the equation
Δ ¼ 0, yielding an EH at

r ¼ rþ ≡M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
and an IH at

r ¼ r− ≡M −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
:

Note the resulting restriction on the BH parameters:
jaj=M ≤ 1. Throughout this paper we shall only treat the
subextremal case, corresponding to jaj=M < 1, and restrict
our attention to the region bounded by r ≥ r−. We refer to
the region r > rþ (outside the EH) as the external universe
or BH “exterior,” whereas the region bounded by the
horizons r− < r < rþ is to be referred to as the BH
“interior.” Note that we might occasionally use the term
exterior for r ≥ rþ (namely, including r ¼ rþ), and like-
wise the term interior for r− ≤ r ≤ rþ, depending on the
context. See Fig. 1 for (a portion of) the Penrose diagram of
the analytically extended subextremal Kerr spacetime.
We shall now briefly discuss the behavior of the standard

Boyer-Lindquist coordinates ðt; r; θ;φÞ for a free-falling
observer approaching the EH. As in the case of spherical
symmetry (e.g., in the Schwarzschild and RNmetrics), the t
coordinate diverges at r ¼ rþ for an infalling observer,
which motivates the definition of Kruskal coordinates given
below in (2.9) and (2.10). However, in Kerr, not only does t

FIG. 1. A portion of the Penrose diagram of the analytically
extended subextremal Kerr spacetime, with three systems of
coordinates: the Kruskal U and V [Eqs. (2.9) and (2.10)], the
outer Eddington uext and v [Eq. (2.7)], and the inner Eddington
uint and v [Eq. (2.8)]. The spacetime regions relevant for this
paper are within the red frame, consisting of the BH exterior and
interior.
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diverge on approaching r ¼ rþ but, unlike in spherical
symmetry, also the azimuthal coordinate φ diverges there.
In other words, a geodesic approaching the EH undergoes
(fictitious) infinite spiraling when presented in the φ
coordinate (which is, however, a mere coordinate artifact).
One may compute the (constant) angular velocity with
which the EH rotates (or, more precisely, the geodesic’s
limiting value of dφ=dt at r → rþ) to be

Ωþ ≡ a
2Mrþ

¼ a
r2þ þ a2

: ð2:2Þ

This quantity can be used to construct a coordinate that
remains regular on approaching r → rþ, defined by

φþ ≡ φ −Ωþt: ð2:3Þ

Similar considerations apply at r → r−, where we
analogously define

Ω− ≡ a
2Mr−

; φ− ≡ φ −Ω−t: ð2:4Þ

For later use, we shall hereby define the tortoise
coordinate r� in Kerr via dr=dr� ¼ Δ=ðr2 þ a2Þ. We
choose the constant of integration such that4

r� ¼ rþ 1

2κþ
log

�jr − rþj
rþ − r−

�
−

1

2κ−
log

�jr − r−j
rþ − r−

�
; ð2:5Þ

where κ� are the two corresponding surface gravity
parameters, given by

κ� ≡ rþ − r−
2ðr2� þ a2Þ : ð2:6Þ

Note that r ¼ rþ corresponds to r� → −∞, while r ¼ r−
(like r → ∞ outside the BH) corresponds to r� → ∞.
From here we may define the Eddington coordinates,5

given in the BH exterior by

uext ≡ t − r�; v≡ tþ r�; ð2:7Þ

and in the BH interior by

uint ≡ r� − t; v≡ r� þ t: ð2:8Þ

The coordinate v is continuous across the EH (and
parametrizes it), whereas uext and uint diverge there. The
regularity of the metric at the EH may be seen by

transforming to a set of Kruskal coordinates, which we
shall denote by U and V, given in the BH exterior by

UðuextÞ≡ −
1

κþ
exp ð−κþuextÞ;

VðvÞ≡ 1

κþ
exp ðκþvÞ; ð2:9Þ

and in the BH interior by

UðuintÞ≡ 1

κþ
exp ðκþuintÞ;

VðvÞ≡ 1

κþ
exp ðκþvÞ: ð2:10Þ

Note that both Kruskal coordinates U and V are
continuous at the EH: The former vanishes there (from
both sides), whereas V, just like v, regularly parametrizes
the EH. Furthermore, the metric in the ðU;V; θ;φþÞ
coordinates is regular and smooth across the EH.
The locus r ¼ rþ marks a four-arms cross in the Penrose

diagram in Fig. 1. Out of these four arms, in this paper we
are only concerned with the three included in the red frame,
being the EH (or “right horizon”, denoted HR), the “past
horizon” Hpast (the white hole horizon), and the “left
horizon” HL. The other arm, the one at the bottom left,
will not concern us here as it is located outside the domain
of dependence relevant to the Unruh state (namely, the red
frame in Fig. 1).
We note that the IH is also a “Cauchy horizon” in the

sense that it is the boundary of validity of the Cauchy initial
value problem formulated on a spacelike hypersurface
extending from i0R to i0L, where i

0
R (i0L) is spacelike infinity

of the external universe at the right (left) side of Fig. 1.
However, in the more physically realistic case of a BH
formed by gravitational collapse, which lacks a past
horizon as well as the entire left-side external universe,
it is only the ingoing section of the IH (see Fig. 1) which
retains the causal nature of a Cauchy horizon.
In Kruskal coordinates, the past horizon Hpast is found

at V ¼ 0 and U < 0, the right horizon HR corresponds to
U ¼ 0 and V > 0, and the left horizon HL corresponds
to V ¼ 0 and U > 0.
In the BH exterior there are, in addition, two null

asymptotic boundaries located at infinity: past null infinity
(PNI) is found at U ¼ −∞ and V > 0, and future null
infinity (FNI) is at V ¼ ∞ and U < 0. See Fig. 1 for
locating all the mentioned null surfaces.
We now make a couple of related observations, relevant

to constructing the families of field modes further on in
the paper.
Each of the above mentioned asymptotic null surfaces

(the three at r ¼ rþ and the two at spacial infinity) can be
regularly parametrized by three coordinates—which may
be chosen to be two angular coordinates (θ and either φ or
φþ) and one Eddington coordinate—as follows: Hpast by

4We note that, although this choice of constant of integration is
common in the literature, it differs from other common choices
such as that used in [27].

5While these coordinates are usually known as “Eddington-
Finkelstein coordinates,” we use “Eddington” for abbreviation.

ZILBERMAN, CASALS, ORI, and OTTEWILL PHYS. REV. D 106, 125011 (2022)

125011-4



ðuext; θ;φþÞ, HR by ðv; θ;φþÞ, HL by ðuint; θ;φþÞ, PNI by
ðv; θ;φÞ, and FNI by ðuext; θ;φÞ. We note that the
Eddington coordinate in each of these null surfaces may
also be replaced by the corresponding Kruskal coordinate.
We also specify here the affine parameters along null

geodesics generating each of these asymptotic null surfa-
ces:U alongHpast andHL (both with fixed θ and φþ) and V
along HR (again with fixed θ and φþ). At PNI and FNI,
asymptotic flatness implies that the affine parameters along
these surfaces are simply the Eddington coordinates v and
uext, respectively (both with fixed θ and φ).

B. Separation of the wave equation

An uncharged scalar field ΦðxÞ of mass m and coupling
ξ to curvature obeys the Klein-Gordon (KG) equation,

ð□ −m2 − ξRÞΦ ¼ 0; ð2:11Þ

where□ is the covariant d’Alembertian associated with the
background metric with Ricci scalar R. In the case of a
massless field which is minimally coupled (ξ ¼ 0) and/or
vanishing Ricci scalar (in particular, a vacuum spacetime),
this equation becomes

□Φ ¼ 0: ð2:12Þ

Considering Eq. (2.12) on a Kerr background, one
readily obtains the following explicit form:

□Φ ¼
�ðr2 þ a2Þ2

Δ
− a2 sin2 θ

�
∂
2Φ
∂t2

þ 4aMr
Δ

∂
2Φ

∂t∂φ

þ
�
a2

Δ
−

1

sin2 θ

�
∂
2Φ
∂φ2

−
∂

∂r

�
∂Φ
∂r

�

−
1

sin θ
∂

∂θ

�
sin θ

∂Φ
∂θ

�
¼ 0: ð2:13Þ

We shall refer to this equation as the scalar Teukolsky
equation, after the general-spin field case in [28]. Utilizing
the axial symmetry and time-translation invariance of the
metric and of the master equation, we may decompose the
field into modes

ΦωlmðxÞ ¼ const ·
ψωlmðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p e−iωtZω
lmðθ;φÞ; ð2:14Þ

indexed by the frequency ω ∈ R, the azimuthal number
m ∈ Z, and the multipolar number l ∈ N≥jmj, where x is a
spacetime point and ψωlmðrÞ is the so-called radial func-
tion; the ðr2 þ a2Þ−1=2 factor has been introduced to yield
a convenient one-dimensional scatteringlikeequation for
ψωlmðrÞ [see Eq. (2.18) to follow]. The angular functions
Zω
lmðθ;φÞ are the “spheroidal harmonics,” given by

Zω
lmðθ;φÞ ¼ ð2πÞ−1=2SωlmðθÞeimφ; ð2:15Þ

where SωlmðθÞ is the spheroidal wave function [29] solving
the eigenvalue problem,

1

sin θ
d
dθ

�
sin θ

dSωlmðθÞ
dθ

�

þ
�
a2ω2 cos2 θ −

m2

sin2 θ
þ ElmðaωÞ

�
SωlmðθÞ ¼ 0;

ð2:16Þ

with ElmðaωÞ the corresponding eigenvalue, obtained by
imposing regularity at θ ¼ 0; π. Note that the angular
equation is real, and we shall only be concerned here with
real angular functions Sωlm.
For a given ω, the functions Zω

lm form a complete basis of
orthonormal functions on the two-sphere, fulfilling

Z
2π

0

dφ
Z

π

0

dθsinθZω�
lmðθ;φÞZω

l0m0 ðθ;φÞ¼ δll0δmm0 : ð2:17Þ

There is no known closed form for the spheroidal
harmonics,6 but in the spherical case (corresponding to
aω ¼ 0) they reduce to the well-known spherical harmon-
ics Ylmðθ;φÞ, whence the spheroidal wave functions
reduce, up to a normalization, to Legendre functions—
and the eigenvalue ElmðaωÞ simplifies to lðlþ 1Þ.
The radial function ψωlmðrÞ solves the radial equation

d2ψωlm

dr2�
þ VωlmðrÞψωlm ¼ 0 ð2:18Þ

with the effective potential

VωlmðrÞ≡K2
ωmðrÞ−λlmðaωÞΔ

ðr2þa2Þ2 −G2ðrÞ−dGðrÞ
dr�

; ð2:19Þ

where

KωmðrÞ≡ ðr2 þ a2Þω − am;

λlmðaωÞ≡ ElmðaωÞ − 2amωþ a2ω2;

GðrÞ≡ rΔ
ðr2 þ a2Þ2 : ð2:20Þ

From Eq. (2.16) it is evident that flipping the signs of ω
and/or m leaves the angular equation invariant. Since the
imposed boundary conditions (regularity at the two poles)
has no explicit reference to either ω or m, it follows that
both the eigenvalue ElmðaωÞ and the angular function Sωlm
are invariant (modulo a sign) under such sign flips. For our
purposes, we focus on a simultaneous sign flip of m and ω,

6In fact, spheroidal harmonics may be expressed in terms of
confluent Heun functions but only with coefficients which are to
be determinable numerically.
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S−ωlð−mÞ ¼ ð−1ÞmSωlm; Elð−mÞð−aωÞ¼ElmðaωÞ; ð2:21Þ

where we have chosen the sign ð−1Þm for Sωlm, so that, for
aω ¼ 0, the spheroidal harmonics agree with the standard
sign for the spherical harmonics: ðZω¼0

lð−mÞÞ� ¼ ðY−m
l Þ� ¼

ð−1ÞmYm
l ¼ ð−1ÞmZω¼0

lm .
The situation with the radial equation is slightly more

delicate. This equation, too, is real, as can be seen in
Eqs. (2.18)–(2.20). Therefore, if ψωlmðrÞ is a solution, its
complex conjugate is a solution too. However, we are
physically motivated to choose complex boundary con-
ditions to the radial solutions (which would correspond to,
e.g., ingoing or upgoing waves)—leading to complex radial
functions. The radial equation (2.18), too, is invariant under
a simultaneous change of signs of ω and m. This implies
that if ψωlmðrÞ solves Eq. (2.18), it will also be a solution of
the radial equation withω ↦ −ω andm ↦ −m, and so will
be its complex conjugate. As will become evident in the
next section [see Eqs. (3.4)], from the way the boundary
conditions for the various modes are defined, flipping the
signs of bothω andmwill actually take us from the original
mode function ψωlmðrÞ to its complex conjugate.
Examining the effective potential [Eq. (2.19)] in the

asymptotic domains of the exterior region, r� → ∞ (cor-
responding to r → ∞) and r� → −∞ (corresponding to
r → rþ), we find

Voutside
ωlm →

�
ω2; r → ∞ ðr� → ∞Þ
ω2þ; r → rþ ðr� → −∞Þ ; ð2:22Þ

where we define

ωþ ≡ ω −mΩþ: ð2:23Þ

Thus,7 the asymptotic behavior of solutions to the radial
equation [Eq. (2.18)] outside the BH is generally of the
form e�iωr� at r� → ∞ and e�iωþr� at r� → −∞, corre-
sponding to free waves in both these domains.
Similarly, when considering the effective potential in the

BH interior, we obtain

V inside
ωlm →

�
ω2
−; r → r− ðr� → ∞Þ

ω2þ; r → rþ ðr� → −∞Þ ; ð2:24Þ

where we define

ω− ≡ ω −mΩ−: ð2:25Þ

This is a crucial point for the definition of our modes in
Kerr (see Sec. III), and it differs from the spherically
symmetric case (similar to the m ¼ 0 case here), where the

asymptotic behavior of the effective potential leaves ω2 in
all asymptotic domains of the BH exterior and interior.

III. FAMILIES OF MODES

It is convenient to decompose the field into sets of
modes, each providing a complete set of solutions to
Eq. (2.12) on some spacetime region, which are orthonor-
mal with respect to the standard KG scalar product, defined
by

hψ ;ϕi≡ i
Z
Σ
dσμðψ�ϕ;μ − ϕψ�

;μÞ; ð3:1Þ

where Σ is the spacelike hypersurface under consideration
and dσμ is a future directed normal to Σ. Note that the
prefactors of the various modes [e.g., the analog of the
“const”. appearing in Eq. (2.14)] are chosen such that
orthonormality with respect to the KG inner product is
satisfied.
Three families of modes are of particular importance for

our purposes: the outer and inner Eddington modes and
the Unruh modes. Each of these three families consists of
two distinct sets, a “left-moving” and a “right-moving” one,
as specified below. We begin here with a brief general
description of the three families of modes, to be followed
by a more detailed presentation. The various families of
modes are illustrated in Fig. 2.
The “outer Eddington modes” (see Sec. III A) are

defined with respect to the Eddington coordinates on the
BH exterior, and consist of two sets of modes: the outgoing
“up” modes fupωlm, which emerge as free waves from Hpast,
and the ingoing “in” modes finωlm, which emerge as free
waves from PNI.
The “inner Eddington modes” (see Sec. III B) are

similarly defined with respect to the Eddington coordinates
on the BH interior and consist of two sets of modes: the
outgoing “left” modes fLωlm which emerge as free waves
from HL, and the ingoing “right” modes fRωlm which
emerge as free waves from HR.
The “Unruh modes” (see Sec. III C) are defined on the

entire combined interior and exterior domain (i.e., the
entire red frame in Fig. 1) and consist of two sets of modes:
the outgoing “up” modes gup

ω̂ l̂ m̂
(the indices ω̂ l̂ m̂ are to be

introduced later on) which emerge from Hpast ∪ HL as free
waves with respect to the affine parameter there, the
Kruskal coordinate U; and the ingoing “in” modes ginωlm
which emerge from PNI as free waves with respect to the
affine parameter there, the Eddington coordinate v (see the
end of Sec. II A).
The Unruh modes are of crucial physical importance for a

quantum scalar field evolving on a BH background. See, in
particular, the definition of the Unruh vacuum in Sec. IV C.
Our motivation for considering the Eddington modes is
of a different kind: Remarkably, both outer and inner
Eddington modes are entirely decomposable in terms of

7To be more precise, this is a consequence of the fact that the
potential is short range: Vωlm ¼ ω2 þOð1=r2Þ as r → ∞ and
Vωlm ¼ ω2þ þOðe2κþr� Þ as r → rþ (corresponding to r� → −∞).
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angular, radial, and temporal variables and have a general
form analogous to Eq. (2.14). Owing to this decomposition,
the Eddington modes are easily handled numerically—
which makes them convenient as a mathematical tool for the

decomposition of the Unruh modes—whereas the Unruh
modes do not generally admit such decomposition.
Throughout the rest of the paper, whenever we have both

ωþ and ω appearing in the same equation, they should be

FIG. 2. Penrose diagrams for various field modes on Kerr spacetime: the outer Eddington modes fupωlm (3.8) and finωlm (3.7); the inner
Eddington modes fLωlm (3.19) and fRωlm (3.18); the Unruh modes gup

ω̂ l̂ m̂
(3.30) and ginωlm (3.24). All modes start with unit amplitude on

whichever hypersurface (PNI, Hpast or HL) the corresponding dot lies; part of the wave is reflected and part is transmitted, with the

reflection ρ and transmission τ coefficients indicated for fin=upωlm . The modes gup
ω̂ l̂ m̂

are defined equally throughout Hpast ∪ HL in terms of

U but they may also be constructed as the sum of gL
ω̂ l̂ m̂

[Eq. (3.31), with no support on Hpast] and gpast
ω̂ l̂ m̂

[Eq. (3.32), with no support on

HL], respectively colored in blue and dashed orange on the diagram for gup
ω̂ l̂ m̂

.
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understood to be related via the standard relation,
ω ¼ ωþ þmΩþ, or vice versa, via ωþ ¼ ω −mΩþ. In
all of these cases, there will always be a well-defined m
value, enabling this transformation between ω and ωþ.

A. Outer Eddington modes

For the sake of separation of the wave equation (2.13) in
Kerr, we considered a particular decomposition of the field
into modes [Eq. (2.14)], which was given in terms of the
spheroidal harmonics Zω

lmðθ;φÞ ¼ 1ffiffiffiffi
2π

p SωlmðθÞeimφ, the tem-

poral dependence e−iωt, and the radial function ψωlmðrÞ.
This decomposition provides the basis for the definition of
the Eddington modes, which we shall generally denote by
fωlm. In this subsection, we introduce the outer Eddington
modesfinωlm andfupωlm defined exclusively on theBHexterior.
Based on the asymptotic behavior of the effective

potential in the BH exterior [as given in Eq. (2.22)] we
define two spanning sets of solutions to the radial equa-
tion (2.18), ψ in

ωlmðrÞ and ψup
ωlmðrÞ, uniquely determined by

their boundary conditions,

ψ in
ωlmðrÞ ≃

(
τinωlme

−iωþr� ; r� → −∞
e−iωr� þ ρinωlme

iωr� ; r� → ∞
; ð3:2Þ

ψup
ωlmðrÞ ≃

(
eiωþr� þ ρupωlme

−iωþr� ; r� → −∞
τupωlme

iωr� ; r� → ∞
; ð3:3Þ

where τΛωlm and ρΛωlm, with Λ denoting either “in” or “up”,
are the transmission and reflection coefficients, respec-
tively. Determination of these coefficients thus requires
numerically solving the one-dimensional scattering of the
ψΛ
ωlm mode off the effective potential (2.19). We use the

symbol “≃” to denote asymptotic equivalence.
When the signs of ω and m are flipped simultaneously,

so does the sign of ωþ. This means that the emerging free
waves that initiate the in and up modes (e−iωr� or eiωþr�,
respectively) simply undergo complex conjugation under
this transformation. We also recall from the previous
section that the radial equation is real and is invariant
under such a simultaneous sign flip of ω and m. Therefore,
the following symmetry relations are satisfied:

ψΛ
ð−ωÞlð−mÞ ¼ ψΛ�

ωlm ð3:4Þ

for the radial solutions and

ρΛð−ωÞlð−mÞ ¼ ρΛ�ωlm; τΛð−ωÞlð−mÞ ¼ τΛ�ωlm ð3:5Þ

for the corresponding reflection and transmission coeffi-
cients, where Λ stands here for either “in” or “up”.
Having introduced the radial functions ψ in

ωlm and ψup
ωlm

and specified their boundary conditions in Eqs. (3.2) and
(3.3), the complete orthonormal family of outer Eddington
modes are defined in accordance with Eq. (2.14),

finωlmðxÞ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πjωjðr2 þ a2Þ

p Zω
lmðθ;φÞe−iωtψ in

ωlmðrÞ;

fupωlmðxÞ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πjωþjðr2 þ a2Þ

p
× Zω

lmðθ;φÞe−iωtψup
ωlmðrÞ; ð3:6Þ

satisfying the boundary conditions [as emerge from
Eqs. (3.2) and (3.3)]8:

finωlmðxÞ ≃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8π2jωjðr2 þ a2Þ
p
× SωlmðθÞ

(
e−iωveimφ; PNI

0; Hpast
; ð3:7Þ

fupωlmðxÞ ≃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8π2jωþjðr2 þ a2Þ
p
× SωlmðθÞ

(
0; PNI

e−iωþuexteimφþ ; Hpast
: ð3:8Þ

Equation (3.8) makes use of the relation
e−iωteimφ ¼ e−iωþteimφþ , also useful later in the paper.
Note that, in accordance with the discussion toward the
end of Sec. II A, the past asymptotic forms given above
[as well as the future asymptotic forms given below in
Eqs. (3.14) and (3.15)] are always expressed in terms of the
three regular coordinates on each of the asymptotic null
surfaces.
For future use, we also find it beneficial to write

Eqs. (3.7) and (3.8) in a slightly different manner by
absorbing the φ- and φþ-dependent factors into the angular
functions,

finωlmðxÞ≃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πjωjðr2þa2Þ
p Zω

lmðθ;φÞ
(
e−iωv; PNI

0; Hpast
; ð3:9Þ

fupωlmðxÞ≃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πjωþjðr2þa2Þ
p Zω

lmðθ;φþÞ
(
0; PNI

e−iωþuext ; Hpast
;

ð3:10Þ

where

Zω
lmðθ;φþÞ≡ 1ffiffiffiffiffiffi

2π
p SωlmðθÞeimφþ : ð3:11Þ

8On the rhs of Eq. (3.8), being nonzero only at Hpast, we could
have replaced r in the prefactor by rþ. However, in Eq. (3.7) this
is not the case, as well as in similar equations that follow, being
nonzero both at r ¼ rþ and at infinity. We thus choose, for the
sake of uniformity, to keep r (rather than rþ) in the prefactor on
the rhs of Eq. (3.8), as well as in all similar instances that follow.
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Clearly, for any fixed ω ∈ R, Zω
lmðθ;φþÞ is a complete

family of functions on the two-sphere, orthonormal in the
sense thatZ

2π

0

dφþ

Z
π

0

dθ sin θZω�
lmðθ;φþÞZω

l0m0 ðθ;φþÞ ¼ δll0δmm0 :

ð3:12Þ

By inspecting Eq. (3.6) along with Eqs. (3.4) and (2.21)
we conclude that the exterior Eddington modes are invari-
ant (modulo a sign introduced by the angular functions)
under simultaneously flipping the signs of ω and m along
with complex conjugation. That is,

fΛð−ωÞlð−mÞ ¼ ð−1ÞmfΛ�ωlm; ð3:13Þ

where Λ stands for either “in” or “up”.
For future use, we also provide the asymptotic behavior

of the in and up Eddington modes on the future null
hypersurfaces,

finωlmðxÞ≃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8π2jωjðr2þa2Þ
p SωlmðθÞ

�
ρinωlme

−iωuexteimφ; FNI

τinωlme
−iωþveimφþ ; HR

;

ð3:14Þ

fupωlmðxÞ ≃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8π2jωþjðr2 þ a2Þ
p
× SωlmðθÞ

�
τupωlme

−iωuexteimφ; FNI

ρupωlme
−iωþveimφþ ; HR

: ð3:15Þ

The in and up outer Eddington modes are illustrated in the
top row of Fig. 2. The in mode may be interpreted as a
(properly normalized) monochromatic spherical wave
propagating inward from infinity (PNI) and being partially
reflected back to infinity (FNI) and partially transmitted
across the horizon (HR), with the relative coefficients of
transmission and reflection being respectively τinωlm and
ρinωlm. Similarly, the up mode may be interpreted as a
monochromatic spherical wave propagating upward from
the past horizon (Hpast) and being partially reflected back to
the future horizon (HR) and partially transmitted to infinity
(FNI), with the relative coefficients of transmission and
reflection being respectively τupωlm and ρupωlm.

B. Inner Eddington modes

In a similar manner to the definition of the in and up
modes outside the BH, we may additionally define two sets
of Eddington modes confined to the BH interior. Note that,
in this spacetime region, the r� coordinate serves as a
temporal coordinate, whereas t has a spatial role. This
means that a single initial condition is required for the
radial equation (2.18), which we simply take as a free wave
at r� → −∞ (corresponding to r → rþ),

ψ int
ωlm ≃ e−iωþr� ; r → rþ: ð3:16Þ

With this radial function we now define the right (R) and
left (L) sets of orthonormal modes,9

fRωlmðxÞ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πjωþjðr2 þ a2Þ

p Zω
lmðθ;φÞe−iωtψ int

ωlmðrÞ;

fLωlmðxÞ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πjωþjðr2 þ a2Þ

p Zω
lmðθ;φÞe−iωtψ int�

ωlmðrÞ:

ð3:17Þ

These modes admit the following asymptotic forms at the
right and left horizons:

fRωlmðxÞ≃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8π2jωþjðr2þa2Þ
p SωlmðθÞeimφþ

�
0; HL

e−iωþv; HR
;

ð3:18Þ

fLωlmðxÞ≃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8π2jωþjðr2þa2Þ
p SωlmðθÞeimφþ

�
eiωþuint ; HL

0; HR

:

ð3:19Þ

As for the exterior Eddington modes, we shall find it
beneficial when constructing the HTPF to present a slightly
different form for Eqs. (3.18) and (3.19) by absorbing the
φ-and φþ-dependent factors into angular functions,

fRωlmðxÞ ≃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πjωþjðr2 þ a2Þ
p Zω

lmðθ;φþÞ
�
0; HL

e−iωþv; HR
;

ð3:20Þ

fLωlmðxÞ ≃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πjωþjðr2 þ a2Þ
p Zω

lmðθ;φþÞ
�
eiωþuint ; HL

0; HR

:

ð3:21Þ

Analogously to the symmetry in Eq. (3.13) satisfied by
the exterior Eddington modes, the interior Eddington
modes satisfy

fΛð−ωÞlð−mÞ ¼ ð−1ÞmfΛ�ωlm; ð3:22Þ

9Note that, in the treatment of the analogous RN case in
Ref. [30], the right and left modes are defined with an essentially
different temporal dependence [see Eq. (2.16) therein]: the right
mode is decomposed with respect to e−iωt while the left mode is
decomposed with respect to eiωt, and both share the same radial
function. This was possible since, in RN, the wave equation is
invariant under ω ↦ −ω. In Kerr, however, the latter symmetry
does not apply, hence we stick with the canonical decomposition
of Eq. (2.14). This difference also leads to some differences
between several equations below and their counterparts in
Ref. [30].
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where Λ stands here for either R or L. The right and left
inner Eddington modes are illustrated in the middle row
of Fig. 2.
We have readily settled the definition of the inner

Eddington family of modes. However, it is interesting to
also inspect the form of the radial function ψ int

ωlmðrÞ at r� →
∞ (i.e., on approaching the IH). In correspondence with the
asymptotic behavior of the effective potential (2.24), the
solution of Eq. (2.18) admits the free asymptotic form

ψ int
ωlm ≃ Aωlmeiω−r� þ Bωlme−iω−r� ; r → r−; ð3:23Þ

where Aωlm and Bωlm are constant complex coefficients.

C. Unruh modes

The Unruh modes are the basic modes for the field
expansion involved in the definition of the Unruh quantum
state (see Sec. IV C). There are two distinct sets of Unruh
modes and both inhabit the entire union of the BH interior
and exterior (namely, the red frame in Fig. 1). We shall
occasionally refer to this domain as the “united domain.”
This domain has two null boundaries in its past: The one on
the right is PNI. The other boundary, on the left, is located
at r ¼ rþ; it is the union of Hpast and HL. Recall that, as
discussed at the end of Sec. II A, the corresponding affine
parameters are Eddington v along the past-right boundary
(PNI) and Kruskal U along the past-left boundary
(Hpast ∪ HL). We also note that both these affine param-
eters span the entire range ð−∞;∞Þ along their respective
past null boundaries (namely, v along PNI and U
along Hpast ∪ HL).
The two sets of Unruh modes naturally emerge from

these two past null boundaries, with positive frequencies in
each set defined with respect to the affine parameter along
the corresponding boundary. This is unlike the Eddington
modes (introduced above), which are always defined
asymptotically with respect to the corresponding
Eddington coordinates v and u.10 We now introduce the
two sets of Unruh modes, in and up, as outlined above.

1. The in Unruh modes

The in Unruh mode ginωlm originates at PNI as a free wave
with respect to the affine parameter there, the Eddington v
coordinate (i.e., ∝ e−iωv) and vanishes on both Hpast and
HL. That is, it is endowed with the following past boundary
conditions:

ginωlmðxÞ≃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πωðr2þa2Þ
p Zω

lmðθ;φÞ
�
e−iωv; PNI

0; Hpast ∪HL
:

ð3:24Þ

Recall that here ω attains only positive values (see foot-
note 10). The in Unruh modes are illustrated in the bottom
right diagram of Fig. 2.
Evidently, these boundary conditions are regular. Since

the d’Alembertian operator in Eq. (2.12) is regular as
well, the regularity of the ginωlm modes is guaranteed
throughout the (interior of the) united domain.
We now restrict our attention to the BH exterior. Notably,

the in Unruh mode ginωlm, when constrained to the BH
exterior, has the same boundary conditions (on the past
asymptotic null surfaces PNI andHpast) as the in Eddington
mode finωlm: compare Eqs. (3.9) and (3.24). That is,

ginωlmjPNI ¼ finωlmjPNI;
ginωlmjHpast

¼ 0 ¼ finωlmjHpast
:

Since ginωlm and finωlm satisfy the same wave equation (2.13),
it follows that these two quantities are identical not only on
the initial null hypersurfaces Hpast and PNI but at every
spacetime point in the BH exterior,

ginωlmðxÞ ¼ finωlmðxÞ; r ≥ rþ: ð3:25Þ

In order to find the behavior of ginωlm in the BH interior,
we carry it using Eq. (3.25) to HR, where it fulfills

ginωlmjHR
¼ finωlmjHR

¼
ffiffiffiffiffiffiffiffiffi
jωþj
ω

r
τinωlmf

R
ωlmjHR

ð3:26Þ

[for the last equality, compare Eq. (3.14) with Eq. (3.18)].

Again, since ginωlm and
ffiffiffiffiffiffiffi
jωþj
ω

q
τinωlmf

R
ωlm coincide on HR and

on HL as well [since they both vanish on the latter
hypersurface, see Eq. (3.24) and Eq. (3.18)], these solutions
are identical everywhere in the BH interior,

ginωlmðxÞ ¼
ffiffiffiffiffiffiffiffiffi
jωþj
ω

r
τinωlmf

R
ωlmðxÞ; r− ≤ r ≤ rþ: ð3:27Þ

Equations (3.25) and (3.27) demonstrate a useful prop-
erty of the in Unruh modes, namely, that we may match
each in Unruh mode, at any given neighborhood, with a
particular Eddington mode: with an in mode at r ≥ rþ and
with a right mode (up to a specified multiplicative constant)
at r− ≤ r ≤ rþ. In particular, this means that, throughout
the united domain, ginωlm decomposes into radial, angular,
and temporal terms, as may also be anticipated from its
initial conditions given in Eq. (3.24) (because e−iωv

decomposes naturally into a temporal factor e−iωt times
a function of r, and this separable form of the t dependence

10Since the Unruh modes are introduced here directly for the
construction of a quantum state, we only need to define them with
positive frequencies. The Eddington modes, however, were
introduced to be utilized as a mathematical tool for decompo-
sition. Thus, the latter were defined in Secs. III A and III B for
negative frequencies as well (hence the absolute value in their
normalization constant).
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is preserved as ginωlm evolves according to the t-independent
wave equation). This situation changes when considering
the up Unruh modes, as we shall do next.

2. The up Unruh modes

The up Unruh modes are solutions to Eq. (2.13) emerg-
ing from Hpast ∪ HL with positive frequency, which we
denote by ω̂ (to distinguish it from the Killing frequency
ω). That is, the up Unruh modes originate from (the ingoing
arms of) r ¼ rþ as ∝ e−iω̂U, with the Kruskal U as defined
in Eqs. (2.9) and (2.10).
The desired orthonormal set of up modes is conveniently

defined by specifying the initial value of each of the modes
at the initial null hypersurfaceHpast ∪ HL—as a function of
the three regular coordinatesU; θ;φþ which span it (see the
end of Sec. II A). This initial value setup for the up modes is
complemented by requiring these modes to vanish at PNI,
see Eq. (3.29) below. In order for the up modes to provide
(when combined with the in modes defined in the previous
subsection) a complete KG-orthonormal set of solutions to
the wave equation, the aforementioned three-parameter set
of up-modes initial functions has to be in itself a complete
KG-orthonormal set of functions of U, θ, and φþ on
Hpast ∪ HL. We already chose the modes’ initial U
dependence at Hpast ∪ HL to be ∝ e−iω̂U, so all that is left
is to specify a complete orthonormal set of functions of the
remaining coordinates θ and φþ on the two-sphere. This set
can be chosen quite arbitrarily (and, in principle, it could
also depend on ω̂). It should depend on two discrete
parameters (reflecting the dimensionality of the two-
sphere), which we here schematically denote by l̂; m̂; hence
we may generally denote such a set of “initial” angular
functions as Ẑω̂

l̂ m̂
ðθ;φþÞ.11 We choose it to be orthonormal

in the usual sense,

Z
2π

0

dφþ

Z
π

0

dθ sin θẐω̂�
l̂ m̂
ðθ;φþÞẐω̂

l̂0m̂0 ðθ;φþÞ ¼ δl̂l̂0δm̂m̂0 :

ð3:28Þ

The set of up modes is then generally defined via its initial
conditions at Hpast ∪ HL and PNI by

gup
ω̂ l̂ m̂

ðxÞ≃ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πω̂ðr2þa2Þ

p Ẑω̂
l̂ m̂
ðθ;φþÞ

�
0; PNI

e−iω̂U; Hpast ∪HL
:

ð3:29Þ
Recall that ω̂ attains only positive values (see footnote 10).
The up Unruh modes are illustrated at the bottom left
diagram of Fig. 2.
We shall choose our arbitrary angular functions

Ẑω̂
l̂ m̂
ðθ;φþÞ to be the simplest complete orthonormal set

of angular functions on the two-sphere—namely, the
conventional spherical harmonics,

Yl̂ m̂ðθ;φþÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l̂þ 1Þ

4π

ðl̂ − m̂Þ!
ðl̂þ m̂Þ!

s
Pm̂
l̂
ðcos θÞeim̂φþ ;

where Pm̂
l̂
are the associated Legendre polynomials.

Thus, we define gup
ω̂ l̂ m̂

as a solution to Eq. (2.13) with the
initial conditions

gup
ω̂ l̂ m̂

ðxÞ≃ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πω̂ðr2þa2Þ

p Yl̂m̂ðθ;φþÞ
�
0; PNI

e−iω̂U; Hpast ∪HL
:

ð3:30Þ
Conveniently, any given up mode may be written as a

sum of two other solutions to Eq. (2.13), denoted gpast
ω̂ l̂ m̂

and gL
ω̂ l̂ m̂

, which are endowed with the following initial
conditions:

gL
ω̂ l̂ m̂

ðxÞ ≃ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πω̂ðr2 þ a2Þ

p Yl̂ m̂ðθ;φþÞ

8>><
>>:

0; PNI

0; Hpast

e−iω̂U; HL

;

ð3:31Þ

gpast
ω̂ l̂ m̂

ðxÞ ≃ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πω̂ðr2 þ a2Þ

p Yl̂ m̂ðθ;φþÞ

8>><
>>:

0; PNI

e−iω̂U; Hpast

0; HL

:

ð3:32Þ

That is, while the initial support of gup
ω̂ l̂ m̂

ðxÞ is on the entire

null surface Hpast ∪ HL, the function gLω̂ l̂ m̂
ðxÞ has its initial

support on HL alone, whereas gpast
ω̂ l̂ m̂

ðxÞ is initially sup-
ported on Hpast only.
One might be slightly confused about our choice of

spherical harmonics as the angular functions here, because
it is customary to use the spheroidal harmonics for a Kerr
BH. But the only reason for this common use of spheroidal
harmonics in Kerr is to achieve angular separability of
the wave equation, as in Eq. (2.14). Recall, however, that
since the spheroidal harmonics explicitly depend on ω,
this angular separability can only be achieved when the

11As mentioned, the Unruh modes introduced here are to be
utilized in Sec. IV C for construction of the Unruh quantum state.
Generally speaking, what determines a quantum state is the
frequency (and thereby the implied choice of positive-frequency
modes), which was here chosen to be the parameter ω̂ appearing
in e−iω̂U. Then, the remaining choice of angular functions
Ẑω̂
l̂ m̂
ðθ;φþÞ for the up Unruh modes’ initial conditions does

not affect the resultant quantum state. In particular, the final
mode-sum structure of the Unruh-state HTPF, as appears in
Eq. (5.4) or (6.37), does not depend at all on the choice of Ẑω̂

l̂ m̂
—

we show this explicitly in Secs. V B and VI B.
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temporal dependence is precisely of the form e−iωt (multi-
plying some function of r, θ, and φ). Quite unluckily, an up
Unruh mode admits a more intricate temporal dependence,
which does not fit any single Killing frequency ω. Instead,
each such mode is a superposition of Eddington modes
with potentially all possible ω values; this may be seen
already at the initial hypersurface Hpast ∪ HL, where an up
Unruh mode is ∝ e−iω̂U, recalling that U cannot be
expressed as a sum of t- and r-dependent pieces, unlike
the Eddington coordinates. Since angular separability
cannot be achieved anyway in this case, there is no
advantage in using the spheroidal harmonics for the up
Unruh modes—and we choose the much simpler (and
frequency-independent) spherical harmonics instead.
We point out, however, that despite our choice of

spherical harmonics for the definition of the up Unruh
modes, our final mode-sum expressions (in Eddington
modes) for the HTPF are actually given in terms of
spheroidal harmonics (as one would naturally expect for
Kerr)—as may explicitly be seen in Eqs. (5.4) and (6.37)
[along with Eqs. (3.6) and (3.17)]. In fact, these final mode-
sum expressions for the Unruh-state HTPF are entirely
independent of the choice of angular functions Ẑω̂

l̂ m̂
ðθ;φþÞ

at this stage of constructing the up Unruh modes, see
footnote 11 above.
It is clear from the discussion above that, unlike what we

did for the in Unruh modes [see Eqs. (3.25) and (3.27)], it is
not possible to match a specific up Unruhmodewith a single
Eddington mode (neither in the exterior nor in the interior
of the BH). This reflects our inability to reduce the partial
differential equation (PDE) (2.13) to an ordinary differential
equation (ODE) [such as (2.18)] for the up Unruh modes.
Therefore, in order to allow a convenient numerical imple-
mentation involving the solution of ODEs rather than PDEs,
we shall later Fourier decompose the gup

ω̂ l̂ m̂
ðxÞ modes in

terms of the (separable) Eddington modes.

D. Wronskian relations

The absence of a first derivative in the radial equa-
tion (2.18) leads to r� independence of the Wronskian of
any pair of solutions. This Wronskian conservation yields
well-known relations involving the exterior reflection
and transmission coefficients ρωlm and τωlm [defined via
Eqs. (3.2) and (3.3)], as well as relations involving the
interior near-IH coefficients Aωlm and Bωlm [defined
via Eq. (3.23)].

1. Relations involving ρωlm and τωlm
Using the Wronskian conservation on pairs of solutions

chosen from ψ in
ωlm, ψ

up
ωlm, ψ

in�
ωlm, and ψup�

ωlm [in particular,
equating their Wronskian at r� → −∞ with their
Wronskian at r� → ∞, using the asymptotic forms given
in Eqs. (3.2) and (3.3)], yields the following constraints on
the reflection and transmission coefficients:

jρinωlmj2 þ
ωþ
ω

jτinωlmj2 ¼ 1;

jρupωlmj2 þ
ω

ωþ
jτupωlmj2 ¼ 1;

τupωlm ¼ ωþ
ω

τinωlm;

ρup�ωlm

ρinωlm
¼ −

τup�ωlm

τupωlm
: ð3:33Þ

The last equation yields, in particular, jρupωlmj ¼ jρinωlmj.
Notably, from the first (second) constraint, modes with

ωωþ < 0 have jρinωlmj2 > 1 ðjρupωlmj2 > 1Þ. That is, the
reflected in (up) wave has, at FNI (HR), an amplitude
greater than it originally had at PNI (Hpast). This is the
classical phenomenon of “superradiance” [12,13].12

2. Relations involving Aωlm and Bωlm

Similarly, Wronskian conservation of the interior radial
function ψ int

ωlm [see Eq. (3.16)] and its conjugate ψ int�
ωlm

relates the internal scattering coefficients Aωlm and Bωlm
[defined through Eq. (3.23)] as follows:

jBωlmj2 − jAωlmj2 ¼
ωþ
ω−

: ð3:34Þ

IV. QUANTUM STATES IN A KERR SPACETIME

All topics outlined in the paper so far were basically
purely classical. We shall now promote our scalar field
from a classical field Φ to a quantum field operator Φ̂.
We first provide a brief review of its decomposition via
annihilation and creation operators and then introduce
various quantum states in Kerr spacetime.

A. Generic construction of quantum states

Consider a space of generic positive-frequency mode
solutions Φi with respect to some temporal coordinate
(clearly, in curved spacetime, this choice is not unique).
These solutions fulfill the following orthonormality rela-
tions with respect to the KG inner product,

hΦi;Φji¼ δij; hΦ�
i ;Φ�

ji¼−δij; hΦi;Φ�
ji¼ 0; ð4:1Þ

so that the union of the set Φi (for all i) and the set Φ�
j (for

all j) is a complete family of orthonormal solutions to the
KG equation (2.12). We may now expand the field in terms
of this basis of solutions via creation (â†i ) and annihilation
(âi) operators as follows:

12Note that in RN we have ω ¼ ωþ, which leads to the simple
analogous relation jρωlj2 þ jτωlj2 ¼ 1, implying that there exist
no superradiant modes.
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Φ̂ðxÞ ¼
X
i

ðâiΦiðxÞ þ â†iΦ�
i ðxÞÞ;

where the following commutation relations are imposed:

½âi; â†j � ¼ ℏδij1̂; ½âi; âj� ¼ 0; ½â†i ; â†j � ¼ 0:

The vacuum with respect to this family is a state j0i
such that

âij0i ¼ 0; for all i:

Acting on the vacuum state with the creation operators â†i
yields the one-particle states

j1ii ¼ ℏ−1=2â†i j0i;

and from here one may construct the entire many-particle
Fock space.

B. The Boulware and (lack of) Hartle-Hawking
quantum states

The outlined decomposition scheme is utilized in the
construction of quantum states for a scalar field. As a
concrete example, consider the field decomposition in the
Kerr BH exterior in terms of the outer Eddington modes
[Eq. (3.6)]

Φ̂ðxÞ ¼
X∞
l¼0

Xl

m¼−l

Z
∞

0

dωðb̂inωlmfinωlmðxÞþ b̂in†ωlmf
in�
ωlmðxÞÞ

þ
X∞
l¼0

Xl

m¼−l

Z
∞

0

dωþðb̂upωlmfupωlmðxÞþ b̂up†ωlmf
up�
ωlmðxÞÞ;

ð4:2Þ

for some operator coefficients b̂inωlm and b̂upωlm. Note that the
up modes are defined with respect to the positive frequency
ωþ rather than ω [this is a direct result of the asymptotic
behavior of the effective potential (2.22)]. Therefore, the
corresponding integration is over positive ωþ. The decom-
position in Eq. (4.2) serves to define the so-called (past)
Boulware state j0iB (see Refs. [6,7] for the Schwarzschild
case and Refs. [10,11] for Kerr) via

b̂inωlmj0iB ¼ 0; for all ω > 0;

b̂upωlmj0iB ¼ 0; for all ωþ > 0:

In nonrotating BHs (i.e., Schwarzschild and RN), this state
is irregular on both Hpast and HR and is empty on both
PNI and FNI (and so it is said to model a cold star); in
the rotating case, it continues to be empty on PNI but it
contains quantum superradiance at FNI (the Unruh-
Starobinskii effect).

The focus of this paper is another state: the Unruh state,
which we define in the next subsection. Before turning to
the Unruh state, however, we wish to give the following
remark on another, third state. In nonrotating BHs, one may
consider the Hartle-Hawking (HH) state [9,31], which
corresponds to a BH in thermal equilibrium, coupled to
an infinite bath of radiation. Although not too realistic, the
HH state provides (in the nonrotating case) relative sim-
plicity due to its time-reversal and time-translational
invariance, and so historically it was used to make some
progress in the study of the RSET. However, a state
analogous to HH is ill-defined in Kerr (see Ref. [14], as
well as Refs. [11,19]). This may be intuitively understood
from the existence of superradiant modes (see Sec. III D),
for which waves are reflected back to infinity with
increased amplitude, conflicting with the feasibility of a
state of thermal equilibrium. We shall thus consider only
the (highly physically relevant) Unruh state from now on.

C. The Unruh quantum state

The Unruh state [8] is widely recognized as a physically
realistic vacuum quantum state, describing an evaporating
BH (and thus, by definition, is not time-reversal invariant).
The Unruh state is constructed to resemble the quantum
state arising at late times for a BH formed by gravitational
collapse. It is defined by taking positive frequencies with
respect to the affine parameters along both initial null
hypersurfaces (see the formulation of the Unruh modes in
Sec. III C). That is, positive frequencies are defined with
respect to v (the affine coordinate on PNI) for incoming
modes and with respect to U (the affine coordinate onHpast
and HL) for outgoing modes.
For a straightforward definition of the Unruh vacuum

state, we decompose the metric in terms of the Unruh
modes [Eqs. (3.24) and (3.30)],

Φ̂ðxÞ ¼
X∞
l¼0

Xl

m¼−l

Z
∞

0

dωðâinωlmginωlmðxÞ þ âin†ωlmg
in�
ωlmðxÞÞ

þ
X∞
l̂¼0

Xl̂

m̂¼−l̂

Z
∞

0

dω̂ðâup
ω̂ l̂ m̂

gup
ω̂ l̂ m̂

ðxÞ þ âup†
ω̂ l̂ m̂

gup�
ω̂ l̂ m̂

ðxÞÞ;

ð4:3Þ

where âinωlm and âin†ωlm (âup
ω̂ l̂ m̂

and âup†
ω̂ l̂ m̂

) are the creation and
annihilation operators corresponding to the in (up) Unruh
modes, and the set of quantum numbers ω̂ l̂ m̂ classifying
the up Unruh modes are as discussed in Sec. III C 2.
The Unruh state j0iU is then defined as the vacuum state

with respect to the Unruh decomposition (4.3), namely, it is
the state annihilated by all Unruh-modes annihilation
operators,
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âinωlmj0iU ¼ 0; for all ω > 0;

âup
ω̂ l̂ m̂

j0iU ¼ 0; for all ω̂ > 0:

The Unruh state involves no incoming flux at PNI and an
outgoing flux of thermal radiation at FNI, in correspon-
dence with Hawking radiation of an evaporating BH. The
corresponding RSET is expected to be regular across
the interior of the united domain (since the united domain
is the future domain of dependence of the two Unruh-state
initial null hypersurfaces, PNI and Hpast ∪ HL). In particu-
lar, this expectation for regularity applies at HR, but not
at Hpast ∪ HL.

V. CONSTRUCTING THE UNRUH-STATE HTPF
IN THE EXTERIOR OF A KERR BH

From the decomposition of the field Φ̂ in terms of Unruh
modes [Eq. (4.3)], applying the commutation relations
½âΛI ; âΛ

0†
I0 � ¼ ℏδII0δΛΛ0 1̂ (where I denotes the set of all three

quantum numbers and Λ is either “up” or “in”), we obtain
the mode-sum expression of the Unruh-state HTPF in terms
of the Unruh modes ginωlm and gup

ω̂ l̂ m̂
[defined in Eqs. (3.24)

and (3.30)],

Gð1Þ
U ðx; x0Þ≡ hfΦ̂ðxÞ; Φ̂ðx0ÞgiU

¼ hΦ̂ðxÞΦ̂ðx0Þ þ Φ̂ðx0ÞΦ̂ðxÞiU
¼ Gin

Uðx; x0Þ þGup
U ðx; x0Þ; ð5:1Þ

where x and x0 are spacetime points and we denote

Gin
Uðx; x0Þ≡ ℏ

X
l;m

Z
∞

0

dωfginωlmðxÞ; gin�ωlmðx0Þg; ð5:2Þ

Gup
U ðx; x0Þ≡ ℏ

X
l̂;m̂

Z
∞

0

dω̂fgup
ω̂ l̂ m̂

ðxÞ; gup�
ω̂ l̂ m̂

ðx0Þg; ð5:3Þ

and, recall, fξðxÞ; ζðx0Þg≡ ξðxÞζðx0Þ þ ξðx0ÞζðxÞ.
Throughout the paper, we shall use the shorthand

notation
P

l;m ≡P∞
l¼0

P
l
m¼−l (and likewise for

P
l̂;m̂).

Remarkably, it has been found [see Eq. (3.22) in
Ref. [19], as well as Eq. (3.18c) in Ref. [11],13 with the
analogous Schwarzschild case in Refs. [17,18]], that the
mode-sum expression in Eq. (5.1) may be decomposed
in terms of the more manageable outer Eddington modes
(defined and discussed in Sec. III A), yielding the
expression

Gð1Þ
U ðx;x0Þ ¼ ℏ

X
l;m

�Z
∞

0

dωffinωlmðxÞ;fin�ωlmðx0Þg

þ
Z

∞

0

dωþ coth
�
πωþ
κþ

�
ffupωlmðxÞ;fup�ωlmðx0Þg

�
:

ð5:4Þ
In what follows in this section, we shall present the

derivation of Eq. (5.4) in the Kerr BH exterior via a
procedure different from the methods previously used in
the mentioned references. This procedure is the same as
that which we use later on to derive the HTPF in the Kerr
interior and is an extension to Kerr of the procedure used in
Ref. [30] for the interior of a RN BH. In doing so, we
recover the known result [Eq. (5.4)]. Proceeding in this way
will allow us to demonstrate our method on a Kerr BH
background in a simpler case (i.e., outside the BH) before
delving into the BH interior and to handle various issues
special to Kerr that arise already in the BH exterior.

A. Mode decomposition of the exterior Unruh HTPF

Concentrating on the BH exterior, we wish to express
Eqs. (5.2) and (5.3) in terms of the exterior Eddington
modes, finωlm and fupωlm, defined in Sec. III A.
In various stages of the computation to be carried out, it

turns out to be very useful to define a new version of fupωlm,
which carries an index ωþ rather than ω. We shall use the
notation fupðþÞ

ωþlm as the ωþ-indexed version of fupωlm. That is,
for a certain set ωlm, we define

fupðþÞ
ωþlm ≡ fupωðωþ;mÞlm; ð5:5Þ

where ω on the rhs is related to ωþ and m on the lhs by the
standard relation, ωðωþ; mÞ ¼ ωþ þmΩþ. All relations
and equations from the previous sections that include fupωlm
may now be carried to this section with the simple

replacement fupωlm ↦ fupðþÞ
ωþlm .

14 In what follows, we shall

use the object fupðþÞ
ωþlm (rather than fupωlm) as a tool until we

reach the final expression [Eq. (5.28)], which will then be
reexpressed in terms of the usual fupωlm.
We begin with the in contribution. We may readily use

the equality presented in Eq. (3.25) between ginωlm and finωlm
in the BH exterior to express Eq. (5.2) as the mode sum

13Note that Ref. [11] considers a slightly different two-point
function (TPF) from our Gð1Þ

U ðx; x0Þ, namely, the nonsymmetrized
TPF, usually called the Wightman function Gþðx; x0Þ ¼
hΦ̂ðxÞΦ̂ðx0Þi rather than the Hadamard two-point function
Gð1Þðx; x0Þ ¼ hfΦ̂ðxÞ; Φ̂ðx0Þgi. In particular, it is trivial to derive
the symmetrized TPF from the nonsymmetrized one provided in
Ref. [11], thereby obtaining Eq. (5.4).

14A clarification regarding our notation may be in order here
(particularly related to the interchangeability of fupωlm and fupðþÞ

ωþlm ):

Once the object fupðþÞ
ωþlm has been defined here [in Eq. (5.5)], our

notational rules allow us to write equations of the form, e.g.,
fupðþÞ
ωþlm ¼ fupωlm (just to give a simple illustrative example). The

exact meaning of an equality of this type has been clarified in
Sec. III, and we repeat it here for clarity: Whenever a part of a
given equation depends on ω and another part depends on ωþ, the
latter is to be viewed as given by ω −mΩþ. (Or, if one prefers, the
other way around: ω may be viewed to be given by ωþ þmΩþ.)

ZILBERMAN, CASALS, ORI, and OTTEWILL PHYS. REV. D 106, 125011 (2022)

125011-14



Gin
Uðx; x0Þ ¼ ℏ

X
l;m

Z
∞

0

dωffinωlmðxÞ; fin�ωlmðx0Þg: ð5:6Þ

Likewise, the up counterpart Gup
U ðx; x0Þ requires estab-

lishing a relation between the up Unruh modes gup
ω̂ l̂ m̂

and
the exterior Eddington modes. However, as discussed at the
end of Sec. III C 2, that task is a more complicated one—
compared to the in Unruh modes, but also compared to the
spherical symmetry counterpart.
We shall now introduce a notation to be used occasion-

ally throughout the rest of the paper. In determining a
quantum state, the frequency has a special role over the
other quantum numbers. Let us then denote collectively all
other quantum numbers by J (or sometimes Ĵ). Here, more
specifically, J ≡ ðl; mÞ and Ĵ ≡ ðl̂; m̂Þ (where the latter
indices were introduced in Sec. III C 2). Then, we shall also
use the shorthand notation

P
J ≡P

l;m ¼ P∞
l¼0

P
l
m¼−l,

and likewise for
P

Ĵ.
To relate the up Unruh modes gup

ω̂ Ĵ
and the Eddington

modes on the BH exterior, we turn our attention to the
relevant asymptotic surfaces. Recall that on the past
horizon, we have [see Eqs. (3.30) and (3.10)]

gup
ω̂ Ĵ
j
Hpast

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πω̂ðr2þ þ a2Þ

p YĴðθ;φþÞe−iω̂UðuextÞ ð5:7Þ

and

fupðþÞ
ωþJ j

Hpast
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πjωþjðr2þþa2Þ
p Zω

J ðθ;φþÞe−iωþuext : ð5:8Þ

As was already spelled out in Eq. (3.12), the set of
spheroidal harmonics Zω

J ðθ;φþÞ is a complete orthonormal
family on the two-sphere for any fixed ω. For the analysis
below, it is important to note that this set also forms a
complete orthonormal family for any fixed ωþ. It is
orthonormal in the sense

Z
2π

0

dφþ

Z
π

0

dθ sin θ½Zωðωþ;mÞ
lm ðθ;φþÞ��

× Zωðωþ;m0Þ
l0m0 ðθ;φþÞ ¼ δll0δmm0 ; ð5:9Þ

where, as usual, ωðωþ; mÞ≡ ωþ þmΩþ. This is so
because

R
2π
0 eiðm0−mÞφþdφþ ¼ 2πδmm0 , hence the θ integral

in Eq. (5.9) needs only to be carried out for m0 ¼ m—in
which case the equality of ωþ (in the two Z functions) is
fully equivalent to the equality of ω. A fairly similar
argument may be used to show that the completeness of the
family Zω

J ðθ;φþÞ with fixed ω also implies its complete-
ness with fixed ωþ.
Now, in order to decompose gup

ω̂ Ĵ
in terms of fupðþÞ

ωþJ on
Hpast, we introduce two sets of coefficients, αω̂ωþ and Cωþ

ĴJ
,

aimed at handling the frequential and angular factors,

respectively. The Fourier coefficients αω̂ωþ are given by
the inverse Fourier transform

αω̂ωþ ≡
Z

∞

−∞
duexte−iω̂UðuextÞeiωþuext : ð5:10Þ

This integral may be evaluated as described in Ref. [30],15

yielding

αω̂ωþ ¼ 1

κþ

�
ω̂

κþ

�
iωþ=κþ

eπωþ=2κþΓ
�
−i

ωþ
κþ

�
: ð5:11Þ

Similarly, Cωþ
ĴJ
, the coefficients translating between the

two bases of orthonormal functions on the two-sphere, Zω
J

and YĴ, are defined by

Cωþ
ĴJ

≡
Z

2π

0

dφþ

Z
π

0

dθ sin θ½Zωðωþ;mÞ
J ðθ;φþÞ��YĴðθ;φþÞ

ð5:12Þ

[recall that in the square brackets the information about the
value of m in ωðωþ; mÞ is encoded in J].
The αω̂ωþ and Cωþ

ĴJ
coefficients, as defined in Eqs. (5.10)

and (5.12), allow a translation from the Unruh to the
Eddington frequential and angular factors via the relations

e−iω̂UðuextÞ ¼ 1

2π

Z
∞

−∞
dωþαω̂ωþe

−iωþuext ð5:13Þ

and

YĴðθ;φþÞ ¼
X
J

Cωþ
ĴJ
Zωðωþ;mÞ
J ðθ;φþÞ; ð5:14Þ

where, recall, in the last equality the sum over J is carried
out with fixed ωþ. The first of these relations is just the
inversion of the (inverse) Fourier transform in Eq. (5.10).
To derive the second relation, we use the (fixed-ωþ)
completeness of the spheroidal harmonics to decompose
the spherical harmonics as

YĴðθ;φþÞ ¼
X
J

Pωþ
ĴJ
Zωðωþ;mÞ
J ðθ;φþÞ; ð5:15Þ

where Pωþ
ĴJ

denote the coefficients of the decomposition.
Substituting this decomposition into the rhs of Eq. (5.12),
and recalling the spheroidal harmonics orthonormality, one
readily sees that Cωþ

ĴJ
¼ Pωþ

ĴJ
, hence Eq. (5.15) reduces to

the desired relation (5.14). In a similar manner (this time
employing the orthonormality and completeness of the
spherical harmonics), one can decompose the spheroidal
harmonics and show that

15See Eq. (3.3) therein and apply the notation change
ω̃ ↦ ωþ;ω ↦ ω̂.
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Zωðωþ;mÞ
J ðθ;φþÞ ¼

X
Ĵ

Cωþ�
ĴJ

YĴðθ;φþÞ: ð5:16Þ

For future use, we also note that the following relation
holds:

X
Ĵ

Cωþ
ĴJ
Cωþ�
ĴJ0 ¼ δJJ0 : ð5:17Þ

To see this, we substitute Eq. (5.14) into the rhs of
Eq. (5.16) (with index renaming J ↦ J0 in the latter)
and obtain

Zωðωþ;m0Þ
J0 ðθ;φþÞ ¼

X
J

�X
Ĵ

Cωþ
ĴJ
Cωþ�
ĴJ0

�
Zωðωþ;mÞ
J ðθ;φþÞ:

ð5:18Þ

Recalling the orthonormality of the spheroidal harmonics,
the term in square brackets must be the identity matrix with
components δJJ0 , yielding Eq. (5.17).
Substituting Eqs. (5.13) and (5.14) in Eq. (5.7) and

comparing to Eq. (5.8), the decomposition of gup
ω̂ Ĵ

in terms

of fupðþÞ
ωþJ on the null hypersurfaceHpast may now be written

as follows:

ffiffiffiffi
ω̂

p
gup
ω̂ Ĵ
j
Hpast

¼ 1

2π

X
J

Z
∞

−∞
dωþ

ffiffiffiffiffiffiffiffiffi
jωþj

p
αω̂ωþC

ωþ
ĴJ
fupðþÞ
ωþJ j

Hpast
:

ð5:19Þ

In addition, recall that both gup
ω̂ Ĵ

and fupðþÞ
ωþJ vanish on PNI:

see Eqs. (3.10) and (3.30). Thus,

ffiffiffiffi
ω̂

p
gup
ω̂Ĵ
j
PNI

¼0¼ 1

2π

X
J

Z
∞

−∞
dωþ

ffiffiffiffiffiffiffiffiffi
jωþj

p
αω̂ωþC

ωþ
ĴJ
fupðþÞ
ωþJ j

PNI
:

ð5:20Þ

Since gup
ω̂ Ĵ

and fupðþÞ
ωþJ satisfy the same wave equation (2.13),

it follows that these two quantities are related as prescribed
in Eqs. (5.19) and (5.20), not only on the initial null
hypersurfaces Hpast and PNI but throughout the BH
exterior. That is,

ffiffiffiffi
ω̂

p
gup
ω̂ Ĵ
ðxÞ ¼ 1

2π

X
J

Z
∞

−∞
dωþ

ffiffiffiffiffiffiffiffiffi
jωþj

p
αω̂ωþC

ωþ
ĴJ
fupðþÞ
ωþJ ðxÞ;

r ≥ rþ: ð5:21Þ

Next, the HTPF up mode contributionGup
U ðx; x0Þ in terms

of Eddington modes is achieved by substituting Eq. (5.21)
in Eq. (5.3),

Gup
U ðx; x0Þ ¼ ℏ

4π2
X
Ĵ

Z
∞

0

dω̂
ω̂

X
J

Z
∞

−∞
dωþ

ffiffiffiffiffiffiffiffiffi
jωþj

p
αω̂ωþC

ωþ
ĴJ

×
X
J0

Z
∞

−∞
dω0þ

ffiffiffiffiffiffiffiffiffi
jω0þj

q
α�ω̂ω0

þ
C
ω0
þ�

ĴJ0

× ffupðþÞ
ωþJ ðxÞ; fupðþÞ�

ω0
þJ

0 ðx0Þg: ð5:22Þ

We conveniently rearrange Eq. (5.22) as follows16:

Gup
U ðx; x0Þ ¼ ℏ

4π2
X
J

Z
∞

−∞
dωþ

ffiffiffiffiffiffiffiffiffi
jωþj

p

×
X
J0

Z
∞

−∞
dω0þ

ffiffiffiffiffiffiffiffiffi
jω0þj

q
ffupðþÞ

ωþJ ðxÞ; fupðþÞ�
ω0
þJ

0 ðx0Þg

×
X
Ĵ

Cωþ
ĴJ
C
ω0
þ�

ĴJ0

Z
∞

0

dω̂
ω̂

αω̂ωþα
�
ω̂ω0

þ
: ð5:23Þ

We can now perform the ω̂ integral appearing in the
above equation, using Eq. (5.11)17:

Z
∞

0

dω̂
ω̂

αω̂ωþα
�
ω̂ω0

þ
¼ 4π2

ωþ

1

1 − e−2πωþ=κþ
δðωþ − ω0þÞ:

ð5:24Þ

With this identity, Eq. (5.23) reduces, after performing the
trivial integration of the δ function over ω0þ, to

Gup
U ðx; x0Þ ¼ ℏ

X
J

Z
∞

−∞
dωþ

jωþj
ωþ

1

1 − e−2πωþ=κþ

×
X
J0
ffupðþÞ

ωþJ ðxÞ; fupðþÞ�
ωþJ0

ðx0Þg
X
Ĵ

Cωþ
ĴJ
Cωþ�
ĴJ0 :

Next we use Eq. (5.17) to obtain

Gup
U ðx; x0Þ ¼ ℏ

X
J

Z
∞

−∞
dωþsignðωþÞ

1

1 − e−2πωþ=κþ

× ffupðþÞ
ωþJ ðxÞ; fupðþÞ�

ωþJ ðx0Þg: ð5:25Þ

Finally, we would like to “fold” the ωþ integral in this
equation so that only modes with ωþ > 0 show up. To this

16This rearrangement involves interchanges of the summation
over Ĵ and the integration over ω̂ with all subsequent operations
(summations and integrations). We do not attempt to rigorously
justify this manipulation (or similar ones that appear later on).
Nevertheless, after implementing this rearrangement, we do
recover the correct, well-known result quoted in Eq. (5.4) above.
This may be considered a justification for the manipulations
entailed.

17To obtain this integral, one may rewrite it as
1
κþ
eðωþþω0

þÞπ=2κþΓð−iωþ=κþÞΓðiω0þ=κþÞ
R
∞
−∞ dseisðωþ−ω0

þÞ, where
s≡ 1

κþ
ln ðω̂=κþÞ, and use the relation jΓðiωþ=κþÞj2 ¼

πðκþ=ωþÞ=sinh ðπωþ=κþÞ.
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end, we note that since the mapping ðω; mÞ ↦ ð−ω;−mÞ is
equivalent to ðωþ; mÞ ↦ ð−ωþ;−mÞ, we may rewrite
Eq. (3.13) (with Λ taken as “up”) as

fupðþÞ
ð−ωþÞlð−mÞ ¼ ð−1ÞmfupðþÞ�

ωþlm : ð5:26Þ

We now recall that
P

J ≡P∞
l¼0

P
l
m¼−l and concentrate on

the summation over m. For each given l we have

Xl

m¼−l
ffupðþÞ

ð−ωþÞlmðxÞ; f
upðþÞ�
ð−ωþÞlmðx0Þg

¼
Xl

m¼−l
ffupðþÞ

ωþlð−mÞðxÞ; fupðþÞ�
ωþlð−mÞðx0Þg

¼
Xl

m¼−l
ffupðþÞ

ωþlm ðxÞ; f
upðþÞ�
ωþlm ðx0Þg;

where the first equality follows from Eq. (5.26), and the last
equality simply involves a renaming of the summation
index m ↦ −m. Using the group index J, this may be
expressed as

X
J

ffupðþÞ
ð−ωþÞJðxÞ;f

upðþÞ�
ð−ωþÞJðx0Þg¼

X
J

ffupðþÞ
ωþJ ðxÞ;fupðþÞ�

ωþJ ðx0Þg:

Equation (5.25) can thus be rewritten as

Gup
U ðx; x0Þ ¼ ℏ

X
J

Z
∞

0

dωþ

�
1

1 − e−2πωþ=κþ
−

1

1 − e2πωþ=κþ

�

× ffupðþÞ
ωþJ ðxÞ; fupðþÞ�

ωþJ ðx0Þg:

As one can easily see, the term in square brackets is
coth ðπωþ=κþÞ. Our final result for Gup

U is, therefore,

Gup
U ðx; x0Þ ¼ ℏ

X
J

Z
∞

0

dωþ coth

�
πωþ
κþ

�

× ffupðþÞ
ωþJ ðxÞ; fupðþÞ�

ωþJ ðx0Þg: ð5:27Þ

As prescribed in Eq. (5.1), we may now put together the
up and in mode contributions, as given in Eqs. (5.6) and
(5.27), to yield Gð1Þ

U ðx; x0Þ,

Gð1Þ
U ðx; x0Þ ¼ ℏ

X
l;m

�Z
∞

0

dωffinωlmðxÞ; fin�ωlmðx0Þg

þ
Z

∞

0

dωþ coth

�
πωþ
κþ

�

× ffupðþÞ
ωþlm ðxÞ; f

upðþÞ�
ωþlm ðx0Þg

�
: ð5:28Þ

Finally, we may retrieve the standard ω-indexed nota-

tion, replacing fupðþÞ
ωþlm by fupωlm (since, as mentioned above,

they represent the same object). Then, the mode-sum
expression of the Unruh-state HTPF outside a Kerr BH,
in terms of Eddington modes, is as previously quoted [in
Eq. (5.4)],

Gð1Þ
U ðx;x0Þ ¼ ℏ

X
l;m

�Z
∞

0

dωffinωlmðxÞ;fin�ωlmðx0Þg

þ
Z

∞

0

dωþ coth
�
πωþ
κþ

�
ffupωlmðxÞ;fup�ωlmðx0Þg

�
:

ð5:29Þ

It may be shown (however, outside the scope of this
paper) that at small ωþ, the up radial function ψ

up
ωlm behaves

(to leading order) as ωþ, which ensures regularity of theR
∞
0 dωþ integral at small ωþ. (Regularity of the

R
∞
0 dω

integral at small ω is similarly ensured.)

B. Invariance to the choice of the angular
functions Ẑω̂

l̂ m̂
ðθ; φ+Þ

Finally, we comment on the invariance of our final result
(5.29) in the exterior of a Kerr BHwith respect to the choice
of the angular functions Ẑω̂

l̂ m̂
ðθ;φþÞ, used for prescribing

the up Unruh-modes initial data atHpast ∪ HL. As discussed
in Sec. III C 2, Ẑω̂

l̂ m̂
ðθ;φþÞ can be any set of angular

functions which is orthonormal and complete on the two-
sphere (and, in particular, it may depend on the mode’s
Kruskal frequency ω̂). However, for the sake of concrete-
ness (as well as simplicity and brevity), in the analysis above
we made the specific choice Ẑω̂

l̂ m̂
ðθ;φþÞ ¼ Yl̂ m̂ðθ;φþÞ.

Here we shall briefly consider how the analysis would
proceed and ultimately what would be the final resultant
mode structure of the HTPF, if one chose to work with
generic angular functions Ẑω̂

l̂ m̂
rather than the specific

functions Yl̂ m̂.
Let us examine the consequence of replacing Yl̂ m̂

everywhere by Ẑω̂
l̂ m̂

(and likewise YĴ by Ẑω̂
Ĵ
), starting at

Eq. (5.7). The C coefficients, relating the spheroidal
harmonics with the up Unruh-modes initial angular func-
tions (which now depend on ω̂), accordingly acquire an
extra index ω̂. That is, Eq. (5.12) is replaced by

Cω̂ωþ
ĴJ

≡
Z

2π

0

dφþ

Z
π

0

dθ sin θ½Zωðωþ;mÞ
J ðθ;φþÞ��Ẑω̂

Ĵ
ðθ;φþÞ;

ð5:30Þ

and every instance of Cωþ
ĴJ

is replaced by Cω̂ωþ
ĴJ

. Under these
replacements, all equations up to Eq. (5.22) (inclusive) hold
in their new analogous form. For later use, we quote, in
particular, the new form of Eq. (5.17), simply adding the
index ω̂ to both coefficients,
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X
Ĵ

Cω̂ωþ
ĴJ

Cω̂ωþ�
ĴJ0 ¼ δJJ0 : ð5:31Þ

Things become slightly more delicate when arriving at
(the YĴ ↦ Ẑω̂

Ĵ
counterpart of) Eq. (5.23): Here, the

term
P

Ĵ C
ωþ
ĴJ
C
ω0
þ�

ĴJ0 should of course be replaced byP
Ĵ C

ω̂ωþ
ĴJ

C
ω̂ω0

þ�
ĴJ0 . Naively, one might be concerned that

since this term exhibits explicit dependence on ω̂, it would
be necessary to keep it inside the ω̂ integral [i.e., the
integral at the very end of the rhs of Eq. (5.23), which is
then evaluated in Eq. (5.24)]. It is therefore crucial to note
that (as we shall shortly justify)

X
Ĵ

Cω̂ωþ
ĴJ

C
ω̂ω0

þ�
ĴJ0 ¼ C̃

ωþω0
þ�

JJ0 ; ð5:32Þ

where C̃
ωþω0

þ
JJ0 is defined by

C̃
ωþω0

þ
JJ0 ≡

Z
2π

0

dφþ

Z
π

0

dθ sin θ½Zωðω0
þ;m

0Þ
J0 ðθ;φþÞ��

× Zωðωþ;mÞ
J ðθ;φþÞ; ð5:33Þ

which by construction is independent of ω̂.18

Note that taking ω0þ ¼ ωþ on the rhs of Eq. (5.33)
reduces to the lhs of the orthonormality relation (3.12).
Hence

C̃ωþωþ
JJ0 ¼ δJJ0 ; ð5:34Þ

and Eq. (5.32) thus reduces appropriately to Eq. (5.31).
In order to establish Eq. (5.32) we first note [using an

argument similar to the one employed above for the

justification of Eq. (5.14)] that C̃
ωþω0

þ
JJ0 are actually the

coefficients relating the two sets of spheroidal harmonics

Zωðωþ;mÞ
J and Z

ωðω0
þ;m

0Þ
J0 , via19

Zωðωþ;mÞ
J ðθ;φþÞ ¼

X
J0
C̃
ωþω0

þ
JJ0 Z

ωðω0
þ;m

0Þ
J0 ðθ;φþÞ: ð5:35Þ

Then, Eq. (5.32) naturally follows from the completeness
and orthonormality of each of the three involved families of

angular functions, namely, Zωðωþ;mÞ
J , Z

ωðω0
þ;m

0Þ
J0 , and Ẑω̂

Ĵ
, by a

slight generalization of the argument described right after
Eq. (5.17).20

Now, owing to Eq. (5.32), we are allowed to place the

term
P

Ĵ C
ω̂ωþ
ĴJ

C
ω̂ω0

þ�
ĴJ0 out of the ω̂ integral, just as in

Eq. (5.23). From this point on, the analysis proceeds in
a completely analogous manner [recalling Eq. (5.31)] to the
previous subsection, and the final result (5.29) is again
obtained, this time using the generic angular functions Ẑω̂

l̂ m̂
rather than the spherical harmonics Yl̂ m̂.
To avoid confusion, we also emphasize that, in this final

expression for the mode structure of the Unruh-state HTPF,
the modes that appear are the Eddington modes finωlm and
fupωlm, which are of course separable in terms of spheroidal
harmonics [this is regardless of the nature of the angular
functions Ẑω̂

l̂ m̂
ðθ;φþÞ that were chosen earlier in the

process].

VI. CONSTRUCTING THE UNRUH-STATE HTPF
IN THE INTERIOR OF A KERR BH

In this section we shall finally construct the mode-sum
expression for the Unruh-state HTPF inside a Kerr BH in
terms of Eddington modes. We shall follow here an
analogous procedure to the one carried out in Ref. [30]
in the RN case, while noting that the presence of rotation
induces some essential differences. Basically, it is the
procedure demonstrated already in Sec. V for the exterior
of a Kerr BH, although there are some notable technical
differences. In the first subsection we shall carry out the
actual derivation of the expression for the HTPF and in
the second one we shall prove that the expression is
invariant with respect to the choice of the initial angular
functions.

18As one can easily see by performing the integration over φþ,
C̃
ωþω0

þ
JJ0 vanishes for any m0 ≠ m; but this specific property is not

needed here.
19Explicitly, the derivation is as follows: From the (fixed-ωþ)

completeness of the spheroidal harmonics, one can write [in
analogy to Eq. (5.15)]

Zωðωþ;mÞ
J ðθ;φþÞ ¼

X
J0
P
ωþω0

þ
JJ0 Z

ωðω0
þ;m

0Þ
J0 ðθ;φþÞ;

where P
ωþω0

þ
JJ0 are the coefficients of the decomposition.

Substituting this decomposition into Eq. (5.33), and using
the orthonormality of the spheroidal harmonics, one obtains

P
ωþω0

þ
JJ0 ¼ C̃

ωþω0
þ

JJ0 .

20More precisely, one would need to combine the YĴ ↦ Ẑω̂
Ĵ

counterparts of Eqs. (5.14) and (5.16), taking J ↦ J0 and ωþ ↦
ω0þ in the former, to yield the (slightly generalized) counterpart of
Eq. (5.18),

Zωðωþ;mÞ
J ðθ;φþÞ ¼

X
J0

�X
Ĵ

Cω̂ωþ�
ĴJ

C
ω̂ω0

þ
ĴJ0

�
Z
ωðω0

þ;m
0Þ

J0 ðθ;φþÞ:

Recalling the coefficients of the decomposition in Eq. (5.35) are
unique, one obtains

X
Ĵ

Cω̂ωþ�
ĴJ

C
ω̂ω0

þ
ĴJ0 ¼ C̃

ωþω0
þ

JJ0 :

The desired result, Eq. (5.32), is then achieved by complex
conjugation.
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A. Mode decomposition of the interior Unruh HTPF

In the analysis to follow, just like in the exterior
counterpart presented in Sec. V, we shall use the
ωþ-indexed versions (that is, objects carrying an index
ωþ rather than ω) of the Eddington modes fRωlm, f

L
ωlm, and

fupωlm. The ωþ version of fupωlm has been introduced in
Eq. (5.5), and for the interior modes we define in a similar
manner

fΛðþÞ
ωþlm ≡ fΛωðωþ;mÞlm;

where Λ is either R or L, and ωðωþ; mÞ≡ ωþ þmΩþ. In
addition, we shall use the notation

ρupðþÞ
ωþlm ≡ ρupωðωþ;mÞlm

as the ωþ-indexed version of ρupωlm. All relations and
equations containing fRωlm, f

L
ωlm, f

up
ωlm, and ρupωlm are to

be carried from previous sections to this section along with
a simple replacement of the ω-indexed objects with their
ωþ-indexed counterparts, as defined above (see also
footnote 14).
We begin with Eqs. (5.1)–(5.3), which are valid in the

interior as well as the exterior of the BH, aiming for a
mode-sum decomposition of both the in and up contribu-
tions in terms of the interior Eddington modes. Starting
withGin

Uðx; x0Þ, we may readily use the relation between the
in Unruh modes and the R Eddington modes, as given in
Eq. (3.27), which holds throughout the BH interior. Then,
Eq. (5.2) may be written as

Gin
Uðx;x0Þ¼ℏ

X
l;m

Z
∞

0

dω
jωþj
ω

jτinωlmj2ffRðþÞ
ωþlmðxÞ;f

RðþÞ�
ωþlm ðx0Þg:

ð6:1Þ

The contribution from the up Unruh modes is, as
expected (see discussion in Sec. III C), less straightforward
to decompose in terms of Eddington modes. We find it
convenient to start by writing Gup

U ðx; x0Þ in Eq. (5.3) in
terms of the two gup

ω̂ l̂ m̂
components: gpast

ω̂ l̂ m̂
and gL

ω̂ l̂ m̂
[see

Eqs. (3.31) and (3.32)]. Recalling that

gup
ω̂ l̂ m̂

ðxÞ ¼ gpast
ω̂ l̂ m̂

ðxÞ þ gL
ω̂ l̂ m̂

ðxÞ;

which is valid throughout the united domain, and sub-
stituting this relation into Eq. (5.3), we readily obtain

Gup
U ðx; x0Þ ¼ ℏ

X
Ĵ

Z
∞

0

dω̂½fgpast
ω̂ Ĵ

ðxÞ; gpast�
ω̂ Ĵ

ðx0Þg

þ fgL
ω̂ Ĵ
ðxÞ; gL�

ω̂ Ĵ
ðx0Þg þ fgpast

ω̂ Ĵ
ðxÞ; gL�

ω̂ Ĵ
ðx0Þg

þ fgL
ω̂ Ĵ
ðxÞ; gpast�

ω̂ Ĵ
ðx0Þg�; ð6:2Þ

where the integration is over the Kruskal frequency ω̂ and
we use the notation previously introduced, Ĵ ¼ ðl̂; m̂Þ.
Aiming for a decomposition of both gpast

ω̂ Ĵ
and gL

ω̂ Ĵ
in

terms of Eddington modes, we shall follow the same
reasoning as in Sec. V, where we defined coefficients
relating the frequential and angular factors of the Unruh
and Eddington modes under consideration, constrained to
the relevant asymptotic null surfaces. The angular coef-
ficients Cωþ

ĴJ
, defined in Eq. (5.12), will be utilized in the

BH interior exactly as they were in the BH exterior.
However, as we shall see, adjusting the various frequential
factors will require defining an additional set of Fourier
coefficients, along with the ones already defined in the BH
exterior. For future use, we rename the αω̂ωþ coefficients, as

defined in Eq. (5.10), by αpastω̂ωþ (adding a superscript “past”).
That is,

αpastω̂ωþ ≡
Z

∞

−∞
duexte−iω̂UðuextÞeiωþuext ; ð6:3Þ

and it is explicitly given by [see Eq. (5.11)]

αpastω̂ωþ ¼ 1

κþ

�
ω̂

κþ

�
iωþ=κþ

eπωþ=2κþΓ
�
−i

ωþ
κþ

�
: ð6:4Þ

We shall begin with gpast
ω̂ Ĵ

, emerging from Hpast and
vanishing on HL and PNI, hence identical to gup

ω̂ Ĵ
when

restricted to the BH exterior [compare Eqs. (3.30) and
(3.32)]. This allows us to relate to the analysis carried out in
Sec. V and replace gup

ω̂ Ĵ
by gpast

ω̂ Ĵ
in the lhs of Eq. (5.21).

Explicitly, this relates gpast
ω̂ Ĵ

and fupðþÞ
ωþJ throughout the BH

exterior as follows:

ffiffiffiffi
ω̂

p
gpast
ω̂ Ĵ

¼ 1

2π

X
J

Z
∞

−∞
dωþ

ffiffiffiffiffiffiffiffiffi
jωþj

p
αpastω̂ωþC

ωþ
ĴJ
fupðþÞ
ωþJ ;

r ≥ rþ:

Aiming at the BH interior, we carry the above relation over
to the common boundary of the BH exterior and interior—
namely, the hypersurface HR (the EH). This yields

ffiffiffiffî
ω

p
gpast
ω̂ Ĵ

j
HR

¼ 1

2π

X
J

Z
∞

−∞
dωþ

ffiffiffiffiffiffiffiffiffi
jωþj

p
αpastω̂ωþC

ωþ
ĴJ
fupðþÞ
ωþJ j

HR
:

ð6:5Þ

Now, we wish to reexpress this in terms of the interior
Eddington modes instead of the exterior up modes. By
comparing Eq. (3.15) with Eq. (3.18), we register their
relation on HR,

fupðþÞ
ωþJ j

HR
¼ ρupðþÞ

ωþJ fRðþÞ
ωþJ jHR

: ð6:6Þ
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Substituting this into Eq. (6.5) we find

ffiffiffiffi
ω̂

p
gpast
ω̂Ĵ

j
HR

¼ 1

2π

X
J

Z
∞

−∞
dωþ

ffiffiffiffiffiffiffiffiffi
jωþj

p
αpastω̂ωþC

ωþ
ĴJ
ρupðþÞ
ωþJ fRðþÞ

ωþJ jHR
: ð6:7Þ

In addition, both gpast
ω̂ Ĵ

and fRðþÞ
ωþJ vanish on HL [see Eqs. (3.32) and (3.18)], implying that this relation actually holds

throughout the BH interior,

ffiffiffiffi
ω̂

p
gpast
ω̂ Ĵ

ðxÞ ¼ 1

2π

X
J

Z
∞

−∞
dωþ

ffiffiffiffiffiffiffiffiffi
jωþj

p
αpastω̂ωþC

ωþ
ĴJ
ρupðþÞ
ωþJ fRðþÞ

ωþJ ðxÞ; r− ≤ r ≤ rþ: ð6:8Þ

We now proceed similarly with gL
ω̂ Ĵ
, whose form on HL is [see Eq. (3.31)]

gL
ω̂ Ĵ
ðxÞj

HL
¼ YĴðθ;φþÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πω̂ðr2þ þ a2Þ
p e−iω̂UðuintÞ;

aiming to relate it to the left Eddington mode, whose form on HL is [see Eq. (3.21)]

fLðþÞ
ωþJ ðxÞjHL

¼ Zω
J ðθ;φþÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πjωþjðr2þ þ a2Þ
p eiωþuint :

This resembles the case of decomposing gup
ω̂ Ĵ

in terms of fupðþÞ
ωþJ on Hpast, as carried out in Sec. V, with a modification in

the frequential factors: here we have e−iω̂UðuintÞ and eiωþuint as the Unruh and Eddington frequential factors, respectively,
instead of e−iω̂UðuextÞ and e−iωþuext , respectively.
We thus define new Fourier coefficients relating e−iω̂UðuintÞ and eiωþuint , which we shall denote by αLω̂ωþ, given by the

inverse Fourier transform

αLω̂ωþ ≡
Z

∞

−∞
duinte−iω̂UðuintÞe−iωþuint : ð6:9Þ

This integral may be found by inspecting Eq. (6.9) alongside Eq. (6.3), changing the integration variable from uint to −uext
[which also impliesUðuintÞ ↦ −Uðuext), see Eqs. (2.9) and (2.10)], which results in αLω̂ωþ ¼ αpast�ω̂ð−ωþÞ. Applying this relation
to Eq. (6.4) then yields21

αLω̂ωþ ¼ 1

κþ

�
ω̂

κþ

�
iωþ=κþ

e−πωþ=2κþΓ
�
−i

ωþ
κþ

�
: ð6:10Þ

Comparing Eq. (6.10) with Eq. (6.4), we find αLω̂ωþ in terms of αpastω̂ωþ
22,

αLω̂ωþ ¼ αpastω̂ωþe
−πωþ=κþ : ð6:11Þ

21This expression is also given in Eq. (3.5) in Ref. [30], however, there are some notational differences in this case that need to be
bridged: Basically, the notation in Ref. [30] is related to ours as prescribed in footnote 15, namely, ω̃ ↦ ωþ;ω ↦ ω̂. However, on the
rhs of Eq. (6.10) our ωþ should actually be mapped to −ω̃ (this extra change of sign has to do with the issue discussed earlier in
footnote 9).

22One might be concerned about the notable difference between our Eq. (6.11), describing the relation between αLω̂ωþ and αpastω̂ωþ , and
the rightmost side of Eq. (3.5) in Ref. [30] (which states that αLωω̃ ¼ αpast�ωω̃ ). To reconcile this difference, note that when transforming our
αpastω̂ωþ and αLω̂ωþ to the notation of Ref. [30], the former becomes αpastωω̃ , but α

L
ω̂ωþ is translated to αLωð−ω̃Þ (see footnotes 15 and, 21 as well as

9). Indeed, considering the relation between αLωð−ω̃Þ and αpastωω̃ therein would yield the analog of Eq. (6.11) (namely,

αLωð−ω̃Þ ¼ αpastωω̃ e
−πω̃=κþ ).
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The two HL-projected functions gL
ω̂ Ĵ
ðxÞj

HL
and fLðþÞ

ωþJ ðxÞjHL
may now be related using the conversion coefficients αLω̂ωþ

and Cωþ
ĴJ

[in full analogy with Eq. (5.21), replacing αω̂ωþ ¼ αpastω̂ωþ by αLω̂ωþ],

ffiffiffiffi
ω̂

p
gL
ω̂ Ĵ

j
HL

¼ 1

2π

X
J

Z
∞

−∞
dωþ

ffiffiffiffiffiffiffiffiffi
jωþj

p
αLω̂ωþC

ωþ
ĴJ
fLðþÞ
ωþJ jHL

: ð6:12Þ

Since both the left Unruh and Eddington modes vanish on HR, this relation between gL
ω̂ Ĵ

and fLðþÞ
ωþJ actually holds

throughout the BH interior,

ffiffiffiffi
ω̂

p
gL
ω̂ Ĵ
ðxÞ ¼ 1

2π

X
J

Z
∞

−∞
dωþ

ffiffiffiffiffiffiffiffiffi
jωþj

p
αLω̂ωþC

ωþ
ĴJ
fLðþÞ
ωþJ ðxÞ; r− ≤ r ≤ rþ: ð6:13Þ

Now, substituting Eqs. (6.8) and (6.13) into Eq. (6.2), Gup
U ðx; x0Þ may be written as

Gup
U ðx; x0Þ ¼ ℏðIRR þ ILL þ IRL þ ILRÞ; ð6:14Þ

where

IRR≡X
Ĵ

Z
∞

0

dω̂
4π2ω̂

X
J

Z
∞

−∞
dωþ

ffiffiffiffiffiffiffiffiffi
jωþj

p
αpastω̂ωþC

ωþ
ĴJ
ρupðþÞ
ωþJ

X
J0

Z
∞

−∞
dω0þ

ffiffiffiffiffiffiffiffiffi
jω0þj

q
αpast�ω̂ω0

þ
C
ω0
þ�

ĴJ0 ρ
upðþÞ�
ω0
þJ

0 ffRðþÞ
ωþJ ðxÞ; f

RðþÞ�
ω0
þJ

0 ðx0Þg; ð6:15Þ

ILL ≡X
Ĵ

Z
∞

0

dω̂
4π2ω̂

X
J

Z
∞

−∞
dωþ

ffiffiffiffiffiffiffiffiffi
jωþj

p
αLω̂ωþC

ωþ
ĴJ

X
J0

Z
∞

−∞
dω0þ

ffiffiffiffiffiffiffiffiffi
jω0þj

q
αL�ω̂ω0

þ
C
ω0
þ�

ĴJ0 ff
LðþÞ
ωþJ ðxÞ; f

LðþÞ�
ω0
þJ

0 ðx0Þg; ð6:16Þ

IRL ≡X
Ĵ

Z
∞

0

dω̂
4π2ω̂

X
J

Z
∞

−∞
dωþ

ffiffiffiffiffiffiffiffiffi
jωþj

p
αpastω̂ωþC

ωþ
ĴJ
ρupðþÞ
ωþJ

X
J0

Z
∞

−∞
dω0þ

ffiffiffiffiffiffiffiffiffi
jω0þj

q
αL�ω̂ω0

þ
C
ω0
þ�

ĴJ0 ff
RðþÞ
ωþJ ðxÞ; f

LðþÞ�
ω0
þJ

0 ðx0Þg; ð6:17Þ

ILR ≡X
Ĵ

Z
∞

0

dω̂
4π2ω̂

X
J

Z
∞

−∞
dωþ

ffiffiffiffiffiffiffiffiffi
jωþj

p
αLω̂ωþC

ωþ
ĴJ

X
J0

Z
∞

−∞
dω0þ

ffiffiffiffiffiffiffiffiffi
jω0þj

q
αpast�ω̂ω0

þ
C
ω0
þ�

ĴJ0
ρupðþÞ�
ω0
þJ

0 ffLðþÞ
ωþJ ðxÞ; f

RðþÞ�
ω0
þJ

0 ðx0Þg: ð6:18Þ

We rearrange Eqs. (6.15)–(6.18) into a form similar to that of Eq. (5.23),

IRR ¼ 1

4π2
X
J

Z
∞

−∞
dωþ

ffiffiffiffiffiffiffiffiffi
jωþj

p X
J0

Z
∞

−∞
dω0þ

ffiffiffiffiffiffiffiffiffi
jω0þj

q
ρupðþÞ
ωþJ ρupðþÞ�

ω0
þJ

0 · ffRðþÞ
ωþJ ðxÞ; f

RðþÞ�
ω0
þJ

0 ðx0Þg
X
Ĵ

Cωþ
ĴJ
C
ω0
þ�

ĴJ0

Z
∞

0

dω̂
ω̂

αpastω̂ωþα
past�
ω̂ω0

þ
;

ð6:19Þ

ILL ¼ 1

4π2
X
J

Z
∞

−∞
dωþ

ffiffiffiffiffiffiffiffiffi
jωþj

p X
J0

Z
∞

−∞
dω0þ

ffiffiffiffiffiffiffiffiffi
jω0þj

q
· ffLðþÞ

ωþJ ðxÞ; f
LðþÞ�
ω0
þJ

0 ðx0Þg
X
Ĵ

Cωþ
ĴJ
C
ω0
þ�

ĴJ0

Z
∞

0

dω̂
ω̂

αLω̂ωþα
L�
ω̂ω0

þ
; ð6:20Þ

IRL ¼ 1

4π2
X
J

Z
∞

−∞
dωþ

ffiffiffiffiffiffiffiffiffi
jωþj

p X
J0

Z
∞

−∞
dω0þ

ffiffiffiffiffiffiffiffiffi
jω0þj

q
ρupðþÞ
ωþJ · ffRðþÞ

ωþJ ðxÞ; f
LðþÞ�
ω0
þJ

0 ðx0Þg
X
Ĵ

Cωþ
ĴJ
C
ω0
þ�

ĴJ0

Z
∞

0

dω̂
ω̂

αpastω̂ωþα
L�
ω̂ω0

þ
; ð6:21Þ

ILR ¼ 1

4π2
X
J

Z
∞

−∞
dωþ

ffiffiffiffiffiffiffiffiffi
jωþj

p X
J0

Z
∞

−∞
dω0þ

ffiffiffiffiffiffiffiffiffi
jω0þj

q
ρupðþÞ�
ω0
þJ

0 · ffLðþÞ
ωþJ ðxÞ; f

RðþÞ�
ω0
þJ

0 ðx0Þg
X
Ĵ

Cωþ
ĴJ
C
ω0
þ�

ĴJ0

Z
∞

0

dω̂
ω̂

αLω̂ωþα
past�
ω̂ω0

þ
: ð6:22Þ

At this point it becomes clear (after renaming the indices ωþ ↔ ω0þ and J ↔ J0 in the last equation) that ILR ¼ I�RL.
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In order to proceed as we did in the BH exterior, we need to perform the integrals on the rightmost side of each equality,
of the form

R∞
0

dω̂
ω̂ αΛ1

ω̂ωþα
Λ2�
ω̂ω0

þ
withΛ1;2 either “past” or L. The result of the integral

R∞
0

dω̂
ω̂ αpastω̂ωþα

past�
ω̂ω0

þ
has already been given in

Eq. (5.24). Next, we use the relation between αLω̂ωþ and αpastω̂ωþ given in Eq. (6.11), along with the previously mentioned
integral [Eq. (5.24)], to find

Z
∞

0

dω̂
ω̂

αLω̂ωþα
L�
ω̂ω0

þ
¼ e−πðωþþω0

þÞ=κþ
Z

∞

0

dω̂
ω̂

αpastω̂ωþα
past�
ω̂ω0

þ
¼ 4π2

ωþ

1

e2πωþ=κþ − 1
δðωþ − ω0þÞ ð6:23Þ

and

Z
∞

0

dω̂
ω̂

αpastω̂ωþα
L�
ω̂ω0

þ
¼ e−πω

0
þ=κþ

Z
∞

0

dω̂
ω̂

αpastω̂ωþα
past�
ω̂ω0

þ
¼ 4π2

ωþ

1

eπωþ=κþ − e−πωþ=κþ
δðωþ − ω0þÞ: ð6:24Þ

Performing a computation very similar to the one carried out in Eq. (5.25) in the BH exterior, substituting the integrals in
Eqs. (5.24), (6.23), and (6.24) into Eqs. (6.19), (6.20), and (6.21), respectively, and making use of Eq. (5.17), we obtain,
after translating the exponential factors into corresponding hyperbolic-geometric functions,

IRR ¼ 1

2

X
J

Z
∞

−∞
dωþ

jωþj
ωþ

�
coth

�
πωþ
κþ

�
þ 1

�
½jρupðþÞ

ωþJ j2ffRðþÞ
ωþJ ðxÞ; f

RðþÞ�
ωþJ ðx0Þg�; ð6:25Þ

ILL ¼ 1

2

X
J

Z
∞

−∞
dωþ

jωþj
ωþ

�
coth

�
πωþ
κþ

�
− 1

�
½ffLðþÞ

ωþJ ðxÞ; f
LðþÞ�
ωþJ ðx0Þg�; ð6:26Þ

and

IRL ¼ I�LR ¼ 1

2

X
J

Z
∞

−∞
dωþ

jωþj
ωþ

�
cosech

�
πωþ
κþ

��
½ρupðþÞ

ωþJ ffRðþÞ
ωþJ ðxÞ; f

LðþÞ�
ωþJ ðx0Þg�; ð6:27Þ

where cosech≡ 1=sinh.
Next, we would like to fold these three integrals through ωþ ¼ 0, just as we did in Sec. V for the BH exterior. To this end,

we first note that in all three equations (6.25)–(6.27), the rhs is of the general form

I ≡ 1

2

X
J

Z
∞

−∞
dωþ

jωþj
ωþ

HðωþÞFωþJðx; x0Þ ¼
1

2

X
l;m

Z
∞

−∞
dωþsignðωþÞHðωþÞFωþlmðx; x0Þ; ð6:28Þ

where HðωþÞ and Fωþlmðx; x0Þ, respectively, stand for the first and second terms in square brackets in each of these three
equations. Furthermore, we once again note that since ðω; mÞ ↦ ð−ω;−mÞ is identical to ðωþ; mÞ ↦ ð−ωþ;−mÞ, we may
rewrite Eq. (3.22) as

fΛðþÞ
ð−ωþÞlð−mÞ ¼ ð−1ÞmfΛðþÞ�

ωþlm ð6:29Þ

(with Λ either R or L) and the invariance relation of ρup included in Eq. (3.5) as

ρupðþÞ
ð−ωþÞlð−mÞ ¼ ρupðþÞ�

ωþlm : ð6:30Þ

Equations (6.29) and (6.30) may now be used to show that the function Fωþlmðx; x0Þ in all three cases (6.25)–(6.27) satisfies

Fð−ωþÞlmðx; x0Þ ¼ F�
ωþlð−mÞðx; x0Þ:

Then, summing over l and m (recalling
P

l;m ¼ P∞
l¼0

P
l
m¼−l), we obtain
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X
l;m

Fð−ωþÞlmðx; x0Þ ¼
X
l;m

F�
ωþlmðx; x0Þ ¼

X
J

F�
ωþJðx; x0Þ:

Therefore, by folding the ωþ integral in Eq. (6.28), we
obtain the following explicit form:

I ¼ 1

2

X
J

Z
∞

0

dωþ½HðωþÞFωþJðx; x0Þ

−Hð−ωþÞF�
ωþJðx; x0Þ�: ð6:31Þ

Note that the function HðωþÞ potentially has both a part
that is an even function of ωþ and a part that is an odd
function. Then, from Eq. (6.31) it is clear that the even part
of HðωþÞ leaves out the imaginary part of FωþJðx; x0Þ,
while the odd part of HðωþÞ leaves out the real part of
FωþJðx; x0Þ. Applying this general folding structure to
Eqs. (6.25)–(6.27) and noticing that FωþJðx; x0Þ is actually
real for IRR and ILL [Eqs. (6.25) and (6.26), while for
Eq. (6.27) this is not the case], we obtain the three desired
folded integrals,

IRR ¼
X
J

Z
∞

0

dωþ coth

�
πωþ
κþ

�
jρupðþÞ

ωþJ j2

× ffRðþÞ
ωþJ ðxÞ; f

RðþÞ�
ωþJ ðx0Þg; ð6:32Þ

ILL ¼
X
J

Z
∞

0

dωþ coth

�
πωþ
κþ

�
ffLðþÞ

ωþJ ðxÞ; f
LðþÞ�
ωþJ ðx0Þg;

ð6:33Þ

and

IRL ¼ ILR ¼
X
J

Z
∞

0

dωþcosech
�
πωþ
κþ

�

×ℜ
�
ρupðþÞ
ωþJ ffRðþÞ

ωþJ ðxÞ; f
LðþÞ�
ωþJ ðx0Þg

	
: ð6:34Þ

Notably, all four individual contributions to Gup
U ðx; x0Þ,

namely, IRR, ILL, and IRL ¼ ILR, are real. Combining now
Eqs. (6.32)–(6.34), we obtain the up contribution,

Gup
U ðx; x0Þ ¼ ℏ

X
l;m

Z
∞

0

dωþ

�
coth

�
πωþ
κþ

�
ðffLðþÞ

ωþlmðxÞ; f
LðþÞ�
ωþlm ðx0Þg þ jρupðþÞ

ωþlm j
2ffRðþÞ

ωþlmðxÞ; f
RðþÞ�
ωþlm ðx0ÞgÞ

þ 2cosech

�
πωþ
κþ

�
ℜðρupðþÞ

ωþlmff
RðþÞ
ωþlmðxÞ; f

LðþÞ�
ωþlm ðx0ÞgÞ

�
: ð6:35Þ

Finally, combining the in contribution [Eq. (6.1)] with the up contribution [Eq. (6.35)], we obtain the full HTPF in the BH
interior,

Gð1Þ
U ðx; x0Þ ¼ ℏ

X
l;m

Z
∞

0

dωþ

�
coth

�
πωþ
κþ

�
ðffLðþÞ

ωþlmðxÞ; f
LðþÞ�
ωþlm ðx0Þg þ jρupðþÞ

ωþlm j
2ffRðþÞ

ωþlmðxÞ; f
RðþÞ�
ωþlm ðx0ÞgÞ

þ2 cosech
�
πωþ
κþ

�
ℜðρupðþÞ

ωþlm ff
RðþÞ
ωþlmðxÞ; f

LðþÞ�
ωþlm ðx0ÞgÞ

�

þ ℏ
X
l;m

Z
∞

0

dω
jωþj
ω

jτinωlmj2ffRðþÞ
ωþlmðxÞ; f

RðþÞ�
ωþlm ðx0Þg; ð6:36Þ

and, translating back to the standard ω-indexing notation, we reach our final result,

Gð1Þ
U ðx; x0Þ ¼ ℏ

X
l;m

Z
∞

0

dωþ

�
coth

�
πωþ
κþ

�
ðffLωlmðxÞ; fL�ωlmðx0Þg þ jρupωlmj2ffRωlmðxÞ; fR�ωlmðx0ÞgÞ

þ 2cosech

�
πωþ
κþ

�
ℜðρupωlmffRωlmðxÞ; fL�ωlmðx0ÞgÞ

�
þ ℏ

X
l;m

Z
∞

0

dω
jωþj
ω

jτinωlmj2ffRωlmðxÞ; fR�ωlmðx0Þg: ð6:37Þ

One may be concerned about the apparent singularity of
the mode-sum at ωþ → 0 (and, similarly, at ω → 0). In
Appendix A, we address this issue and show that the
integrands in Eq. (6.37) are in fact entirely regular at both
limits.

B. Invariance to the choice of the
angular functions Ẑω̂

l̂ m̂
ðθ; φ+Þ

In Sec. V B we established that in the construction of the
HTPF outside the BH, the final result remains unchanged if
in the definition of the up Unruh modes (described in
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Sec. III C 2) one replaces the spherical harmonics
Yl̂ m̂ðθ;φþÞ by any other complete orthonormal set of
angular functions Ẑω̂

l̂ m̂
ðθ;φþÞ [fulfilling Eq. (3.28)]. As

one can easily verify, all the arguments and considerations
made there are equally valid for the interior.
More specifically, in order to carry out this generaliza-

tion in the construction of the interior HTPF, throughout the
analysis in the present section one simply has to replace
everywhere Yl̂ m̂ by Ẑω̂

l̂ m̂
and Cωþ

ĴJ
by Cω̂ωþ

ĴJ
(and similarly

replace YĴ by Ẑ
ω̂
Ĵ
). Then, recalling Eq. (5.32), in (the YĴ ↦

Ẑω̂
Ĵ

counterparts of) each of the four equations (6.19)–
(6.22), the factor

P
Ĵ C

ω̂ωþ
ĴJ

C
ω̂ω0

þ�
ĴJ0 may be justifiably kept

out of the ω̂ integral. From that point on, making use of
Eq. (5.31), the analysis proceeds with no further
modifications.
We conclude that the result in Eq. (6.37) for the mode-

sum expression of the Unruh HTPF inside the BH is
invariant with respect to the choice of the initial angular
functions Ẑω̂

l̂ m̂
ðθ;φþÞ in the up Unruh modes, as

anticipated.

C. Alternative forms of the final result

We propose here alternative forms of the final result for
the HTPF given in Eq. (6.37), which may prove to be useful
in future applications. In particular, we shall provide an
expression in which the integral over ωþ (arising from the
up contribution) is replaced by an integral over ω. To this
end, we shall proceed as follows:
We begin by introducing the functions f̃Rωlm and f̃Lωlm

related to the standard interior Eddington modes fRωlm and
fLωlm [see Eq. (3.17)] by eliminating the normalization
factor, that is,

f̃Rωlm ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πjωþj

p
fRωlm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ a2
p Zω

lmðθ;φÞe−iωtψ int
ωlm;

f̃Lωlm ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πjωþj

p
fLωlm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ a2
p Zω

lmðθ;φÞe−iωtψ int�
ωlm:

ð6:38Þ

Rewriting Eq. (6.37) in terms of f̃Rωlm and f̃Lωlm, we
obtain

Gð1Þ
U ðx; x0Þ ¼ ℏ

X
l;m

Z
∞

0

dωþ
4πωþ

�
coth

�
πωþ
κþ

�
ðff̃LωlmðxÞ; f̃L�ωlmðx0Þg þ jρupωlmj2ff̃RωlmðxÞ; f̃R�ωlmðx0ÞgÞ

þ 2cosech

�
πωþ
κþ

�
ℜðρupωlmff̃RωlmðxÞ; f̃L�ωlmðx0ÞgÞ

�
þ ℏ

X
l;m

Z
∞

0

dω
4πω

jτinωlmj2ff̃RωlmðxÞ; f̃R�ωlmðx0Þg; ð6:39Þ

where we note that the first integral is over positive ωþ
only, crucially allowing us to replace jωþj by ωþ there.

Recall that there are two parts making up Gð1Þ
U ðx; x0Þ: theR∞

0 dωþ integral arising from the up modes contribution
Gup

U ðx; x0Þ and the
R
∞
0 dω integral corresponding to

Gin
Uðx; x0Þ. We now concentrate on the former.
Inspecting the form of the integrand of Gup

U ðx; x0Þ as
written in the first part of Eq. (6.39) (namely, the
integrand of

R
∞
0 dωþ there), we find that it is invariant

under the simultaneous sign changes m ↦ −m and
ω ↦ −ω. To see this, apply the symmetries given in
Eqs. (3.22) and (3.5) along with the odd nature of the coth
and cosech functions [recalling that ðω; mÞ ↦ ð−ω;−mÞ
also implies ωþ ↦ −ωþ].
We shall now establish the following statement: Given a

function EmðωÞ with the property

Eð−mÞð−ωÞ ¼ EmðωÞ;

we may formally write

Xl

m¼−l

Z
∞

0

dωþEmðωÞ ¼
Xl

m¼−l

Z
∞

0

dωEmðωÞ: ð6:40Þ

That is, one may replace
P

l;m

R∞
0 dωþ (in the case of a

symmetric integrand as described) by
P

l;m

R∞
0 dω.

To see this, we may denote

Im ≡
Z

∞

0

dωþEmðωÞ;

and then express Im and I−m as follows:

I�m ¼
Z

0

�mΩþ
dωE�mðωÞ þ

Z
∞

0

dωE�mðωÞ:

We now concentrate on the finite-domain integration
term of I−m,Z

0

−mΩþ
dωE−mðωÞ ¼ −

Z
0

mΩþ
dωE−mð−ωÞ

¼ −
Z

0

mΩþ
dωEmðωÞ;

where we have changed variables from ω to −ω and then
used the symmetry of EmðωÞ. We readily see that this term
exactly cancels the finite-domain integration term in the
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corresponding expression for Im. Summing over m in pairs
of �m (and noting that the m ¼ 0 term does not contain
such a finite-domain integration piece), we are thus left
with the desired relation (6.40).

Following the discussion above, this property may now
be applied to the integral

R∞
0 dωþ in Eq. (6.39), replacing it

by an integral
R
∞
0 dω. Then, the entire Gð1Þ

U ðx; x0Þ may be
written in terms of an integral over ω,

Gð1Þ
U ðx; x0Þ ¼ ℏ

X
l;m

Z
∞

0

dω
4πωþ

�
coth

�
πωþ
κþ

�
ðff̃LωlmðxÞ; f̃L�ωlmðx0Þg þ jρupωlmj2ff̃RωlmðxÞ; f̃R�ωlmðx0ÞgÞ

þ2 cosech

�
πωþ
κþ

�
ℜðρupωlmff̃RωlmðxÞ; f̃L�ωlmðx0ÞgÞ þ

ωþ
ω

jτinωlmj2ff̃RωlmðxÞ; f̃R�ωlmðx0Þg
�
: ð6:41Þ

The integrand in this equation is regular at both ω → 0 and
ωþ → 0, as mentioned after Eq. (6.37).
One can also modify the form of Eq. (6.41) [or likewise

Eq. (6.37)] by various applications of the Wronskian
relations, given in Eq. (3.33). In particular, one may replace
ωþ
ω jτinωlmj2 by 1 − jρupωlmj2, thereby entirely eliminating τ
from the final expression.
In Appendix B we harness Eq. (6.41) in order to

construct the bare mode-sum expressions for the Unruh
fluxes hTuuiU and hTvviU (where Tμν is the stress-energy
tensor) for a minimally coupled massless scalar quantum
field, starting at a general r value in the BH interior and
then taking it to the horizons r → r�. The resulting
expressions will serve as a basis for future research.

VII. DISCUSSION

In this paper, we have derived expressions for
Hadamard’s elementary two-point function Gð1Þðx; x0Þ for
the Unruh state inside a Kerr BH in the domain between
the EH and the IH (that is, with both points located at
r− < r < rþ; note that the Unruh state is not defined
beyond the IH, because the latter is a Cauchy horizon).
In order to introduce and facilitate our approach, we first

rederived the (already known) expression for the HTPF in
the BH exterior (namely, r > rþ), with the result given in
Eq. (5.29). This expression consists of an (nonthermalized)
in contribution as well as a thermalized [∝ coth ðπωþ=κþÞ]
up contribution. A similar (though more intricate) approach
is then applied to the BH interior.
The main result of the paper (the HTPF in the BH

interior) appears in its most useful form in Eq. (6.41) [also
in slightly different forms in Eqs. (6.37) and (6.39)]. This
expression may naturally be divided into three terms: (i) a
term proportional to jτinωlmj2, which emerges from the in
modes (see the bottom right panel of Fig. 2). These modes
arise from PNI, penetrate the potential barrier at r > rþ,
and then cross the EH and propagate in the BH interior (this
term is evidently the counterpart of the in contribution in
the BH exterior, but here only the transmitted part remains,
hence the jτinωlmj2 factor), (ii) a term proportional to
coth ðπωþ=κþÞ arising from the up modes (see the bottom
left panel of Fig. 2), composed of a left contribution

originating at HL, and a ∝ jρupωlmj2 past contribution arising
from Hpast, then being reflected outside the BH and
crossing the EH [this may be viewed as the interior
counterpart of the thermalized piece ∝ coth ðπωþ=κþÞ in
the BH exterior], and (iii) a term proportional to
cosech ðπωþ=κþÞ coming from the up modes and involv-
ing interference between left and reflected past modes, thus
not having a counterpart in the BH exterior (where the up
modes consist only of a past contribution).
The expression (6.41) for the HTPF in the BH interior

includes factors (such as 1=ω, 1=ωþ, as well as hyperbolic
functions that diverge at ωþ → 0) which may raise con-
cerns regarding potential IR divergencies. In Appendix A
we analyze both the ω → 0 and ωþ → 0 limits of
Gð1Þðx; x0Þ and show that both these limits are regular, that
is, no IR divergence is present.
Our result (6.41) is expressed in terms of the computa-

tionally favorable Eddington modes (whose determination
only requires solving ODEs), and thus lays the ground for
an array of useful applications, such as the computation of
hΦ2i or hTαβi in the physically motivated Unruh state in the
interior of a Kerr BH. Of special interest are the flux
components of the RSET, hTuui and hTvvi, where u and v
denote the standard Eddington coordinates in the BH
interior. In Appendix B, we use our expression for the
HTPF to develop explicit expressions for the “bare” mode
contributions to these flux components inside a Kerr BH, at
a general r value between the two horizons. These general r
expressions, given in Eqs. (B34)–(B38), provide the basis
for a future paper of ours [32], in which we compute hTuui
and hTvvi between the EH and the IH of a spinning BH.
Then, we take the (physically interesting) IH limit, leading
to Eqs. (B49) and (B50). These limiting expressions are
readily applied in our subsequent paper [33], in which we
compute the Unruh-state fluxes hTuui and hTvvi at the IH
vicinity of a Kerr BH, hence shedding light on the
remarkable open question regarding the fate of the IH
inside a spinning BH under quantum perturbations.
The Kerr geometry admits the well-known superradiance

phenomenon: all in modes in the “superradiance band” 0 <
ω < mΩþ (for m > 0) are amplified when scattered off the
BH, that is, they satisfy jρinωlmj > 1. Although this is
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basically a purely classical phenomenon, it also has some
interesting implications at the quantum level. One such
remarkable implication is the fact that the semiclassical
quantum outflux emitted from a Kerr BH to infinity (in the
Unruh state) does not vanish at the extremal limit, on which
we shall focus in the remainder of this section: There
remains a nonvanishing contribution (known as the
“Unruh-Starobinskii radiation”) coming from the super-
radiant modes. It is interesting to note that a closely
analogous superradiance-related phenomenon also occurs
inside the BH (again in the extremal limit), as may be seen
in Eq. (B52) at the end of Appendix B. As pointed out
there, the integrand in that equation is negative throughout
(off the pole), which implies hT−

uuiUren − hT−
vviUren < 0.23 This

last inequality guarantees that at least one of the fluxes at
the IH (and possibly both of them) does not vanish. [This
situation may be confronted with the extremal RN limit, in
which both hT−

uui and hT−
vvi vanish [34].24) This non-

vanishing flux (or possibly fluxes) at the IH in the extremal
limit is a clear signature of the superradiance phenomenon
inside the BH.
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APPENDIX A: THE HTPF INTEGRANDS
AT SMALL FREQUENCIES

Equation (6.37) expresses the HTPF as a sum of an up
part, involving an integral over positive ωþ, and an in part,
which involves an integral over positive ω. The expressions
appearing in Eq. (6.37) for these two integrals may raise
concerns about possible divergences at two specific
frequencies: The up piece includes terms proportional to
coth ðπωþ=κþÞ or cosechðπωþ=κþÞ, both diverging at
ωþ → 0; the in piece includes a 1=ω factor, which diverges
at ω → 0. In addition, both the up and in pieces include
products of fRωlm and/or fLωlm functions, each entailing a
factor of 1=

ffiffiffiffiffiffiffiffiffijωþj
p

in its definition [see Eq. (3.17)], which
also contribute to a potential divergence at ωþ → 0. Our
goal in this appendix is to analyze these potential diver-
gences and to show that no divergence actually occurs in
neither ωþ → 0 nor the ω → 0 limit. We shall show this
separately for the up and in pieces.

1. The up integrand

We begin with the up part of the HTPF, given by

Gup
U ðx; x0Þ ¼ ℏ

X
l;m

Z
∞

0

dωþG
up
ωlmðx; x0Þ; ðA1Þ

with the individual mode contribution

Gup
ωlmðx; x0Þ ¼ coth

�
πωþ
κþ

�
ðffLωlmðxÞ; fL�ωlmðx0Þg þ ffRωlmðxÞ; fR�ωlmðx0Þgjρupωlmj2Þ

þ 2cosech

�
πωþ
κþ

�
ℜðρupωlmffRωlmðxÞ; fL�ωlmðx0ÞgÞ; ðA2Þ

where x ¼ ðt; r; θ;φÞ and x0 ¼ ðt0; r0; θ0;φ0Þ. We denote
δt≡ t − t0 and δφ≡ φ − φ0.
Equation (A2) is composed of the inner Eddington

modes fRωlmðxÞ and fLωlmðxÞ, given in Eq. (3.17). These
mode functions involve in their definition a factor jωþj−1=2.

In order to explicitly reveal this divergent factor, we shall
here rewrite fRωlmðxÞ and fLωlmðxÞ in the form

fΛωlmðxÞ ¼
SωlmðθÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8π2jωþjðr2 þ a2Þ
p f̄ΛωlmðxÞ ðA3Þ

(for Λ either R or L), where we denote

f̄ΛωlmðxÞ≡ eimφe−iωtψΛ
ωlmðrÞ: ðA4Þ

As before, ψΛ
ωlm is the radial function and we have

ψR
ωlm ¼ ψL�

ωlm ≡ ψ int
ωlm. At this stage it becomes clear that

there is a potential divergence in Gup
ωlm that goes like 1=ω2þ,

due to the jωþj factor appearing in the radical in
the denominator of Eq. (A3), combined with the
coth ðπωþ=κþÞ or sinh−1 ðπωþ=κþÞ factors in Eq. (A2).

23Recall that this inequality refers to the flux components
hT−

uuiren and hT−
vviren, which (as indicated by their superscript

“−”; see Sec. B 3) are associated with the coordinate system
ðu; v; θ;φ−Þ. If we were to use the coordinate system ðu; v; θ;φÞ
instead [e.g., in order to relate to the Hawking outflux, via the
conserved (i.e., r-independent) quantity displayed in Eq. (B42)],
we would then have a factor ω rather than ω− in the integrand in
Eq. (B52). This would in turn lead to a positive (rather than
negative) flux difference hTuuiUren − hTvviUren—consistent with the
positive sign of the outflux emitted from the BH to infinity.

24The vanishing of both hT−
uui and hT−

vvi in the extremal limit
also applies in the Kerr case at the pole, as demonstrated in the
Supplemental Material of Ref. [33].
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In order to facilitate the analysis of this potential
divergence at ωþ → 0, we next write ffΛ1

ωlmðxÞ; fΛ2�
ωlmðx0Þg

(with Λ1, Λ2 either R or L) as

ffΛ1

ωlmðxÞ; fΛ2�
ωlmðx0Þg ¼ SωlmðθÞSωlmðθ0Þ

8π2jωþj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 þ a2Þðr02 þ a2Þ

p
× ff̄Λ1

ωlmðxÞ; f̄Λ2�
ωlmðx0Þg: ðA5Þ

Then ff̄Λ1ðxÞ; f̄Λ2�ðx0Þg is given by

ff̄Λ1

ωlmðxÞ; f̄Λ2�
ωlmðx0Þg ¼ e−iKψΛ1

ωlmðrÞψΛ2�
ωlmðr0Þ

þ eiKψΛ2�
ωlmðrÞψΛ1

ωlmðr0Þ; ðA6Þ

where K ≡ ωδt −mδφ.
In what follows, we suppress the superscript “int” for

brevity (that is, ψ int
ωlm is to be denoted by ψωlm). Explicitly,

the three relevant cases for ff̄Λ1

ωlmðxÞ; f̄Λ2�
ωlmðx0Þg are

ff̄LωlmðxÞ; f̄L�ωlmðx0Þg ¼ 2ℜ½e−iKψ�
ωlmðrÞψωlmðr0Þ�; ðA7Þ

ff̄RωlmðxÞ; f̄R�ωlmðx0Þg ¼ 2ℜ½e−iKψωlmðrÞψ�
ωlmðr0Þ�; ðA8Þ

ff̄RωlmðxÞ; f̄L�ωlmðx0Þg ¼ 2 cosðKÞψωlmðrÞψωlmðr0Þ: ðA9Þ

Recalling the small-ωþ expansions coth ðπωþ=κþÞ ¼
κþ=πωþ þOðωþÞ and cosech ðπωþ=κþÞ ¼ κþ=πωþþ
OðωþÞ, along with Eqs. (A7)–(A9) for the various
ff̄Λ1

ωlmðxÞ; f̄Λ2�
ωlmðx0Þg factors, we obtain

Gup
ωlmðx; x0Þ ¼

Sωlmðθ0ÞSωlmðθÞ
8π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 þ a2Þðr02 þ a2Þ

p
×
κþ
π
½GupðAÞ

ωlm ðr; r0Þ þGupðBÞ
ωlm ðr; r0Þ

þGupðCÞ
ωlm ðr; r0Þ� þOðω0þÞ; ðA10Þ

where

GupðAÞ
ωlm ðr; r0Þ≡ 2

ω2þ
ℜ½eiKψωlmðrÞψ�

ωlmðr0Þ�; ðA11Þ

GupðBÞ
ωlm ðr; r0Þ≡ 2

ω2þ
jρupωlmj2ℜ½e−iKψωlmðrÞψ�

ωlmðr0Þ�; ðA12Þ

GupðCÞ
ωlm ðr; r0Þ≡ 4

ω2þ
cosðKÞℜ½ρupωlmψωlmðrÞψωlmðr0Þ�: ðA13Þ

We next resort to the small-ωþ expansion of ψωlmðrÞ and
ρupωlm. For ψωlmðrÞ, the analysis in Sec. A 3 below [see, in
particular, Eqs. (A37) and (A47)] implies that

ψωlmðrÞ ¼ ψ ð0Þ
lm ðrÞ þ ψ ð1Þ

lm ðrÞωþ þ oðωþÞ; ðA14Þ

where ψ ð0Þ
lm ðrÞ is a real function, and oðωþÞ denotes terms

whose decay rate at ωþ → 0 is faster than ωþ. For ρ
up
ωlm, it

can be shown25 that

ρupωlm ¼ −1þ ρð1Þlmωþ þ oðωþÞ: ðA15Þ
Naturally, the expansion coefficients ψ ð0Þ

lm ðrÞ, ψ ð1Þ
lm ðrÞ, and

ρð1Þlm are independent of ω (or ωþ), as their lower indices
(being solely lm) also indicate.
To facilitate the analysis below, we now rewrite

Eqs. (A14) and (A15) by absorbing their oðωþÞ parts into
the first-order coefficients ψ ð1Þ

lm ðrÞ and ρð1Þlm . As a result,
these first-order coefficients now become ω dependent, and

correspondingly we denote them by ψ ð1Þ
ωlmðrÞ and ρð1Þωlm.

[Nevertheless, this dependence on ω will not cause any

complication: The only relevant fact is that both ψ ð1Þ
ωlmðrÞ

and ρð1Þωlm remain finite as ωþ → 0.] Thus, we rewrite
Eqs. (A14) and (A15) as follows:

ψωlmðrÞ ¼ ψ ð0Þ
lm ðrÞ þ ψ ð1Þ

ωlmðrÞωþ; ðA16Þ

ρupωlm ¼ −1þ ρð1Þωlmωþ: ðA17Þ

The last equation also implies

jρupωlmj2 ¼ 1 − 2ωþℜðρð1ÞωlmÞ þOðω2þÞ: ðA18Þ
We now plug the expansions (A16)–(A18) of ψωlm, ρ

up
ωlm,

and jρupωlmj2 into Eqs. (A11)–(A13). The three quantities

GupðAÞ
ωlm , GupðBÞ

ωlm , and GupðCÞ
ωlm then split accordingly into terms

multiplyingω−2þ andω−1þ [plus anOðω0þÞ term], and they all
take the form

GupðXÞ
ωlm ðr; r0Þ ¼ 1

ω2þ
GupðX−2Þ

ωlm ðr; r0Þ

þ 1

ωþ
GupðX−1Þ

ωlm ðr; r0Þ þOðω0þÞ; ðA19Þ

where X stands here for either A, B, or C. The computation

of the 2 × 3 coefficients GupðX−2Þ
ωlm and GupðX−1Þ

ωlm is straightfor-

ward [and uses the fact that ψ ð0Þ
lm ðrÞ is real]. For X ¼ A the

two coefficients are

GupðA−2Þ
ωlm ðr; r0Þ ¼ 2 cosðKÞψ ð0Þ

lm ðrÞψ ð0Þ
lm ðr0Þ ðA20Þ

and

25We analytically derived this small-ωþ expansion of ρupωlm,
both form ≠ 0 andm ¼ 0 (in which case ωþ → 0means ω → 0).
We also verified this small-ωþ expansion numerically. We do not
provide the analytical derivation here, as this issue (being solely
related to wave scattering outside the BH) is beyond the scope of
the present paper.
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GupðA−1Þ
ωlm ðr; r0Þ ¼ 2ψ ð0Þ

lm ðrÞℜ½e−iKψ ð1Þ
ωlmðr0Þ�

þ 2ψ ð0Þ
lm ðr0Þℜ½eiKψ ð1Þ

ωlmðrÞ�; ðA21Þ
for X ¼ B the coefficients are

GupðB−2Þ
ωlm ðr; r0Þ ¼ 2 cosðKÞψ ð0Þ

lm ðrÞψ ð0Þ
lm ðr0Þ ðA22Þ

and

GupðB−1Þ
ωlm ðr;r0Þ¼ 2ψ ð0Þ

lm ðrÞℜ½eiKψ ð1Þ
ωlmðr0Þ�

þ2ψ ð0Þ
lm ðr0Þℜ½e−iKψ ð1Þ

ωlmðrÞ�
−4cosðKÞℜ½ρð1Þωlm�ψ ð0Þ

lm ðrÞψ ð0Þ
lm ðr0Þ; ðA23Þ

and for X ¼ C,

GupðC−2Þ
ωlm ðr; r0Þ ¼ −4 cosðKÞψ ð0Þ

lm ðrÞψ ð0Þ
lm ðr0Þ ðA24Þ

and

GupðC−1Þ
ωlm ðr;r0Þ¼−4cosðKÞðψ ð0Þ

lm ðrÞℜ½ψ ð1Þ
ωlmðr0Þ�

þ ψ ð0Þ
lm ðr0Þℜ½ψ ð1Þ

ωlmðrÞ�Þ
þ 4cosðKÞℜ½ρð1Þωlm�ψ ð0Þ

lm ðrÞψ ð0Þ
lm ðr0Þ: ðA25Þ

Concentrating first on the three ∝ 1=ω2þ coefficients,
namely, GupðX−2Þ

ωlm , notice that

GupðA−2Þ
ωlm þ GupðB−2Þ

ωlm ¼ −GupðC−2Þ
ωlm ; ðA26Þ

so they cancel out inGup
ωlm. Turning next to the three∝ 1=ωþ

coefficients GupðX−1Þ
ωlm , we see the same structure here again,

GupðA−1Þ
ωlm þ GupðB−1Þ

ωlm ¼ −GupðC−1Þ
ωlm ; ðA27Þ

so that part is canceled out aswell. Substituting this back into
Eq. (A10), we are left with

Gup
ωlmðx; x0Þ ¼ Oðω0þÞ ðA28Þ

atωþ → 0; that is, the potential divergence of the individual
up mode contributions at ωþ ¼ 0 is gone.
Finally we consider the behavior of Gup

ωlmðx; x0Þ at
ω → 0. Both ψωlm and ρupωlm are regular at that limit.26

For m ≠ 0 (in which case ω → 0 implies that ωþ stays
remote from zero), no divergence can occur in Gup

ωlm at

ω → 0. In the special case m ¼ 0, taking the limit ω → 0
also implies ωþ → 0 (which in turn implies there are
potentially divergent terms in the above expression for
Gup

ωlm); nevertheless, it was already shown above that the
overall expression for Gup

ωlm is actually regular at ωþ → 0.
We therefore conclude that Gup

ωlmðx; x0Þ is regular at both
limits ωþ → 0 and ω → 0.

2. The in integrand

We now consider the in mode contribution, which is
much simpler and is given by

Gin
Uðx; x0Þ ¼ ℏ

X
l;m

Z
∞

0

dωGin
ωlmðx; x0Þ; ðA29Þ

with the integrand

Gin
ωlmðx; x0Þ ¼

jωþj
ω

jτinωlmj2ffRωlmðxÞ; fR�ωlmðx0Þg: ðA30Þ

The Wronskian relations in Eq. (3.33) yield

ωþ
ω

jτinωlmj2 ¼ 1 − jρinωlmj2;

and therefore (recalling jρinωlmj ¼ jρupωlmj) also
jωþj
ω

jτinωlmj2 ¼ signðωþÞð1 − jρupωlmj2Þ:

Plugging this relation along with Eq. (3.33) into Eq. (A30),
we obtain

Gin
ωlmðx; x0Þ ¼

1

ωþ

�
1 − jρupωlmj2

	 Sωlmðθ0ÞSωlmðθÞ
8π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 þ a2Þðr02 þ a2Þ

p
× ff̄RωlmðxÞ; f̄R�ωlmðx0Þg; ðA31Þ

which highlights the potential divergence at ωþ → 0.
However, Eq. (A18) reads

1 − jρupωlmj2 ¼ 2ωþℜðρ1Þ þOðω2þÞ; ðA32Þ
and the ωþ factor on the right-hand side cancels out the
1=ωþ factor in Eq. (A31). Also, f̄Rωlm is regular at ωþ → 0,
as directly follows from Eqs. (A4) and (A14). We are
therefore left with

Gin
ωlmðx; x0Þ ¼ Oðω0þÞ ðA33Þ

at the limit ωþ → 0.
The form of Eq. (A31) also guarantees that no irregu-

larity occurs at ω → 0 either.27

26For ψωlm in the case m ≠ 0, this regularity naturally follows
from the definition of ψωlm based on boundary conditions
specified at the EH in terms of ωþ rather than ω. For ρupωlm in
the case m ≠ 0, we analytically computed ρupωlm at ω → 0 and
found it to be finite and well defined (and it satisfies
jρupðω¼0Þlmj ¼ 1), but again, this analysis of ρupωlm is beyond the
scope of this paper. We also numerically verified smoothness of
ρupωlm at the limit ω → 0. In the other case m ¼ 0, the limit ω → 0
coincides with the limit ωþ → 0, for which regularity of ψωlm and
ρupωlm has already been established above [see Eqs. (A14) and
(A15), and also footnote 25].

27As before, we use the fact that ρupωlm and ψωlm (and hence also
f̄Rωlm) are regular at ω → 0. We also recall that, in the special case
m ¼ 0, for which the 1=ωþ factor in Eq. (A31) diverges as ω → 0
(because now this limit also implies ωþ → 0), this potential
divergence is already handled in the above analysis, which
showed that Gin

ωlm is actually regular at ωþ → 0.
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3. ψint
ωlm at small ω +

The function ψωlmðrÞ [which, recall, denotes ψ int
ωlmðrÞ in

this appendix] satisfies the radial equation

ψωlm;r�r� ¼ −VωlmðrÞψωlm; ðA34Þ

with an effective potential VωlmðrÞ given explicitly in
Eqs. (2.19) and (2.20). The initial condition for this
ODE is specified at the EH (corresponding to r� → −∞) by

ψωlm ≃ e−iωþr� ≡ ψ ðinitÞ
ωlm ðr� → −∞Þ: ðA35Þ

(Recall, the symbol ≃ denotes equality at the relevant
asymptotic boundary, namely, r� → −∞ in the present
case.)
Our goal is to analyze the behavior of ψωlmðrÞ at small

ωþ. To this end, we first write the asymptotic behavior of
the initial condition (A35) at small ωþ,

ψ ðinitÞ
ωlm ¼ 1 − iωþr� − ω2þ

r2�
2
þ � � � : ðA36Þ

The effective potential VωlmðrÞ, too, can be decomposed in
a power series in ωþ around ωþ ¼ 0 (see below). We are
therefore motivated to adopt the following ansatz for the
form of ψωlmðrÞ at small ωþ, as a power series in ωþ:

ψωlmðrÞ¼ψ ð0Þ
lm ðrÞþψ ð1Þ

lm ðrÞωþþψ ð2Þ
lm ðrÞω2þþ��� : ðA37Þ

Each coefficient ψ ðnÞ
lm ðrÞ in this expansion should satisfy its

own ODE (with its own initial condition at the EH), as we
shall now describe.
To find the specific ODE that each term ψ ðnÞ

lm ðrÞ satisfies,
we have to expand the potential VωlmðrÞ in powers of ωþ.
Since Vωlm depends on the angular eigenvalue λωlm, we first
expand this eigenvalue,28

λωlm ¼ λð0Þlm þ λð1Þlm aωþ þ λð2Þlm ðaωþÞ2 þ � � � : ðA38Þ

Then we can expand the effective potential in the same
manner,

VωlmðrÞ¼Vð0Þ
lm ðrÞþVð1Þ

lm ðrÞωþþVð2Þ
lm ðrÞω2þþ��� : ðA39Þ

The leading-order coefficient is given by

Vð0Þ
lm ðrÞ ¼ ðmΩþÞ2

�
r2 − r2þ
r2 þ a2

�
2

− G2

−
Δ

r2 þ a2
dG
dr

−
λð0ÞlmΔ

ðr2 þ a2Þ2 ; ðA40Þ

where, recall, Ωþ ¼ a=ðr2þ þ a2Þ and G ¼ rΔ=ðr2 þ a2Þ2.
The first-order coefficient is

Vð1Þ
lm ðrÞ ¼ 2mΩþ

r2 − r2þ
r2 þ a2

−
aλð1ÞlmΔ

ðr2 þ a2Þ2 ; ðA41Þ

and the second-order coefficient is

Vð2Þ
lm ðrÞ ¼ 1 −

a2λð2ÞlmΔ
ðr2 þ a2Þ2 : ðA42Þ

[In fact, all higher-order coefficients are of the same simple
form: Vðn>2Þ

lm ¼ −anλðnÞlmΔ=ðr2 þ a2Þ2].
It is important to recall that the potential VωlmðrÞ is

real—and so are all its expansion coefficients VðnÞ
lm . In

addition, note that both coefficients Vð0Þ
lm and Vð1Þ

lm vanish at
the EH like ∝ Δ ∝ r − rþ—hence, they both decay expo-
nentially with r� at the EH limit r� → −∞. In fact, at the
EH we have Vωlm ¼ ω2þ.

29

Inserting the ansatz (A37) for ψωlm into the radial
equation (A34) with the expanded form (A39) of Vωlm
and grouping powers of ωþ, we obtain the following
hierarchy of ODEs:

ψ ð0Þ
lm;r�r� þ Vð0Þ

lmψ
ð0Þ
lm ¼ 0;

ψ ð1Þ
lm;r�r� þ Vð0Þ

lmψ
ð1Þ
lm ¼ −Vð1Þ

lmψ
ð0Þ
lm ;

ψ ð2Þ
lm;r�r� þ Vð0Þ

lmψ
ð2Þ
lm ¼ −Vð1Þ

lmψ
ð1Þ
lm − Vð2Þ

lmψ
ð0Þ
lm ;

…: ðA43Þ

Note that ψ ð0Þ
lm ðrÞ satisfies a homogeneous ODE, but all

other functions ψ ðnÞ
lm ðrÞ satisfy inhomogeneous ones (hav-

ing Vð0Þ
lm as their potential and a source term involving other

coefficients in the expansion of Vωlm).
The initial conditions for these ODEs are to be specified

at the EH limit, just like those of the original function
ψωlmðrÞ. They are naturally obtained by the Taylor expan-
sion (A36) of the original initial data ψ ðinitÞ

ωlm ,

ψ ð0Þ
lm ≃ 1 ðr� → −∞Þ; ðA44Þ

ψ ð1Þ
lm ≃ −ir� ðr� → −∞Þ; ðA45Þ

28For m ≠ 0 it is trivial, as the formulation of the angular
eigenvalue problem is insensitive to the ωþ → 0 limit. Form ¼ 0,
it has been shown [35] that such a power-series expansion exists.

29Correspondingly Vð2Þ
lm ðrÞ ¼ 1 at the EH, as one can also see

from Eq. (A42).
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ψ ð2Þ
lm ≃ −

r2�
2

ðr� → −∞Þ; ðA46Þ

etc.
Of particular importance to our analysis is the leading-

order function ψ ð0Þ
lm ðrÞ. It satisfies a real ODE (as Vð0Þ

lm is
real), with real initial conditions. It therefore follows that

ψ ð0Þ
lm ðrÞ is a real function,

ψ ð0Þ
lm ðrÞ ∈ R: ðA47Þ

Although not necessary for the regularity analysis carried
out in this appendix, it may be interesting to consider the

properties of ψ ð1Þ
lm as well. It still satisfies a real ODE

(because both its potential Vð0Þ
lm and its source term

−Vð1Þ
lmψ

ð0Þ
lm are real). However, its initial condition at the

EH limit (≃ − ir�) is imaginary. Therefore, ψ ð1Þ
lm ðrÞ is not

real. It is not purely imaginary either, because it is fed by a

real source term −Vð1Þ
lmψ

ð0Þ
lm . All higher-order terms ψ ðn>1Þ

lm
are expected to be complex too.

APPENDIX B: THE UNRUH-STATE BARE FLUX
EXPRESSIONS INSIDE THE BH

This appendix is dedicated to developing the mode-sum
expressions for the Unruh-state RSET components Tuu and
Tvv [where hereafter u ¼ uint and v are the interior
Eddington coordinates given in Eq. (2.8)]. We first con-
struct this mode-sum expression at a general point r− <
r < rþ in the BH interior, then we concentrate on the
horizon limits r → r− and r → rþ.
We focus here on Tuu and Tvv because these two

components are especially meaningful for the semiclassical
study of backreaction on BH interiors (in particular, at the
IH vicinity). At the horizons, these components play the
role of energy fluxes,30 and we shall thus refer to them as
the “flux components” or, in short, the “fluxes.” In addition,
these components reveal notable simplicity at the IH limit,
as we shall briefly note later on.

1. Bare fluxes at general r

Before we begin with the construction, we note that the
components of a tensor such as Tαβ clearly depend on the
underlying coordinate system. Here we shall particularly be
interested in three coordinate systems, which only differ
from each other by the choice of the azimuthal coordinate.
We collectively denote these three coordinate systems as

ðu; v; θ; φ̃Þ, where φ̃ stands for either φ, φþ, or φ−. Recall
that φ is the original Boyer-Lindquist azimuthal coordinate,
while φþ and φ− are the two modified azimuthal coordi-
nates constructed to be regular, respectively, at the EH and
IH, and they are given by φ≡ φ� −Ω�t (see Sec. II A).
Thus, we may generally define φ̃ as

φ̃≡ φ − Ω̃t; ðB1Þ
where the constant Ω̃ is either zero, Ωþ, or Ω−, for φ, φþ,
and φ− respectively.31

We shall restrict our attention here to a minimally
coupled massless scalar field [i.e., m ¼ ξ ¼ 0 in
Eq. (2.11)]. Then, at the classical level, the stress-energy
tensor Tαβ of this field may be expressed as

Tαβ ¼ T̄αβ − ð1=2ÞgαβT̄μ
μ; ðB2Þ

where T̄αβ (the “trace-reversed” stress-energy tensor) is
given in terms of the first-order scalar field derivatives by

T̄αβ ¼ Φ;αΦ;β: ðB3Þ
For the analysis below, it will be useful to reexpress T̄αβ as a
second-order differential operator acting on a certain
quantity bilinear in Φ [this form will later allow us to
conveniently express the quantum expectation value of Tαβ

in terms of a differential operator acting on the quantity
Gð1Þ

U ðx; x0Þ that is already available to us]. To this end, we
reexpress T̄αβ (still at the classical level) as

T̄αβðxÞ ¼ lim
x0→x

½ΦðxÞΦðx0Þ�;αβ0 : ðB4Þ

The symbol ;αβ0 denotes differentiation with respect to xα

and x0β, where ∂=∂xα acts on functions of the spacetime
point x, while ∂=∂x0β acts on functions of the spacetime
point x0. We then further rewrite it in the form

T̄αβðxÞ ¼
1

2
lim
x0→x

½ΦðxÞΦðx0Þ þΦðx0ÞΦðxÞ�;αβ0 ðB5Þ

(which, although trivial, sets the stage for the quantum
treatment that will now follow).
Transitioning from the classical- to the quantum-field

context, we want to compute the expectation value of
T̄αβðxÞ, for our minimally coupled quantum field Φ̂, in the
Unruh state.32 Applying the h…iU expectation value

30Note that the Eddington coordinates u and v are spacelike at
r− < r < rþ but they become asymptotically null at r → r− and
r → rþ. (To be more precise, we can look at the corresponding
Kruskal coordinates, which are found to be spacelike between the
horizons and null at the horizons. These properties are then
carried over to the corresponding Eddington coordinates.)

31We point out that, specifically, the choice of the azimuthal
coordinate φ̃ does affect the values of the flux components Tuu
and Tvv.

32Note that in the quantum context, both Tαβ and T̄αβ are
treated as quantum operators. To avoid notational complications
(especially for T̄αβ), we do not add any special symbol (e.g., an
overhat) to make this quantum nature explicitly visible. Never-
theless, in the equations below, the expectation value symbol
h…iU will always reveal the quantum-operator nature of Tαβ
and T̄αβ.
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operation to the two sides of Eq. (B5) (which are viewed
now as quantum operators) and recalling that Gð1Þ

U ðx; x0Þ ¼
hΦ̂ðxÞΦ̂ðx0Þ þ Φ̂ðx0ÞΦ̂ðxÞiU [see Eq. (5.1)], we obtain the
following formal expression for hT̄αβiUbare:

hT̄αβiUbareðxÞ ¼
1

2
lim
x0→x

½Gð1Þ
U ðx; x0Þ;αβ0 �: ðB6Þ

This is complemented by the quantum version of Eq. (B2),
namely,

hTαβiUbare ¼ hT̄αβiUbare − ð1=2ÞgαβhT̄μ
μiUbare: ðB7Þ

To avoid confusion we emphasize again that the split
appearing on the right-hand side of Eqs. (B4)–(B6) is not

aimed for regularization [recall we deal in Eqs. (B4) and
(B5) with the classical expressions and in Eq. (B6) with the
bare quantum expression]: The only purpose of this split is
to allow differentiation with respect to x and x0 separately—
in order to eventually express the RSET in terms of the
already-known function Gð1Þ

U ðx; x0Þ.
To proceed, we write the Unruh-state HTPF Gð1Þ

U ðx; x0Þ
(for points inside the BH) given in Eq. (6.41) as the
mode-sum

Gð1Þ
U ðx; x0Þ ¼ ℏ

X
l;m

Z
∞

0

Gωlmðx; x0Þdω; ðB8Þ

where

Gωlmðx; x0Þ ¼
1

4πωþ

�
coth

�
πωþ
κþ

�
ðff̃LωlmðxÞ; f̃L�ωlmðx0Þg þ jρupωlmj2ff̃RωlmðxÞ; f̃R�ωlmðx0ÞgÞ

þ 2cosech

�
πωþ
κþ

�
ℜðρupωlmff̃RωlmðxÞ; f̃L�ωlmðx0ÞgÞ þ

ωþ
ω

jτinωlmj2ff̃RωlmðxÞ; f̃R�ωlmðx0Þg
�
: ðB9Þ

Correspondingly we may then rewrite Eq. (B6) as the mode
sum

hT̄αβiUbareðxÞ ¼
X
l;m

Z
∞

0

T̄αβðωlmÞdω; ðB10Þ

where the integrand is defined as

T̄αβðωlmÞ ≡ ℏ
2
lim
x0→x

½Gωlmðx; x0Þ;αβ0 �: ðB11Þ

From this point on we shall concentrate on the two flux
components, taking αβ to be yy, with y hereafter denoting
either u or v. The computation of T̄yyðωlmÞ then involves two
simple stages: (i) differentiating Gωlmðx; x0Þ with respect to

y and y0, and then (ii) taking the coincidence limit x0 → x.
The rhs of Eq. (B9) consists of several terms of the form

fF1ðxÞ; F2ðx0Þg ¼ F1ðxÞF2ðx0Þ þ F1ðx0ÞF2ðxÞ:

Applying these stages (i) and (ii) to the term F1ðxÞF2ðx0Þ
simply yields F1;yF2;y (evaluated at the point x), and
applying it to the other term F1ðx0ÞF2ðxÞ yields exactly
the same result; that is,

lim
x0→x

fF1ðxÞ; F2ðx0Þg;yy0 ¼ 2F1;yF2;y

(evaluated at the point x as mentioned above).
Implementing this in Eq. (B11), we obtain

T̄yyðωlmÞ ¼
ℏ

4πωþ

�
coth

�
πωþ
κþ

�
ðf̃Lωlm;yf̃

L�
ωlm;y þ jρupωlmj2f̃Rωlm;yf̃

R�
ωlm;yÞ

þ 2cosech

�
πωþ
κþ

�
ℜðρupωlmf̃Rωlm;yf̃

L�
ωlm;yÞ þ

ωþ
ω

jτinωlmj2f̃Rωlm;yf̃
R�
ωlm;y

�
: ðB12Þ

The functions f̃Λωlm (with Λ denoting either R or L) were
defined in Eq. (6.38). Recalling that

Zω
lmðθ;φÞ ¼

1ffiffiffiffiffiffi
2π

p SωlmðθÞeimφ;

we may rewrite these functions in the more explicit form,

f̃Rωlm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðr2 þ a2Þ

p SωlmðθÞeimφe−iωtψ int
ωlm;

f̃Lωlm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðr2 þ a2Þ

p SωlmðθÞeimφe−iωtψ int�
ωlm:

We need to differentiate these functions with respect to y
with fixed φ̃ (rather than fixed φ). To this end, we define a
general frequency parameter ω̃ of the form

ω̃≡ ω −mΩ̃ ðB13Þ
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(the tilde “∼” in ω̃ links this frequency to the choice of the
azimuthal coordinate φ̃). Noting that

e−iωteimφ ¼ e−iω̃teimφ̃; ðB14Þ
we may now reexpress f̃Λωlm as

f̃ΛωlmðxÞ ¼
1ffiffiffiffiffiffi
8π

p SωlmðθÞeimφ̃f̂Λωlmðt; rÞ; ðB15Þ

where we define

f̂Rωlmðt; rÞ≡ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p e−iω̃tψ int
ωlmðrÞ;

f̂Lωlmðt; rÞ≡ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p e−iω̃tψ int�
ωlmðrÞ: ðB16Þ

(The variables t and r should be viewed here as functions of
the coordinates u, v.) Substituting Eq. (B15) in Eq. (B12)
[recalling that SωlmðθÞ is real], we may now entirely factor
out the angular dependence,

T̄yyðωlmÞ ¼ ℏ
½SωlmðθÞ�2
32π2ωþ

T̄ yyðωlmÞ; ðB17Þ

where

T̄ yyðωlmÞ≡coth

�
πωþ
κþ

��
f̂Lωlm;yf̂

L�
ωlm;yþjρupωlmj2f̂Rωlm;yf̂

R�
ωlm;y

	

þ2 cosech

�
πωþ
κþ

�
ℜ
�
ρupωlmf̂

R
ωlm;yf̂

L�
ωlm;y

	
þωþ

ω
jτinωlmj2f̂Rωlm;yf̂

R�
ωlm;y: ðB18Þ

To further process this expression, we next specify the
four combinations entailed in f̂Λωlm;y (corresponding to
Λ ¼ L, R and y ¼ u, v). Using the relations

t ¼ v − u
2

; r� ¼
uþ v
2

;

as well as dr=dr� ¼ Δ=ðr2 þ a2Þ, we find

f̂Rωlm;u ¼
e−iω̃tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p ½ðiω̃ψ int
ωlm þ ψ int

ωlm;r� Þ −HðrÞψ int
ωlmΔ�;

ðB19Þ

f̂Rωlm;v ¼
e−iω̃tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p ½ð−iω̃ψ int
ωlm þ ψ int

ωlm;r� Þ −HðrÞψ int
ωlmΔ�;

ðB20Þ

f̂Lωlm;u ¼
e−iω̃tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p ½ðiω̃ψ int�
ωlm þ ψ int�

ωlm;r� Þ −HðrÞψ int�
ωlmΔ�;

ðB21Þ

f̂Lωlm;v ¼
e−iω̃tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p ½ð−iω̃ψ int�
ωlm þ ψ int�

ωlm;r� Þ −HðrÞψ int�
ωlmΔ�;

ðB22Þ

where

HðrÞ≡ r
ðr2 þ a2Þ2 :

Notice that f̂Λωlm;v and f̂Λωlm;u are related by the trans-
formation ω̃ ↦ −ω̃; t ↦ −t.33 Also, f̂Lωlm;y and f̂Rωlm;y are
related by the transformation ω̃ ↦ −ω̃ combined with
overall complex conjugation. These relations will be useful
below.
We now combine these derivatives to form the various

bilinear combinations of the form f̂Λ1

ωlm;yf̂
Λ2�
ωlm;y appearing

in Eq. (B18), namely, the three combinations Λ1Λ2 ¼
ðLL; RR;RLÞ. One immediately notices that the factors
e−iω̃t (and indeed the entire dependence on t) cancel out in
all these combinations. It is convenient to express each of
these contributions in the form

f̂Λ1

ωlm;yf̂
Λ2�
ωlm;y ¼

1

r2 þ a2

h
AΛ1Λ2

ωlmðyÞ − 2HðrÞBΛ1Λ2

ωlmðyÞΔ

þH2ðrÞCΛ1Λ2

ωlmðyÞΔ
2
i
: ðB23Þ

By a direct substitution of Eqs. (B19)–(B22), recalling
the Wronskian relation

ψ int
ωlmψ

int�
ωlm;r� − ψ int�

ωlmψ
int
ωlm;r� ¼ 2iωþ;

we obtain the following expressions for the A coefficients:

ARR
ωlmðvÞ ¼ ALL

ωlmðuÞ ¼ jψ int
ωlm;r� j2 þ ω̃2jψ int

ωlmj2 þ 2ω̃ωþ;

ðB24Þ

ALL
ωlmðvÞ ¼ ARR

ωlmðuÞ ¼ jψ int
ωlm;r� j2 þ ω̃2jψ int

ωlmj2 − 2ω̃ωþ;

ðB25Þ

ARL
ωlmðuÞ ¼ ARL

ωlmðvÞ ¼ ðψ int
ωlm;r� Þ2 þ ω̃2ðψ int

ωlmÞ2: ðB26Þ

For the B and C coefficients we will omit the (y) subscript,
as they attain the same value for both y ¼ v and y ¼ u. We
obtain

33In ω̃ ↦ −ω̃ we refer to any explicit occurrence of ω̃—we do
not touch the indices ωlm [as an illustration, see how the
described transformation relates Eqs. (B19) and (B20) or
(B21) and (B22)].
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BRR
ωlm ¼BLL

ωlm ¼ℜðψ int
ωlmψ

int�
ωlm;r� Þ; BRL

ωlm ¼ ψ int
ωlmψ

int
ωlm;r� ;

ðB27Þ

CLLωlm ¼ CRRωlm ¼ jψ int
ωlmj2; CRLωlm ¼ ðψ int

ωlmÞ2: ðB28Þ

Note also that none of the B, C coefficients depend
explicitly on ω̃ (but the A coefficients do).
We have mentioned above simple rules for the trans-

formations R ↔ L and u ↔ v in the expressions for f̂Λωlm;y.
We can use them to derive corresponding rules for (overall)
interchangesR ↔ L and/oru ↔ v in f̂Λ1

ωlm;yf̂
Λ2�
ωlm;y. It follows

that both transformations RR ↔ LL and u ↔ v amount to
changing ω̃ ↦ −ω̃34 (and therefore the combined trans-
formation RR ↔ LL; u ↔ v leaves the expression
unchanged).One can easily verify that the above expressions
(B24)–(B28) indeed satisfy these simple exchange rules.
The next stage would be to substitute Eq. (B23) in

Eq. (B18) for T̄ yyðωlmÞ. It is again convenient to rewrite the
latter (just as we did in the former) explicitly in powers of
Δ, so we write

T̄ yyðωlmÞ ¼
1

r2 þ a2
½T̄ A

yyðωlmÞ

− 2HðrÞT̄ B
ðωlmÞΔþH2ðrÞT̄ C

ðωlmÞΔ
2�: ðB29Þ

We find T̄ A
uuðωlmÞ to be given by

T̄ A
uuðωlmÞ ¼ coth

�
πωþ
κþ

�
½jψ int

ωlm;r� j2 þ ω̃2jψ int
ωlmj2 þ 2ω̃ωþ

þ jρupωlmj2ðjψ int
ωlm;r� j2 þ ω̃2jψ int

ωlmj2 − 2ω̃ωþÞ�

þ 2 cosech

�
πωþ
κþ

�
ℜðρupωlm½ðψ int

ωlm;r� Þ2

þ ω̃2ðψ int
ωlmÞ2�Þ þ

ωþ
ω

jτinωlmj2ðjψ int
ωlm;r� j2

þ ω̃2jψ int
ωlmj2 − 2ω̃ωþÞ: ðB30Þ

The vv counterpart, T̄ A
vvðωlmÞ, is obtained by taking ω̃ ↦

−ω̃ in the above expression,

T̄ A
vvðωlmÞ ¼ coth

�
πωþ
κþ

�
½jψ int

ωlm;r� j2 þ ω̃2jψ int
ωlmj2 − 2ω̃ωþ

þ jρupωlmj2ðjψ int
ωlm;r� j2 þ ω̃2jψ int

ωlmj2 þ 2ω̃ωþÞ�

þ 2 cosech

�
πωþ
κþ

�
ℜðρupωlm½ðψ int

ωlm;r� Þ2

þ ω̃2ðψ int
ωlmÞ2�Þ þ

ωþ
ω

jτinωlmj2ðjψ int
ωlm;r� j2

þ ω̃2jψ int
ωlmj2 þ 2ω̃ωþÞ: ðB31Þ

Finally, the B and C coefficients are given by

T̄ B
ðωlmÞ ¼ coth

�
πωþ
κþ

�
ℜ
�
ψ int
ωlmψ

int�
ωlm;r�

	�
1þ jρupωlmj2

	

þ 2 cosech

�
πωþ
κþ

�
ℜðρupωlmψ int

ωlmψ
int
ωlm;r� Þ

þ ωþ
ω

jτinωlmj2ℜðψ int
ωlmψ

int�
ωlm;r� Þ; ðB32Þ

T̄ C
ðωlmÞ ¼ coth

�
πωþ
κþ

�
jψ int

ωlmj2ð1þ jρupωlmj2
�

þ 2 cosech

�
πωþ
κþ

�
ℜðρupωlmðψ int

ωlmÞ2Þ

þ ωþ
ω

jτinωlmj2jψ int
ωlmj2: ðB33Þ

Note that the B and C contributions are the same for uu and
vv—and the same applies to T̄B;C

ðωlmÞ defined below.
Finally, we substitute the expression (B29) for T̄ yyðωlmÞ

into Eq. (B17) for T̄yyðωlmÞ. Again, we rewrite the latter in
powers of Δ,

T̄yyðωlmÞ ¼ T̄A
yyðωlmÞ þ T̄B

ðωlmÞΔþ T̄C
ðωlmÞΔ

2: ðB34Þ

The coefficients T̄A
yyðωlmÞ, T̄

B
ðωlmÞ, and T̄C

ðωlmÞ are then
given by

T̄A
uuðωlmÞ ¼ ℏ

½SωlmðθÞ�2
32π2ωþðr2 þ a2Þ

�
coth

�
πωþ
κþ

�
½jψ int

ωlm;r� j2 þ ω̃2jψ int
ωlmj2 þ 2ω̃ωþ

þ jρupωlmj2ðjψ int
ωlm;r� j2 þ ω̃2jψ int

ωlmj2 − 2ω̃ωþÞ�

þ 2 cosech

�
πωþ
κþ

�
ℜðρupωlm½ðψ int

ωlm;r�Þ2 þ ω̃2ðψ int
ωlmÞ2�Þ

þ ð1 − jρupωlmj2Þðjψ int
ωlm;r� j2 þ ω̃2jψ int

ωlmj2 − 2ω̃ωþÞ
�
; ðB35Þ

34To this end, one should recall that (i) f̂Λ1

ωlm;yf̂
Λ2�
ωlm;y is independent of t, and (ii) all these A, B, C coefficients for LL or RR are real.
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T̄A
vvðωlmÞ ¼ ℏ

½SωlmðθÞ�2
32π2ωþðr2þa2Þ

�
coth

�
πωþ
κþ

�
½jψ int

ωlm;r� j2þ ω̃2jψ int
ωlmj2−2ω̃ωþþ jρupωlmj2ðjψ int

ωlm;r� j2þ ω̃2jψ int
ωlmj2þ2ω̃ωþÞ�

þ 2 cosech

�
πωþ
κþ

�
ℜðρupωlm½ðψ int

ωlm;r� Þ2þ ω̃2ðψ int
ωlmÞ2�Þþ ð1− jρupωlmj2Þðjψ int

ωlm;r� j2þ ω̃2jψ int
ωlmj2þ2ω̃ωþÞ

�
; ðB36Þ

T̄B
ðωlmÞ ¼ −ℏ

½SωlmðθÞ�2r
16π2ωþðr2 þ a2Þ3

�
coth

�
πωþ
κþ

�
ℜðψ int

ωlmψ
int�
ωlm;r� Þð1þ jρupωlmj2Þ

þ2cosech

�
πωþ
κþ

�
ℜðρupωlmψ int

ωlmψ
int
ωlm;r� Þ þ ð1 − jρupωlmj2Þℜðψ int

ωlmψ
int�
ωlm;r� Þ

�
; ðB37Þ

T̄C
ðωlmÞ ¼ ℏ

½SωlmðθÞ�2r2
32π2ωþðr2 þ a2Þ5

×
�
coth

�
πωþ
κþ

�
jψ int

ωlmj2ð1þ jρupωlmj2
�
þ 2cosech

�
πωþ
κþ

�
ℜðρupωlmðψ int

ωlmÞ2Þ þ ð1 − jρupωlmj2Þjψ int
ωlmj2

�
; ðB38Þ

where we made the substitution ðωþ=ωÞjτinωlmj2 ¼
1 − jρupωlmj2 [see Wronskian relations, Eq. (3.33)] to elimi-
nate τ from the final results.
This provides the desired mode-sum expression for

hT̄yyiUbareðxÞ, see Eq. (B10). The translation from the
trace-reversed to the original bare RSET then proceeds
according to Eq. (B7) (although, this last stage requires
also the RSET trace mode sum, which we have not
addressed here).
We worked here in coordinates ðu; v; θ; φ̃Þ, with an

azimuthal coordinate φ̃ whose general form is given in
Eq. (B1). Evidently, dependence on the choice of azimuthal
coordinate φ̃ only appears (through ω̃) in T̄A

yyðωlmÞ, the part
that does not vanish at the horizons (in particular, for
φ̃ ¼ φ, the parameter ω̃ is replaced by ω; and for φ̃ ¼ φ�,
the parameter ω̃ is replaced by ω�, respectively).

2. The difference Tuu −Tvv

Note that, as mentioned, the terms T̄B
ðωlmÞ and T̄C

ðωlmÞ are
shared by the uu and vv components. In addition, the
difference between T̄A

uuðωlmÞ and T̄
A
vvðωlmÞ is only in the sign

of the three ∝ ω̃ terms. The difference between hT̄uuiUbare
and hT̄vviUbare [which also equals the difference between
hTuuiUbare and hTvviUbare, since guu ¼ gvv in coordinates
ðu; v; θ; φ̃Þ], therefore has a rather simple form,

hTuuiUbare − hTvviUbare
¼ ℏ

X
l;m

Z
∞

0

dω
½SωlmðθÞ�2

8π2ðr2 þ a2Þ ω̃

×

�
coth

�
πωþ
κþ

�
− 1

�
ð1 − jρupωlmj2Þ: ðB39Þ

Next we consider the renormalized version of Eq. (B39).
Performing a coordinate transformation from ðu; v; θ; φ̃Þ to
ðt; r�; θ; φ̃Þ and then to ðt; r�; θ;φÞ yields

ðTuu − TvvÞðu;v;θ;φ̃Þ ¼ ð−Tr�tÞðt;r�;θ;φ̃Þ
¼ −ðΩ̃Tφr� þ Tr�tÞðt;r�;θ;φÞ: ðB40Þ

From Eq. (3.30) in Ref. [19], we see that the counterterms
Tdiv
r�t and Tdiv

φr� vanish. Thus, the renormalized difference
hTuuiUren − hTvviUren is equal to the bare difference
hTuuiUbare − hTvviUbare, given on the rhs of Eq. (B39) [in
coordinates ðu; v; θ; φ̃Þ],

hTuuiUren − hTvviUren
¼ ℏ

X
l;m

Z
∞

0

dω
½SωlmðθÞ�2

8π2ðr2 þ a2Þ ω̃

×

�
coth

�
πωþ
κþ

�
− 1

�
ð1 − jρupωlmj2Þ: ðB41Þ

Evidently, ðr2 þ a2ÞðhTuuiUren − hTvviUrenÞ is independent of
r (reflecting energy-momentum conservation).
The mode-sum expression for the Hawking outflux

(per solid angle) may then be obtained from Eq. (B41) by
choosing the Boyer-Lindquist azimuthal coordinate φ̃ ¼ φ
(that is, taking ω̃ ¼ ω) and multiplying by ðr2 þ a2Þ. This
yields the expression

ðr2þa2ÞðhTuuiUren−hTvviUrenÞ

¼ℏ
X
l;m

Z
∞

0

dω
½SωlmðθÞ�2

8π2
ω

�
coth

�
πωþ
κþ

�
−1

�
ð1− jρupωlmj2Þ:

ðB42Þ
This is a well-known result [see, e.g., Eq. (5.5) in
Ref. [11]35].

35Equation (5.5) in Ref. [11] gives a quantity denoted by
KU−ðθÞ, which coincides with −ðr2 þ a2ÞðhTuuiUren − hTvviUrenÞ.
For comparison with Eq. (B42), note that in Ref. [11] ω̃ denotes
ωþ and B−

ωlm is our τupωlm, and use the Wronskian relation relating
jτupωlmj with jρupωlmj [see Eq. (3.33)].
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3. Bare fluxes at the horizons

We are particularly interested in the behavior of the
fluxes at the EH and IH of the BH. To this end, we take the
limits r → r� of the general r expressions for the fluxes
hT̄yyiUbare (where y is either u or v). Since Δ vanishes at
r ¼ r�, T̄A

yyðωlmÞ is the only piece that contributes at the

horizons [see Eq. (B34)].
Hereafter, a superscript� denotes r → r� along with the

coordinate system in use—ðu; v; θ;φ�Þ at r�, respectively
(recalling that the regular azimuthal coordinate at r� is φ�).
Note that since the coordinate system (at both horizons) is
chosen such that, in particular, guu ¼ gvv ¼ 0 there, each
flux component coincides with its trace-reversed counter-
part at the horizons [see Eq. (B7)].36

We hereby introduce the summation/integration
operator,

X̂
�ð…Þ≡ ℏ

Z
∞

0

X∞
l¼0

Xl

m¼−l

½SωlmðθÞ�2
8π2ðr2� þ a2Þ ð…Þdω: ðB43Þ

4. The event horizon

At the EH, as prescribed in Eq. (3.16), the radial function
ψ int
ωlm behaves as e−iωþr� . Also, in Eqs. (B36) and (B35) we

now substitute ω̃ ¼ ωþ (corresponding to the choice
Ω̃ ¼ Ωþ and hence φ̃ ¼ φþ). This leads to a remarkable
simplification, because now both combinations
ðψ int

ωlm;r� Þ2 þ ω̃2ðψ int
ωlmÞ2 and jψ int

ωlm;r� j2 þ ω̃2jψ int
ωlmj2 −

2ω̃ωþ vanish, and jψ int
ωlm;r� j2 þ ω̃2jψ int

ωlmj2 þ 2ω̃ωþ simpli-
fies to 4ω2þ. Equation (B36) then reduces to

hTþ
vviUbare ¼

X̂
þωþ

�
jρupωlmj2

�
coth

�
πωþ
κþ

�
− 1

�
þ 1

�
ðB44Þ

and Eq. (B35) to

hTþ
uuiUbare ¼

X̂
þωþ coth

�
πωþ
κþ

�
: ðB45Þ

5. The inner horizon

We now turn to the IH. At r → r−, the radial function
ψ int
ωlm behaves asymptotically as given in Eq. (3.23),

namely, ψ int
ωlm ≃ Aωlmeiω−r� þ Bωlme−iω−r� .

We substitute ω̃ ¼ ω− in Eqs. (B36) and (B35). Then,
using the Wronskian relation in Eq. (3.34), we find in the
r → r− limit

ω2
−jψ int

ωlmj2 þ 2ωþω− þ jψ int
ωlm;r� j2 ¼ 4ω2

−jBωlmj2; ðB46Þ

ω2
−jψ int

ωlmj2 − 2ωþω− þ jψ int
ωlm;r� j2 ¼ 4ω2

−jAωlmj2; ðB47Þ

and

ω2
−ðψ int

ωlmÞ2 þ ðψ int
ωlm;r� Þ2 ¼ 4ω2

−AωlmBωlm: ðB48Þ

For hT−
vviUbare, this yields

hT−
vviUbare¼

X̂
−
ω2
−

ωþ

�
coth

�
πωþ
κþ

�
ðjAωlmj2þjρupωlmj2jBωlmj2Þ

þ2 cosech

�
πωþ
κþ

�
ℜðρupωlmAωlmBωlmÞ

þð1− jρupωlmj2ÞjBωlmj2
�
: ðB49Þ

Turning now to hT−
uuiUbare, we note again that Eq. (B30)

differs from Eq. (B31) by merely taking ω̃ ↦ −ω̃. This
amounts here to taking ω− ↦ −ω−, which in turn inter-
changes Eq. (B46) and Eq. (B47). Consequently, hT−

uuiUbare
is obtained by interchanging Aωlm and Bωlm in Eq. (B49),

hT−
uuiUbare ¼

X̂
−
ω2
−

ωþ

�
coth

�
πωþ
κþ

�
ðjBωlmj2

þ jρupωlmj2jAωlmj2Þ

þ 2cosech

�
πωþ
κþ

�
ℜðρupωlmAωlmBωlmÞ

þ ð1 − jρupωlmj2ÞjAωlmj2
�
: ðB50Þ

Note how, through relations (B46)–(B48), all oscillatory
factors (of the form e�iω−r� , as appear in the asymptotic
behavior of ψ int

ωlm at the IH) are canceled out—and, as a
consequence, the individual mode contribution to the flux
components have a well-defined limiting value at the IH,
which depends only on the scattering parameters ρupωlm,
Aωlm, and Bωlm. In this respect, the flux components are
simpler than other Tαβ components at the IH limit.
Equation (B41) for the renormalized difference also

applies at the IH [in coordinates ðu; v; θ;φ−Þ], yielding

hT−
uuiUren − hT−

vviUren
¼

X̂
−ω−

�
coth

�
πωþ
κþ

�
− 1

�
ð1 − jρupωlmj2Þ: ðB51Þ

It may be interesting to explore how this quantity
behaves in the limit of extremal Kerr, a → M. In this limit

36In the corresponding coordinate systems, gvv and guu vanish
on approaching the horizons as δr2 (where δr≡ r − r� denotes
the distance to the corresponding horizon). Thus, for the
gyyhT̄μ

μiUbare term to vanish there, we assume that the trace diverges
at a sufficiently slow rate as δr → 0. (This is, indeed, the case in
the RN counterpart—see Eq. (15) in Ref. [36], where the trace
divergence rate is weaker than 1=δr.)
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κþ → 0þ and hence cothðπωþ=κþÞ reduces to signðωþÞ,
leaving only a contribution from negative ωþ in the
integrand. Therefore, recalling that (for positive ω) a
negative ωþ requires m > 0 and ω < mΩþ, we obtain

hT−
uuiUren − hT−

vviUren

¼ ℏ
8π2M2

X∞
l¼1

Xl

m¼1

Z
m=2M

0

½SωlmðθÞ�2ω−ðjρupωlmj2 − 1Þdω;

ða → MÞ; ðB52Þ

where we have used the fact that, in the extremal
limit, Ω� ¼ 1=2M.
Clearly, the rhs of Eq. (B52) vanishes on the pole, where

only m ¼ 0 modes could contribute, so hereafter we
concentrate on θ ≠ 0; π.
Recalling that in the superradiance band (0 < ω < mΩþ

form > 0) we have ωþ < 0 and jρupωlmj > 1 (see Sec. III D),
and that in the extremal limit ω− ¼ ωþ, we readily see that
in the last equation the integrand is negative throughout the
domain of integration. Thus, hT−

uuiUren − hT−
vviUren is strictly

negative (off the pole) in the extremal limit (see also
footnote 23).
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