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For a massive scalar field with a general curvature coupling parameter, we investigate the finite
temperature contributions to the Hadamard function and to the charge and current densities in the geometry
of a magnetic flux carrying generalized cosmic string embedded in (Dþ 1)-dimensional locally AdS
spacetime with a compactified spatial dimension. For D ¼ 4, the geometry on the AdS boundary, in the
context of the AdS/CFT duality, corresponds to a cosmic string as a linear defect, compactified along its axis.
In contrast to the case of the Minkowski bulk, the upper bound on the chemical potential does not depend on
the field mass and is completely determined by the length of compact dimension and by the enclosed
magnetic flux. The only nonzero components correspond to the charge density, to the azimuthal current, and
to the current along the compact dimension. They are periodic functions of magnetic fluxes with the period
equal to the flux quantum. The charge density is an odd function and the currents are even functions of the
chemical potential. At high temperatures the influence of the gravitational field and topology on the charge
density is subdominant and the leading term in the corresponding expansion coincides with that for the
charge density in the Minkowski spacetime. The current densities are topology-induced quantities and their
behavior at high temperatures is completely different with the linear dependence on the temperature. At
small temperatures and for chemical potentials smaller than the critical value, the thermal expectation values
are exponentially suppressed for both massive and massless fields.
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I. INTRODUCTION

According to the Big Bang theory, in the early stages the
Universe was hotter and in a more symmetric state. During
the expansion it cooled down and underwent a series of
phase transitions accompanied by spontaneous breakdown
of symmetries which could result in the formation of various
types of topological defects [1,2]. They include domain
walls, cosmic strings, and monopoles. Among these defects
the cosmic strings are of special interest. They are linear
structures of trapped energy density, analogous to defects
such as vortex lines in superconductors and superfluids. The
influence of cosmic strings on the geometry of the sur-
rounding space can be of cosmological and astrophysical
significance in a large number of phenomena, such as

producing cosmic microwave background anisotropies,
non-Gaussianity and B-mode polarization, sourcing gravi-
tational waves and high energy cosmic rays, gravitational
lensing of astrophysical objects [3]. The parameter that
characterizes the strength of gravitational interactions of
strings with matter is its tension, which is given in natural
units byGμ0, withG the Newton’s constant and μ0 the linear
mass density, proportional to the square of the symmetry
breaking energy scale. Another mechanism for the forma-
tion of cosmic string type defects has been considered
recently in brane inflationary models (for reviews see [4,5]).
In the simplest model, the gravitational field produced by

a cosmic string is approximated by a planar angle deficit in
the two-dimensional subspace orthogonal to the string.
Although the corresponding local geometry outside the
cosmic string core is flat, the nontrivial topology is a source
of interesting effects in quantum field theory. In particular,
the vacuum expectation values of physical quantities
bilinear in the field operator are shifted by an amount that
depends on the planar angle deficit. Among those quan-
tities, the vacuum energy-momentum tensor is of special
interest as an important local characteristic and also as
the source for the gravitational backreaction of quantum
effects. The vacuum polarization for different spin fields
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has been widely investigated in the literature (see, for
example, references given in [6]). As an additional physical
characteristic, the cosmic string may carry a magnetic flux
along its axis and this is another source for topological
influence on the properties of the vacuum, being an effect
of Aharonov-Bohm-type. Among the physical manifesta-
tions we mention here the appearance of vacuum currents
circulating around the cosmic string [7,8]. The ground state
currents in a (2þ 1)-dimensional conical spacetime with
applications to graphene nanocones (described in terms of
the effective Dirac model) have been investigated in [9–14].
All these investigations have been done for conical

defects embedded in flat spacetime. For both scenarios of
cosmic string formation mentioned above, the background
geometry is not flat and it is of interest to study the influence
of the gravitational field on the cosmic string induced effects
on the properties of quantum vacuum. For cosmic strings
formed in the early Universe during the inflationary era the
spacetime geometry is well approximated by de Sitter
spacetime and the polarization of the Bunch-Davies vacuum
for scalar, fermionic and electromagnetic fields by a cosmic
string in that geometry is investigated in references [15–17].
The background geometry in the most part of braneworld
models is described by another maximally symmetric
solution of the Einstein field equations, namely, by anti-
de Sitter (AdS) spacetime. An additional motivation for
investigations of quantum field-theoretical effects in AdS
bulk comes from the AdS/CFT correspondence that pro-
vides a duality relation between two-different theories:
string theory or supergravity on the AdS background and
conformal field theory localized on the AdS boundary. The
local properties of the scalar and fermionic vacua around a
cosmic string in AdS spacetime were studied in [18,19].
Another source of topological quantum effects is the

compactification of spatial dimensions. The compact
dimensions are an inherent feature of most high-energy
theories in fundamental physics. They also appear in
effective field-theoretical descriptions of a number of
condensed matter systems like graphene nanoutubes and
nanoloops (see, e.g., [20]). The compactification gives rise
to the Casimir type contributions in the expectation values
of physical quantities that depend on the compactification
length and on the periodicity conditions along respective
dimensions. The effects of the compactification on the local
properties of the quantum vacuum in problems with cosmic
strings on background of flat spacetime have been consid-
ered in references [21–24]. The combined effects of cosmic
string, compactification and of the gravitational field were
discussed in [25–29] for the background AdS geometry.
It is of interest to note that the finite temperature effects

can also be interpreted as a special type of compactification
along the Euclidean time coordinate with the period equal to
the inverse temperature. This important prescription is used
to fix the relation between the vacuum and finite temper-
ature two-point functions in quantum field theory. In the

present paper we investigate the finite temperature effects
on the expectation values of the charge and current densities
for a scalar field in background of AdS spacetime in the
presence of a cosmic string type defect and a compactified
dimension. Thermal Green functions and the finite temper-
ature expectation value of the energy-momentum tensor for
scalar field around a cosmic string embedded in (3þ 1)-
dimensional Minkowski spacetime have been considered in
[30–34]. The finite temperature charge and current densities
for a scalar field in the geometry of a compactified cosmic
string are investigated in [35]. The thermal effects in AdS
spacetime may have qualitatively new features compared
with the flat spacetime background. Awell-known example
comes from the thermodynamics of black holes. As it has
been shown in [36], the black holes in AdS spacetime have a
minimum temperature that corresponds to the horizon
radius of the order of AdS curvature scale. An interesting
topic of investigations in the context of the AdS/CFT
correspondence is the duality between the theories in the
bulk and on the AdS boundary at finite temperature (see, for
instance, [37] and references given therein). In particular,
the thermal field theory on the boundary is dual to a bulk
theory with an AdS black hole having the same temperature
[38]. The two-point function and the expectation values of
the field squared and energy-momentum tensor for a
conformally invariant scalar field at finite temperature on
background of AdS spacetime were studied in [39]. The
results of recent investigations of the finite temperature
effects for scalar and fermionic fields are presented in
[40,41] (for thermal effects in braneworld see, for example,
[42–44] and references therein).
This paper is organized as follows. In the next section the

background geometry, the field content, and the complete
set of scalar modes are presented. These modes are used for
the evaluation of the thermal Hadamard function. In
Sec. III, by using the decomposed Hadamard function,
general expressions are derived for thermal contributions to
the charge density and to the azimuthal and axial current
densities. Various special cases of the general results are
considered in Sec. IV. The analysis of the expectation
values in different asymptotic regions for the values of the
parameters is presented in Sec. V. Section VI summarizes
the main results obtained in the paper.

II. BACKGROUND GEOMETRY AND THE
THERMAL HADAMARD FUNCTION

The background geometry we are going to consider is
described by the following (Dþ 1)-dimensional line
element:

ds2 ¼ e−2y=a½dt2 − dr2 − r2dϕ2 − ðdx3Þ2 − dx2
k� − dy2;

ð2:1Þ
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where a is a constant and the Cartesian coordinates xk ¼
ðx4;…; xD−1Þ cover the (D − 4)-dimensional subspace.
For the variation ranges of the coordinates one
has −∞ < t; xl; y < þ∞, l ¼ 4;…; D − 1, r ≥ 0 and
ϕ ∈ ½0; 2π=q�. It will be assumed that the coordinate x3 ¼
z is compactified to a circle with length L and, hence,
0 ≤ z ≤ L. For the parameter q we take q ≥ 1. In the
special case q ¼ 1 and for decompactified coordinate z,
−∞ < z < þ∞, the geometry described by (2.1) presents
the AdS spacetime covered by cylindrical Poincaré coor-
dinates and sourced by the negative cosmological constant
Λ ¼ −DðD − 1Þa−2. The corresponding Ricci scalar is
expressed as R ¼ −DðDþ 1Þa−2. For q > 1 and r > 0 the
local geometry is the same as that for (Dþ 1)-dimensional
AdS spacetime. In this case the curvature tensor has
delta function type singularity located on the (D − 2)-
dimensional hypersurface r ¼ 0 and described by the line
element

ds2c ¼ e−2y=aðdt2 − dz2 − dx2
kÞ − dy2: ð2:2Þ

The latter corresponds to a (D − 1)-dimensional AdS
spacetime. In the special case D ¼ 3 it describes a linear
defect that corresponds to an idealized model of cosmic
string in AdS spacetime with the linear mass density μ0.
For this particular example the parameter q is expressed in
terms of the linear mass density μ0 by the relation q−1 ¼
1–4Gμ0 with G being the gravitational constant. For
−∞ < z < þ∞ the topology of the (D − 2)-dimensional
hypersurface r ¼ 0 is trivial. The compactification of the
coordinate z does not change the local geometry and the
topology of the core becomes cylindrical, RD−3 × S1.
Similar to that case of AdS spacetime, introducing the
coordinate w ¼ aey=a, with the variation range w ∈ ½0;∞Þ,
the line element is rewritten as

ds2 ¼
�
a
w

�
2

ðdt2−dr2− r2dϕ2−dz2 −dx2
k−dw2Þ: ð2:3Þ

This shows the conformal relation of the problem under
consideration with the corresponding problem on the
Minkowski bulk with compactified coordinate z. Note
that for the special case D ¼ 4 the part dx2

k is absent in

(2.3) and the background geometry of the conformal field
on the AdS boundary, in the context of the AdS/CFT
duality, corresponds to the standard cosmic string as a
linear defect compactified along its axis.
We are interested in the effects of finite temperature and

compactification on the expectation values of the current
density for a charged massive scalar field φðxÞ in back-
ground of the geometry described above. Assuming the
nonminimal coupling to the curvature with the parameter ξ
and in the presence of a classical gauge field Al, the field
equation reads

ðgklDkDl þm2 þ ξRÞφðxÞ ¼ 0; ð2:4Þ

with Dl ¼ ∇l þ ieAl the gauge extended covariant deriva-
tive operator. For minimal and conformal couplings one has
ξ ¼ 0 and ξ ¼ ðD − 1Þ=ð4DÞ, respectively. In the discus-
sion below it will be convenient to work in the coordinates
corresponding to (2.3). The coordinate z is compact and
in addition to the field equation one needs to specify the
periodicity condition along the corresponding direction.
We will impose the condition

φðt; r;ϕ; zþ L;xk; wÞ ¼ e2πiδφðt; r;ϕ; z;xk; wÞ; ð2:5Þ

where δ is a constant parameter. As to the classical vector
potentialAl, a simple configuration Al¼ð0;0;A2;A3;0;…;0Þ
with constant covariant components A2 and A3 will be taken.
Of course, we could take nonzero constant components
along noncompact coordinates, but they are removed from
the problem by a linear gauge transformation. Similar
transformations for the components A2 and A3 change
the phases of the periodicity conditions along the respective
directions and those components are physically relevant.
Their effects are topological. We can express the compo-
nents of the vector potential in terms of the corresponding
magnetic fluxes Φ2 and Φ3 as A2 ¼ −qΦ2=ð2πÞ and
A3 ¼ −Φ3=L.
In the problem under consideration the properties of a

given state for quantum scalar field are obtained from the
corresponding two point functions. Here we will use the
Hadamard function. Assuming that the field is prepared in
an equilibrium state with temperature T, it is defined as the
expectation value

Gðx; x0Þ ¼ tr½ρ̂ðφðxÞφ†ðx0Þ þ φ†ðx0ÞφðxÞÞ�; ð2:6Þ

with ρ̂ ¼ Z−1e−βðĤ−μ0Q̂Þ being the density matrix. Here,
β ¼ 1=T, Ĥ is the Hamiltonian operator, Q̂ is a conserved
charge with the corresponding chemical potential μ0. As
usual, Z ¼ tr½e−βðĤ−μ0Q̂Þ� is the grand-canonical partition
function. By expanding the field operator in terms of the
complete set of positive and negative energy mode functions

φð�Þ
σ ðxÞ, with the energies �Eσ , and using the properties of

the annihilation and creation operators, the Hadamard
function is presented in the form (the details are similar
to the procedure used in [45] for the problem in Minkowski
spacetime with toroidally compact dimensions)

Gðx; x0Þ ¼ G0ðx; x0Þ þGTðx; x0Þ; ð2:7Þ

where G0ðx; x0Þ ¼
P

σ

P
u¼� φðuÞ

σ ðxÞφðuÞ�
σ ðx0Þ is the zero

temperature Hadamard function and
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GTðx; x0Þ ¼ 2
X
σ

X
u¼�

φðuÞ
σ ðxÞφðuÞ�

σ ðx0Þ
eβðEσ−uμÞ − 1

ð2:8Þ

is the thermal part. Here, μ ¼ eμ0 and the set of quantum
numbers σ specifies the modes. The symbol

P
σ stands for

summation over discrete quantum numbers and integration
over the continuum ones. In (2.8), the parts with u ¼ þ and
u ¼ − correspond to the contributions of the particles and
antiparticles. The chemical potentials for them have oppo-
site signs.
The normalized mode functions for the geometry at

hand, obeying the periodicity condition (2.5), are given in
[25]. They are expressed as

φð�Þ
σ ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qa1−Dλp

2ð2πÞD−3LEσ

s
w

D
2JνðpwÞJqjnþαjðλrÞ

× eiqnϕþiklzþik·xk∓iEσ t; ð2:9Þ

with ðp; λÞ ∈ ½0;∞Þ, n ¼ 0;�1;�2;…, and k ¼
ðk4;…; kD−1Þ corresponds to the components of the
momentum in the subspace with the coordinates xk. The
order of the Bessel function JνðzÞ is defined by

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

4
þ a2m2 − ξDðDþ 1Þ

r
; ð2:10Þ

and in the order of the Bessel function for the radial part we
use the notation α ¼ eA2=q ¼ −Φ2=Φ0, with Φ0 ¼ 2π=e
the flux quantum. The eigenvalues for the component k3 of
the momentum along the compact dimension z are dis-
cretized by the condition (2.5)

k3 ¼ kl ¼
2π

L
ðlþ δÞ; l ¼ 0;�1;�2;… ð2:11Þ

The energy of the modes is given by

Eσ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ p2 þ k2 þ k̃2l

q
; ð2:12Þ

where

k̃l ¼ 2π
lþ δ̃

L
; δ̃ ¼ δþ eA3L

2π
¼ δ −

Φ3

Φ0

: ð2:13Þ

In this way the set of quantum numbers σ is specified to
σ ¼ ðp; λ; n; l;kÞ and the collective summation is under-
stood as

X
σ

¼
Z

dk
Z

∞

0

dp
Z

∞

0

dλ
Xþ∞

l;n¼−∞
: ð2:14Þ

The function G0ðx; x0Þ is obtained from the correspond-
ing Wightman function given in [25]:

G0ðx; x0Þ ¼
qðww0ÞD2

ð2πÞD−3aD−1L

X
σ

pλ
Eσ

einqΔϕþiklΔzþik·Δxk

× cos ðEσΔtÞJqjnþαjðλrÞJqjnþαjðλr0ÞJνðpwÞJνðpw0Þ; ð2:15Þ

where Δt ¼ t − t0, Δϕ ¼ ϕ − ϕ0, Δz ¼ z − z0, Δxk ¼ xk − x0
k. With the mode functions (2.9), the thermal part of the

Hadamard function, given by (2.8), is expressed as

GTðx; x0Þ ¼
qðww0ÞD=2

ð2πÞD−3aD−1L

X
σ

pλ
Eσ

einqΔϕþiklΔzþik·ΔxkJqjnþαjðλrÞ

× Jqjnþαjðλr0ÞJνðpwÞJνðpw0Þ
X
u¼�

e−uiEσΔt

eβðEσ−uμÞ − 1
: ð2:16Þ

In the discussion below we will be mainly concerned with
the finite temperature effects.
Here it should be noted that in order to have positive-

definite values for the particle and antiparticle numbers the
condition jμj ≤ E0 is required, where E0 is the minimal
value of the energy. Assuming that jδ̃j < 1=2, the minimal
energy in the problem at hand corresponds to the modes
with ðp; λ; l;kÞ ¼ ð0; 0; 0; 0Þ and it is given by

E0 ¼
2π

L
jδ0j: ð2:17Þ

This corresponds to the minimal Kaluza-Klein mass. With
this value for the minimal energy of the modes, the region
for allowed values of the chemical potential is specified by
the condition
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jμj ≤ 2π

L
jδ0j: ð2:18Þ

In decompactified models or in compactified models with
δ0 ¼ 0 one has E0 ¼ 0 and the chemical potential has to be
set equal to zero. Here we should point out an important
difference between the problems in the Minkowski and
AdS bulks. In the Minkowskian problem, for the minimal
value of the energy one has EðMÞ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 þm2

p
with E0

from (2.17). In the models with L → ∞ or δ0 ¼ 0 we get
EðMÞ0 ¼ m and the chemical potential for massive fields
needs not be zero: the values in the range jμj ≤ m are
allowed. The reason for the mentioned difference between
the Minkowski and AdS backgrounds is that the energy in
the second case does not depend on the mass.
At this stage it is worth mentionin about boundary

conditions on the AdS boundary. The general solution of
the field equation has the form similar to (2.9) with the
Bessel function JνðpwÞ replaced by a linear combination
of the Bessel and Neumann functions. In the range ν ≥ 1
the requirement of the normalizability of the modes
excludes the Neumann function and they are given by (2.9).
In the region 0 ≤ ν < 1, both the functions are allowed and
the additional coefficient in the linear combination should
be fixed by imposing a boundary condition on the AdS
boundary. Our choice in (2.9) corresponds to the Dirichlet
condition. The general class of Robin-type conditions has
been discussed in [46–49].
In the context of the AdS/CFT correspondence it is also

of interest to consider the bulk-to-boundary propagator. It
plays an important role in the map between observables of
the dual theories. For the pure AdS bulk the propagator has
been discussed in the papers [50]. The models with addi-
tional boundaries were considered in [51,52]. The evalu-
ation of the bulk-to-boundary propagator is usually realized
in Euclidean signature. Introducing the set of coordinates
Xk ¼ ðX0;xkÞ, the respective line element in the problem
at hand reads

ds2E ¼
�
a
w

�
2

ðdr2 þ r2dϕ2 þ dz2 þ dX2
k þ dw2Þ: ð2:19Þ

With this metric tensor, for the solutions of the field
equation, which do not diverge in the limit w → ∞, the
w dependence is expressed in terms of the Macdonald
function Kνðp̄wÞ and they are given by

φEσðxÞ ¼ const · w
D
2Kνðp̄wÞJqjnþαjðλrÞeiqnϕþiklzþiK·Xk ;

ð2:20Þ

where p̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ k̃2l þK2

q
. The general solution is pre-

sented in the form of the expansion

φðXD;wÞ ¼ wD=2

Z
dK

Z
∞

0

dλ
Xþ∞

n;l¼−∞
φn;lðλ;KÞ

×p̄νKνðp̄wÞJqjnþαjðλrÞeiqnϕþiklzþiK·Xk ; ð2:21Þ

with the coordinates in D-dimensional space XD ¼
ðr;ϕ; z;XkÞ and expansion coefficients φn;lðλ;KÞ.
Inverting (2.21), it can be seen that

φn;lðλ;KÞ ¼ ð2πÞ3−Dλ
2ν−1ϕ0LΓðνÞ

Z
dXDφð0ÞðXDÞ

× JqjnþαjðλrÞe−iqnϕ−iklz−iK·Xk ; ð2:22Þ

where φð0ÞðXDÞ ¼ limw→0 wν−D=2φðXD; wÞ and
Z

dXD ¼
Z

dXk

Z
∞

0

drr
Z

ϕ0

0

dϕ
Z

L

0

dz: ð2:23Þ

Inserting this back into the expansion (2.21) we get

φðXD; wÞ ¼
Z

dX0
DGðXD;X0

D; wÞφð0ÞðX0
DÞ; ð2:24Þ

where the bulk-to-boundary propagator is given by

GðXD;X0
D; wÞ ¼

ð2πÞ3−DwD=2

2ν−1ϕ0LΓðνÞ
Z

dK
Z

∞

0

dλ
Xþ∞

n;l¼−∞
p̄νKνðp̄wÞ

× λJqjnþαjðλrÞJqjnþαjðλr0ÞeiqnΔϕþiklΔzþiK·ΔXk ; ð2:25Þ

with Δϕ ¼ ϕ − ϕ0, Δz ¼ z − z0, and ΔXk ¼ Xk −X0
k.
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III. CHARGE AND CURRENT DENSITIES:
GENERAL EXPRESSIONS

The current density operator for a scalar field is given by

js ¼ ie½φ̂†ðxÞDsφ̂ðxÞ − φ̂ðDsφ̂Þ†�: ð3:1Þ

The corresponding thermal average is obtained in terms of
the Hadamard function as

hjsi ¼
ie
2
limx0→x ½ð∂s − ∂

0
s þ 2ieAsÞGðx; x0Þ�: ð3:2Þ

Because the Hadamard function is decomposed as shown in
(2.7), the same will happen for the expectation value of the
current density:

hjsi ¼ hjsið0Þ þ hjsiðTÞ; ð3:3Þ

where hjsið0Þ corresponds to the zero temperature current,
already investigated in [25], and hjsiðTÞ is the contribution
from particles and antiparticles. Here we are interested in
the latter contribution. In the limit T → 0we expect that the
thermal part will vanish and only the first term, the zero
temperature contribution, survives.

A. Charge density

We start our investigation of thermal expectation values
from the charge density, hj0iðTÞ.1 Knowing that A0 ¼ 0, and
substituting the thermal Hadamard function in the corre-
sponding expression, we get

hj0iðTÞ ¼ eqwDþ2

ð2πÞD−3aDþ1L

Xþ∞

l;n¼−∞

Z
dk

Z
∞

0

dppJ2νðpwÞ

×
Z

∞

0

dλλJ2qjnþαjðλrÞ
X
u¼�

u
1

eβðEσ−uμÞ − 1
: ð3:4Þ

As we can observe from the above expression, the thermal
charge density is an odd function of μ. So, when the
chemical potential is zero the contributions from the
particles and antiparticles cancel each other and the total
charge density vanishes. The chemical potential has oppo-
site signs for particles and antiparticles and its nonzero
value imbalances the particle-antiparticle contributions.
Because the summation over n goes from −∞ to ∞,

the expectation value (3.4) is an even periodic function of
the parameter α with the period equal to 1. Writing α in the
form

α ¼ Nα þ α0; ð3:5Þ

with Nα an integer number and α0 the fractional part,
jα0j ≤ 1=2, we observe that the charge density depends
only on the fractional part α0. Bearing in mind that the
parameter α is related to the magnetic flux confined inside
the core of the defect, this feature is interpreted as an
Aharonov-Bohm type effect. In a similar way, the charge
density is an even periodic function of δ̃, again, with the
period 1. This corresponds to the periodicity with respect to
the magnetic flux enclosed by compact dimension with the
period equal to flux quantum. Presenting

δ̃ ¼ Nδ þ δ0; jδ0j ≤ 1=2; ð3:6Þ

we see that the charge density does not depend on integer
Nδ. As it has been already discussed, for δ0 ¼ 0 one should
take μ̃ ¼ 0 and in this case both the zero temperature and
thermal charge densities vanish.
Assuming the condition jμj ≤ E0, we can employ the

series expansion

ðey − 1Þ−1 ¼
X∞
j¼1

e−jy; ð3:7Þ

in (3.4). This gives

hj0iðTÞ ¼ 2eqwDþ2

ð2πÞD−3aDþ1L

X∞
n¼−∞

X∞
l¼−∞

Z
dk

Z
∞

0

dpp
Z

∞

0

dλλ

× J2qjnþαjðλrÞJ2νðpwÞ
X∞
j¼1

e−jβEσ sinhðjβμÞ: ð3:8Þ

For the further transformation of this expression we use the
relation

e−jβEσ ¼ jβffiffiffi
π

p
Z

∞

0

du
u2

e−E
2
σu2−j2β2=ð4u2Þ; ð3:9Þ

with Eσ from (2.12). Substituting this in (3.8), the integral
over the momentum k gives

R
dke−k

2u2 ¼ πD=2−2u4−D,
whereas the integrals over λ and p are evaluated with the
help of the formula [53]:

Z
∞

0

dxxe−α
2x2JνðσxÞJνðσ0xÞ ¼

1

2α2
exp

�
−
σ2 þ σ02

4α2

�

× Iν

�
σσ0

2α2

�
; ð3:10Þ

being IνðzÞ the modified Bessel function [54]. Passing to a
new integration variable x ¼ w2=2u2, the charge density is
transformed to

1In [25], it has been shown that the renormalized zero
temperature charge density vanishes.
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hj0iðTÞ ¼ 2
3−D
2 eβw

πðD−1Þ=2aDþ1L

Z
∞

0

dxx
D−1
2 e−xIνðxÞJ 0ðq;α0; xρ2Þ

×
X∞
l¼−∞

e−k̃
2
l w

2=ð2xÞX∞
j¼1

j sinhðjβμÞe−j2β2x=ð2w2Þ;

ð3:11Þ

where we have introduced the notations

ρ ¼ r=w; ð3:12Þ

and

J 0ðq; α0; zÞ ¼ qe−z
Xþ∞

n¼−∞
IqjnþαjðzÞ: ð3:13Þ

Note that J 0ð1; 0; zÞ ¼ 1.
An alternative representation for the series over l is

obtained by using the Poison summation formula

X∞
l¼−∞

gðlαÞ ¼ 1

α

X∞
l¼−∞

g̃ð2πl=αÞ; ð3:14Þ

for a given function gðxÞ with the Fourier transform
g̃ðyÞ ¼ Rþ∞

−∞ dxe−iyxgðxÞ. Introducing the function

F1ðδ0; uÞ ¼
X0∞

l¼0

cos ð2πlδ0Þe−l2u ð3:15Þ

we can see that

F1ðδ0; uÞ ¼
ffiffiffiffiffiffi
π

4u

r X∞
l¼−∞

exp

�
−
π2

u
ðlþ δ0Þ2

�
: ð3:16Þ

The prime in (3.15) means that the term l ¼ 0 should be
taken with an additional coefficient 1=2. With the notations
above, the expression for the charge density is written in the
form

hj0iðTÞ ¼ 4ea−D−1

ð2πÞD2
Z

∞

0

dxx
D
2
IνðxÞ
ex

J 0ðq; α0; xρ2Þ

× F1

�
δ0;

L2x
2w2

�
∂μF2

�
βμ;

β2x
2w2

�
; ð3:17Þ

where we have introduced a new function

F2ðγ; uÞ ¼
X∞
j¼1

cosh ðjγÞe−j2u: ð3:18Þ

An equivalent representation for the function (3.18) is
obtained on the base of the resummation formula (3.14):

F2ðγ; uÞ ¼
ffiffiffi
π

u

r
exp

�
γ2

4u

�X0∞

j¼0

e−π
2j2=u cos

�
πj

γ

u

�
−
1

2
:

ð3:19Þ
We have the relation

F1ðδ0; uÞ ¼
1

2
þ F2ð2πiδ0; uÞ ð3:20Þ

Note that the functions (3.15) and (3.18) are expressed in
terms of the Jacobi theta function ϑ3ðz; uÞ [54]:

F1ðδ0; uÞ ¼
1

2
ϑ3ðπδ0; e−uÞ;

F2ðγ; uÞ ¼
ffiffiffiffiffiffi
π

4u

r
exp

�
γ2

4u

�
ϑ3

�
πγ

2u
; e−

π2

u

�
−
1

2
: ð3:21Þ

For the function (3.13) we can use the integral repre-
sentation [23]:

J 0ðq;α0; zÞ ¼ 2
X0
½q=2�

k¼0

cos ð2πkα0Þe−2zs2k

−
q
π

Z
∞

0

dy
e−2zcosh

2ðy=2Þh0ðq;α0; yÞ
coshðqyÞ− cosðqπÞ ; ð3:22Þ

with the notations

sk ¼ sinðπk=qÞ; ð3:23Þ

and

h0ðq; α0; yÞ ¼ sin ½ð1 − jα0jÞqπ� cosh ðjα0jqyÞ
þ sin ðjα0jqπÞ cosh ½ð1 − jα0jÞqy�: ð3:24Þ

In (3.22), ½q=2� represents the integer part of q=2 and the
prime on the summation means that the term k ¼ 0 and
the term k ¼ q=2 for even values of q should be taken with
the coefficient 1=2. Combining (3.17) and (3.22), we obtain
an alternative representation of the thermal charge density.
The contribution coming from the k ¼ 0 term in (3.22)

corresponds to the charge density in the geometry where the
cosmic string is absent (q ¼ 1, α0). In this case the charge
distribution is homogeneous with respect to the radial
coordinate and we will denote the corresponding density

by hj0iðTÞ0 . The expression for that part is obtained from
(3.17) substituting J 0ðq; α0; xρ2Þ → J 0ð1; 0; xρ2Þ ¼ 1.
The radial inhomogeneity in the charge distribution is a
consequence of the presence of the cosmic string. The total
charge δQcs in the volume element dxkdw of the subspace
ðxk; wÞ, induced by the cosmic string is finite and is

obtained by integrating the difference hj0iðTÞ − hj0iðTÞ0 with
respect to the coordinates r, ϕ, and z. The integrals over ϕ
and z give a factor 2πL=q and we get
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δQcs ¼
2πL
q

�
a
w

�
Dþ1

dxkdw
Z

∞

0

drr
h
hj0iðTÞ − hj0iðTÞ0

i
:

ð3:25Þ

For evaluation of the radial integral it is convenient to use
the representation (3.13) for the function J 0ðq; α0; zÞ in
(3.17). The integral is reduced to

lim
p→1þ

Z
∞

0

drre−pxρ
2
h
qIqjnþα0jðxρ2Þ − Ijnjðxρ2Þ

i
: ð3:26Þ

Here, we have introduced the factor p > 1 in the exponent
in order to have a possibility to integrate the separate parts
by using the formula from [55] (for p ¼ 1 these separate
integrals diverge). After evaluating the integral in (3.26), the
series over n is reduced to the sum of geometric progression.
Taking the limit p → 1þ at the end, one finds

Xþ∞

n¼−∞

Z
∞

0

drre−xρ
2
h
qIqjnþα0jðxρ2Þ − Ijnjðxρ2Þ

i

¼ w2

2x

�
q2 − 1

6
− q2jα0jð1 − jα0jÞ

�
: ð3:27Þ

Hence, for the total charge induced by the cosmic string, per
unit volume in the subspace ðxk; wÞ, we obtain

δQcs

dxkdw
¼ 2eLw1−D

ð2πÞD2−1
�
q2 − 1

6q
− qjα0jð1− jα0jÞ

�

×
Z

∞

0

dxx
D
2
−1 IνðxÞ

ex
F1

�
δ0;

L2x
2w2

�
∂μF2

�
βμ;

β2x
2w2

�
;

ð3:28Þ

Note that the part containing the parameters of the cosmic
string is factorized. The corresponding factor can be either
positive or negative. Hence, depending on the planar angle
deficit and on the magnetic flux confined in the cosmic
string core, its presence can either increase or decrease the
total charge.

B. Azimuthal current density

Now we turn to the spatial components of the current
density. First of all we can see that the components in (3.2)
with s ¼ 1; 4;…; D become zero. By using the Hadamard
function (2.16), for the finite temperature contribution to the
expectation value of the covariant component of the current
density along the azimuthal direction, hj2iðTÞ ¼ −hj2iðTÞ=
ðaρÞ2, we obtain

hj2iðTÞ ¼ eq2wDþ2a−1−D

2ð2πÞD−3Lr2
Xþ∞

l;n¼−∞
ðnþ αÞ

Z
dk

Z
∞

0

dppJ2νðpwÞ

×
Z

∞

0

dλ
λ

Eσ
J2qjnþαjðλrÞ

X
u¼�

1

eβðEσþuμÞ − 1
: ð3:29Þ

Note that this component is an odd periodic function of the parameter α, consequently in the absence of the magnetic flux
along the string it vanishes. Moreover, it is an even function of the chemical potential μ and an even periodic function of the
flux Φ3. For zero chemical potential the contributions from the particles and antiparticles coincide.
Using the expansion (3.7) we can write (3.29) in the form

hj2iðTÞ ¼ eq2wDþ2

ð2πÞD−3aDþ1Lr2
X∞
n¼−∞

ðnþ αÞ
X∞
l¼−∞

Z
∞

0

dλλJ2qjnþαjðλrÞ

×
Z

∞

0

dppJ2νðpwÞ
Z

dk
X∞
j¼1

e−jβEσ

Eσ
coshðjβμÞ: ð3:30Þ

The further steps are similar to those we have employed for
the charge density. With the help of the relation

e−jβEσ

Eσ
¼ 2ffiffiffi

π
p

Z
∞

0

due−E
2
σu2−j2β2=ð4u2Þ; ð3:31Þ

the integrals over λ and p are evaluated by using the
formula (3.10). The current density is presented as

hj2iðTÞ ¼ 2ea−1−D

ð2πÞD2
Z

∞

0

dxx
D
2
IνðxÞ
ex

J 2ðq; α0; xρ2Þ

× F1

�
δ0;

L2x
2w2

�
F2

�
βμ;

β2x
2w2

�
; ð3:32Þ

with the notation
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J 2ðq; α0; zÞ ¼ q2
e−z

z

Xþ∞

n¼−∞
ðnþ αÞIqjnþαjðzÞ; ð3:33Þ

and with the functions defined by (3.16) and (3.18).
An alternative expression for the azimuthal current

density is obtained by using the representation [23]

J 2ðq;α0; zÞ ¼ 2
X0
½q=2�

k¼1

sin ð2πk=qÞ sin ð2πkα0Þe−2zs2k

−
q
π

Z
∞

0

dy
e−2zcosh

2ðy=2Þh2ðq;α0; yÞ
coshðqyÞ− cosðqπÞ ; ð3:34Þ

where

h2ðq; α0; yÞ ¼ sinh yfsinhðqα0yÞ sin½ð1 − jα0jÞqπ�
− sinðqα0πÞ sinh½ð1 − jα0jÞqy�g: ð3:35Þ

Of course, J 2ðq; 0; zÞ ¼ 0 and, as it has been mentioned
above, for α0 ¼ 0 the azimuthal current density vanishes. In
addition, one has J 2ðq;�1=2; zÞ ¼ 0 and the azimuthal
current density is zero for α0 ¼ �1=2 as well.

C. Axial current

It remains to consider the component of the current
density along the compact dimension z, corresponding to
s ¼ 3 in (3.2). Substituting the Hadamard function (2.7)
and using the definition (2.13), for the contravariant
component of the thermal part we get

hj3iðTÞ ¼ eqwDþ2

ð2πÞD−3aDþ1L

X∞
l;n¼−∞

k̃l

Z
dk

Z
∞

0

dppJ2νðpwÞ

×
Z

∞

0

dλ
λ

Eσ
J2qjnþαjðλrÞ

X
u¼�

1

eβðEσþuμÞ − 1
: ð3:36Þ

With the help of the expansion (3.7), this gives

hj3iðTÞ ¼ 2eqwDþ2

ð2πÞD−3aDþ1L

X∞
n¼−∞

X∞
l¼−∞

k̃l

Z
∞

0

dλλJ2qjnþαjðλrÞ

×
Z

∞

0

dppJ2νðpwÞ
Z

dk
X∞
j¼1

e−jβEσ

Eσ
coshðjβμÞ:

ð3:37Þ

By using the integral representation (3.31) the λ and p
integrals are evaluated with the help of formula (3.10).
Introducing a new integration variable x ¼ w2=ð2u2Þ, the
series over l is presented in the form

P∞
l¼−∞ k̃le−k̃

2
l w

2=ð2xÞ.
By making use of the resummation formula (3.14) this
series is expressed in terms of the function (3.15)

X∞
l¼−∞

k̃le−k̃
2
l w

2=ð2xÞ ¼ −
L2x3=2ffiffiffi
2

p
π3=2w3

∂δ0F1

�
δ0;

L2x
2w2

�
: ð3:38Þ

As a result, the following representation is obtained:

hj3iðTÞ ¼ −
4eLa−D−1

ð2πÞD2þ1

Z
∞

0

dxx
D
2
IνðxÞ
ex

J 0ðq; α0; xρ2Þ

× F2

�
βμ;

β2x
2w2

�
∂δ0F1

�
δ0;

L2x
2w2

�
; ð3:39Þ

where the function J 0ðq; α0; zÞ is defined by (3.13). An
equivalent expression for the axial current density is
obtained by using the representation (3.22). The axial
current density is an even periodic function of the magnetic
flux Φ2 with the period of flux quantum and an odd
periodic function of the flux Φ3 with the same period. In
particular, it vanishes for the case δ0 ¼ 0.

D. Combined formulas

Introducing a new integration variable u ¼ x=ð2w2Þ, the
expressions for the thermal contributions to the expectation
values of the charge and current densities are combined in
the single formula

hjsiðTÞ ¼ 2ea−D−1

ð2πÞD2
Z

∞

0

dxx
D
2
IνðxÞ
ex

J sðq;α0; xρ2Þ

×

�
−L
π

∂δ0

�
δs3
F1

�
δ0;

L2x
2w2

�
ð2∂μÞδs0F2

�
βμ;

β2x
2w2

�
;

ð3:40Þ

where s ¼ 0, 2, 3, J 3ðq; α0; xÞ ¼ J 0ðq; α0; xÞ, and the
functions J 0ðq; α0; xÞ, J 2ðq; α0; xÞ are defined by (3.13)
and (3.33). Alternative representation is obtained from
(3.40) by using (3.22) and (3.34).
To see the convergence properties of the x integral in

(3.40) we can use the asymptotic expressions

F1ðδ0; uÞ ≈
1

2
þ e−u cos ð2πδ0Þ;

F2ðγ; uÞ ≈ e−u cosh γ; ð3:41Þ

for u ≫ 1 and

F1ðδ0; uÞ ≈
ffiffiffiffiffiffi
π

4u

r
exp

�
−π2

δ20
u

�
;

F2ðγ; uÞ ≈
ffiffiffiffiffiffi
π

4u

r
exp

�
γ2

4u

�
; ð3:42Þ

for u ≪ 1. For the function J 0ðq; α0; zÞ one has
limz→∞ J 0ðq; α0; zÞ ¼ 1. In the same limit, z → ∞, the
function J 2ðq; α0; zÞ behaves like e−2zs

2
1 for q ≥ 2 and as

e−2z for 1 ≤ q < 2. In the opposite limit of small z the
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corresponding asymptotics are found from the representa-
tions (3.13) and (3.33):

J sðq; α0; zÞ ≈
�
qα0
z

�
δs2 qðz=2Þqjα0j

Γðqjα0j þ 1Þ ; z ≪ 1: ð3:43Þ

By using these asymptotics we can see that for the
components s ¼ 0, 3 the integrand in (3.40) behaves as

x
D−1
2 exp

�
−
β2 þ L2δs3

2w2
x

�
; ð3:44Þ

for large x and like

xD=2þνþqjα0j−2 exp
�
μ2 − E2

0

2x
w2

�
; ð3:45Þ

for small x. For the component s ¼ 2 an additional
exponential factor for large x comes from the function
J 2ðq; α0; xρ2Þ.
In the problem under consideration, the zero temperature

current density hjsið0Þ has been investigated in [25]. The
corresponding charge density vanishes and the components
s ¼ 2, 3, adapted to our notations, can be presented in the
combined form

hjsið0Þ ¼ ea−D−1

ð2πÞD2
Z

∞

0

dxx
D
2
IνðxÞ
ex

J sðq; α0; xρ2Þ

×

�
−L
π

∂δ0

�
δs3
F1

�
δ0;

L2x
2w2

�
: ð3:46Þ

The part (3.46) coming from the l ¼ 0 term in the definition
(3.15) of the function F1ðδ0; uÞ corresponds to the vacuum
current density in the geometry with cosmic string where
the z direction is not compactified. In that geometry the

only nonzero component corresponds to the azimuthal
current (s ¼ 2). By taking into account the expression
(3.18) for the function F2ðγ; uÞ, we see that the formula for
the total current density hjsi is obtained from (3.40) by the
replacement

F2

�
βμ;

β2x
2w2

�
→

X0∞

j¼0

cosh ðjβμÞ exp
�
−j2

β2x
2w2

�
; ð3:47Þ

where the prime means that the term j ¼ 0 enters with an
additional coefficient 1=2. The part with that term corre-
sponds to the current density (3.46).
The thermal expectation values hjsiðTÞ are the contra-

variant components in the coordinate system ðt; r;ϕ; z;xkÞ.
On the graphs below we will present the physical compo-

nents hjsiðTÞp defined by the relation hjsiðTÞp ¼ ffiffiffiffiffiffiffiffiffijgssj
p hjsiðTÞ.

The dimensionless quantities aDhjsiðTÞp depend on the
coordinate w through the combinations r=w, L=w, β=w,
μw. This is a consequence of the maximal symmetry of AdS
spacetime. Note that the proper distance from the cosmic
string and the proper length of the compact dimension,
measured by an observer with fixed coordinate w, are given
by ar=w and aL=w. Hence, the ratios r=w and L=w are the
proper distance from the string and the proper length of the
compact dimension measured in units of the curvature
radius a. As we have emphasized, the charge density is
an odd function of the chemical potential, whereas the
azimuthal and axial current densities are even functions.
In order to see the behavior of the expectation value

(3.40) near the AdS boundary and horizon, for fixed
values of the other parameters, it is convenient to intro-
duce a new integration variable u ¼ x=ð2w2Þ. With this
variable, the dependence of the integrand on w appears
through the function e−2w

2xIνð2w2xÞ. By using the corre-
sponding asymptotics we can see that all the components

FIG. 1. The thermal charge and current densities in the model withD ¼ 4 as functions of fractional parts of the ratio of magnetic fluxes
to the flux quantum. The graphs are plotted for r=w ¼ 0.5, L=w ¼ 1, wT ¼ 1, wμ ¼ 0.5, q ¼ 2.5. For the left panel δ0 ¼ 1=3 and for the
right one α0 ¼ 0.2.
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of hjsiðTÞ tend to zero on the AdS boundary like wDþ2νþ2.
In the near horizon limit, corresponding to large values of
w, one gets hjsiðTÞ ∝ wDþ1.
The current density is a periodic function of the magnetic

fluxes Φ2 and Φ3 with the period of flux quantum. The
charge density is an even function of both these fluxes. The
azimuthal current is an odd function of Φ2 and an even
function of Φ3. The component hj3iðTÞ is an even function
of Φ2 and an odd function of Φ3. In Fig. 1 the physical
components of the thermal expectation values of the charge
and current densities are plotted for a minimally coupled
massless scalar field (ν ¼ D=2) as functions of the frac-
tional parts of the magnetic fluxes determined by the
parameters α0 and δ0. The graphs are plotted for the D ¼
4 model with fixed values r=w ¼ 0.5, L=w ¼ 1, wT ¼ 1,
wμ ¼ 0.5, q ¼ 2.5. For the left panel we have taken δ0 ¼
1=3 and for the right panel α0 ¼ 0.2. For given values of
the length of the compact dimension and chemical potential,
the allowed values of the parameter δ0 are restricted by the
condition jδ0j ≤ jμjL=ð2πÞ. The vertical dashed lines on the
right panel separate the regions of those allowed values.
Note that all the components are continuous functions of the
parameter α0. However, the derivatives of the charge density
and axial current density are discontinuous at α0 ¼ 0.

IV. SPECIAL CASES

A. Zero angular deficit

Let us consider some special cases of general for-
mula (3.40). In the absence of the cosmic string and
magnetic flux one has q ¼ 1 and α0 ¼ 0 and we will

denote the corresponding current density by hjsiðTÞ0 . By
taking into account that J 2ð1; 0; zÞ ¼ 0 we see that the

azimuthal current density vanishes, hj2iðTÞ0 ¼ 0. For the
charge and axial current densities, by using J 0ð1; 0; zÞ ¼ 1,
we get

hjsiðTÞ0 ¼ 4e

π
D
2

w

�
w
a

�
Dþ1

Z
∞

0

duu
D
2
Iνð2w2uÞ
e2w

2u

×

�
−L
π

∂δ0

�
δs3
F1ðδ0; L2uÞð2∂μÞδs0F2ðβμ; β2uÞ;

ð4:1Þ

for s ¼ 0, 3. In the absence of planar angle deficit, q ¼ 1,
the expressions for the functions J sðq; α0; zÞ are simpli-
fied to

J 0ð1; α0; zÞ ¼ 1 −
2

π
sin ðπjα0jÞ

Z
∞

0

dy
e−2z cosh

2 y

cosh y
cosh ½ð1 − 2jα0jÞy�;

J 2ð1; α0; zÞ ¼
4

π
sin ðπα0Þ

Z
∞

0

dye−2z cosh
2 y sinh ½ð1 − 2jα0jÞy� sinh y: ð4:2Þ

The parts coming from the integral terms in (4.2) corre-
spond to the contribution of the magnetic flux Φ2.

B. Zero chemical potential

For the zero chemical potential, μ ¼ 0, the thermal charge
density vanishes hj0iðTÞ ¼ 0 as a consequence of the
cancellation between the contributions coming from the
particles and antiparticles. The expressions for the thermal
azimuthal and axial current densities are obtained from
(3.40) taking F2ð0; uÞ ¼

P∞
j¼1 e

−j2u. Another expression
for F2ð0; uÞ follows from (3.19). An equivalent representa-
tion is obtained by substituting in (3.40) the expression
(3.15). The u-integral is evaluated by using the formula [53]

Z
∞

0

dxxD=2e−bxIνðxÞ ¼
ffiffiffi
2

π

r
ZD
ν ðbÞ; b > 1; ð4:3Þ

with the function in the right-hand side defined by

ZD
ν ðuÞ ¼ e−iπ=2ðDþ1Þ Q

Dþ1
2

ν−1=2ðuÞ
ðu2 − 1ÞDþ1

4

; ð4:4Þ

where Qμ
γ ðuÞ represents the associated Legendre

function of the second kind [54]. The current densities
are presented as

hjsiðTÞ ¼ 4ea−D−1

ð2πÞDþ1
2

�
−L
π

∂δ0

�
δs3 X0∞

l¼0

cosð2πlδ0Þ

×
X∞
j¼1

�
2
X0
½q=2�

k¼0

AðsÞ
k ZD

ν ðujklÞ

−
q
π

Z
∞

0

dy
hsðq; α0; yÞZD

ν ðujylÞ
coshðqyÞ − cosðqπÞ

�
; ð4:5Þ

for s ¼ 2, 3. Here, we have defined
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ujkl ¼ 1þ j2β2

2w2
þ l2L2

2w2
þ 2ρ2s2k;

ujyl ¼ 1þ j2β2

2w2
þ l2L2

2w2
þ 2ρ2 cosh2ðy=2Þ: ð4:6Þ

In (4.5) and in what follows h3ðq; α0; yÞ ¼ h0ðq; α0; yÞ and

AðsÞ
k ¼ cos ð2πkα0Þ; s ¼ 0; 3;

Að2Þ
k ¼ sin ð2πk=qÞ sin ð2πkα0Þ: ð4:7Þ

The current densities in the geometry with decompacti-
fied z coordinate are obtained from (4.5) in the limit
L → ∞. In this limit the axial current density vanishes
and in the expression for the azimuthal current density the
contribution of the term with l ¼ 0 survives only

hj2iðTÞL¼∞ ¼ 2ea−D−1

ð2πÞDþ1
2

X∞
j¼1

�
2
X0
½q=2�

k¼0

Að2Þ
k ZD

ν ðujk0Þ

−
q
π

Z
∞

0

dy
h2ðq; α0; yÞZD

ν ðujy0Þ
coshðqyÞ − cosðqπÞ

�
: ð4:8Þ

The expression for the total azimuthal current density in
this special case is obtained from (4.8) by the replacementP∞

j¼1 →
P0∞

j¼0 and the part with j ¼ 0 will correspond to
the vacuum current. As before, the prime on the sign of the
summation means that the j ¼ 0 term is taken with
coefficient 1=2.

C. Conformally coupled massless field

Another special case when the expressions for the
components of the current density are simplified corre-
sponds to a conformally coupled massless field. In this
case one has ν ¼ 1=2 and, by taking into account that
I1=2ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffi
2=πx

p
sinh x, the current density is presented as

hjsiðTÞ ¼ ðw=aÞDþ1hjsiðTÞðM;bÞ; ð4:9Þ

where

hjsiðTÞðM;bÞ ¼
2e

π
Dþ1
2

Z
∞

0

duu
D−1
2 ð1 − e−4w

2uÞJ sðq; α0; 2ur2Þ

×

�
−
L
π
∂δ0

�
δs3
F1ðδ0; L2uÞð2∂μÞδs0F2ðβμ; β2uÞ:

ð4:10Þ

For a conformally coupled scalar field the problem under
consideration is conformally related to the problem with a
cosmic string in the Minkowski bulk described by the line
element

ds2M ¼ dt2 −dr2 − r2dϕ2−dw2−dz2 −
XD
i¼5

ðdxiÞ2; ð4:11Þ

with compactified z coordinate and with an additional
planar boundary at w ¼ 0 on which the scalar field obeys
Dirichlet boundary condition, φjw¼0 ¼ 0. The boundary
w ¼ 0 in the Minkowskian problem is the conformal image
of the AdS boundary. The expectation value (4.10) is the
finite temperature contribution to the current density in the
Minkowskian problem and (4.9) is the standard relation
between the expectation values in two conformally related
problems. The part in (4.10) coming from the first term in
1 − e−4w

2u corresponds to the charge density for a massless
scalar field in the Minkowskian problem when the boun-

dary at w ¼ 0 is absent (we will denote that part by hj0iðTÞðMÞ)
and the contribution coming from the second term is
induced by the Dirichlet boundary at w ¼ 0.
The expression in the right-hand side of (4.10) is further

transformed by using the representations (3.16), (3.18),
(3.22), and (3.34). The integral over u in (4.10) is expressed
in terms of the modified Bessel function KνðxÞ and for the
thermal current density we obtain

hjsiðTÞðM;bÞ ¼
2e

ð2πÞD2L

�
−L
π

∂δ0

�
δs3ð2∂μÞδs0

X∞
l¼−∞

jk̃ljD
X∞
j¼1

cosh ðjβμÞ

×
X
n¼0;1

ð−1Þn
2
642X0

½q=2�

k¼0

AðsÞ
k fD

2
ðjk̃lj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2β2 þ 4r2s2k þ 4nw2

q
Þ

−
q
π

Z
∞

0

dy
fD

2
ðjk̃lj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2β2 þ 4r2cosh2ðy=2Þ þ 4nw2

p
Þ

coshðqyÞ − cosðqπÞ hsðq; α0; yÞ

3
75; ð4:12Þ
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where

fνðxÞ ¼ x−νKνðxÞ: ð4:13Þ

In the expression for the axial current density we can use
the relation

−L
π

∂δ0 ½jk̃ljDfD
2
ðjk̃ljxÞ� ¼ 2k̃ljk̃ljD−2fD

2
−1ðjk̃ljxÞ: ð4:14Þ

The n ¼ 0 term in (4.12) presents the current density

hjsiðTÞðMÞ and the part with n ¼ 1 is induced by the boundary

at w ¼ 0. Note that hjsiðTÞðM;bÞjw¼0 ¼ 0. This result is a

consequence of the Dirichlet boundary condition imposed
on the scalar field at w ¼ 0.

V. ASYMPTOTIC ANALYSIS

A. Small and high temperatures

Let us consider the behavior of the thermal currents in
asymptotic regions of the parameters. For small temper-
atures one has β=w ≫ 1 and the dominant contribution to
the integral over x in (3.40) comes from the region with
small x. By using the asymptotic (3.42) for the function
F1ðδ0; uÞ and the asymptotic (3.43) for J sðq; α0; zÞ, we get

hjsiðTÞ ≈ eqðw=aÞDþ1w2νþ1r2qjα0j−2δs2ðqα0Þδs2T
2νþqjα0jþ1ð2πÞD2−1Γðνþ 1ÞΓðqjα0j þ 1Þ

× ð2∂μ̃Þδs0
�
−
∂δ0

π

�
δs3ðE0TÞD2þνþqjα0j−δs2

×
X∞
j¼1

e−jðE0−jμjÞ=T

j
D
2
þνþqjα0jþ1−δs2

: ð5:1Þ

If in addition T ≪ E0 − μ, the j ¼ 1 term dominates and
the components of the current density tend to zero
like TD=2þνþqjα0je−ðE0−μÞ=T .
At large temperatures, wT ≫ 1, the discussion of the

asymptotic behavior differs for the charge density and
currents. That is related to the different behavior of the
integrand at the upper limit of integration in (3.40). For
the charge density, we introduce in (3.17) a new variable
x ¼ β2u and expand the functions with large arguments
x=β2. By using (3.41) for F1ðδ0; uÞ, the leading term is
expressed as

hj0iðTÞ ≈
�
w
a

�
Dþ1 2eμ

π
Dþ1
2

Γ
�
Dþ 1

2

�
ζðD − 1ÞTD−1: ð5:2Þ

For the components s ¼ 2, 3 we use the asymptotic (3.42)
for the function F2ðβμ; β2uÞ. To the leading order this
gives

hjsiðTÞ ≈ 2eTw

π
D−1
2

�
w
a

�
Dþ1

Z
∞

0

duu
D−1
2
Iνð2w2uÞ
e2w

2u
exp

�
μ2

4u

�

×J sðq;α0; 2ur2Þ
�
−L
π

∂δ0

�
δs3
F1ðδ0; L2uÞ: ð5:3Þ

It is of interest to compare the obtained results with the
thermal charge density in the Minkowski spacetime. For a
scalar field with mass m and the chemical potential μ the
expectation value of the charge density is given by (see, for
example, [45])

hj0iðTÞðMÞ ¼
4eβmDþ1

ð2πÞDþ1
2

X∞
j¼1

j sinhðjμβÞfDþ1
2
ðjβmÞ; ð5:4Þ

where fνðxÞ is defined by (4.13). At high temperatures
T ≫ m for the leading order term we get

hj0iðTÞðMÞ ≈
2eμ

π
Dþ1
2

Γ
�
Dþ 1

2

�
ζðD − 1ÞTD−1: ð5:5Þ

Comparing with (5.2), we see the relation hj0iðTÞ ≈
ðw=aÞDþ1hj0iðTÞðMÞ at high temperatures. At high temper-

atures the dominant contribution to the charge density
comes from the field fluctuations with small wavelengths
and the effects of the curvature are small.
Figures 2 and 3 display the thermal charge and current

densities as functions of the temperature in the D ¼ 4

FIG. 2. The charge density for minimally (full curves) and
conformally (dashed curves) coupled scalar fields in the model
with D ¼ 4 versus the temperature for fixed values r=w ¼ 0.5,
L=w ¼ 1, wμ ¼ 0.5, q ¼ 1.5, α0 ¼ δ0 ¼ 0.2. The graphs are
plotted for different values of the product ma.
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model for r=w ¼ 0.5, L=w ¼ 1, wμ ¼ 0.5, q ¼ 1.5,
α0 ¼ δ0 ¼ 0.2. The full and dashed curves correspond
to minimally and conformally coupled fields and
the numbers near the curves are the values of ma. The
numerical data presented in the figures confirm the
features clarified by the asymptotic analysis. Linear
dependence for the azimuthal and axial current densities
and stronger increase of the charge density at high
temperatures are clearly seen.

B. Asymptotics with respect
to the compactification length

For small values of the compactification length,
L=w ≪ 1, we use the asymptotic (3.42) for the function
F1ðδ0; uÞ. The dominant contribution to the u integral in
(3.40) comes from the region u≳ π2jδ0j2=L2. In that region
u is large and we use the corresponding asymptotic for the
integrand. The integral over u is expressed in terms of the
modified Bessel function and we get

hjsiðTÞ ≈ 2eED
0

ð2πÞD2L

�
w
a

�
Dþ1

�
−L
π

∂δ0

�
δs3ð2∂μ̃Þδs0 cosh ðβμÞ

2
642X0

½q=2�

k¼0

AðsÞ
k fD

2
ðE0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ 4r2s2k

q
Þ

−
q
π

Z
∞

0

dy
fD

2
ðE0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ 4r2cosh2ðy=2Þ

p
Þ

coshðqyÞ − cosðqπÞ hsðq; α0; yÞ
�
: ð5:6Þ

If in addition, β=L; r=L ≫ 1, for the components with
s ¼ 0, 3 the main contribution in (5.6) comes from the term
k ¼ 0 and they behave as hjsiðTÞ ∝ e−E0β=L

Dþ1
2 . For the

component hj2iðTÞ one has Að2Þ
0 ¼ 0 and an additional

exponential suppression factor is present coming from
the part in the square brackets of (5.6). Hence, for δ0 >
0 and for small Lwe have an exponential suppression for all
the components.
For δ0 ¼ 0 we should also put μ ¼ 0. In this case the

only nonzero component corresponds to the azimuthal
current density. In order to find the asymptotic for L=w ≪
1 we use the expression (4.5) for s ¼ 2 and δ0 ¼ 0. The
dominant contribution to the series over l comes from large
values of l and to the leading order we can replace the
summation by the integration:

P∞
l¼0 →

R∞
0 dl. The result-

ing integral is evaluated by using the formula

Z
∞

0

duZD
ν ðb2 þ u2Þ ¼

ffiffiffi
π

p
2

ZD−1
ν ðb2Þ: ð5:7Þ

This formula is obtained by using the integral representa-
tion for the function ZD

ν ðxÞ given by (4.3). In this way we
can see that

hj2iðTÞjδ0¼0 ≈
w
aL

hj2iðTÞD ; ð5:8Þ

where hj2iðTÞD is the azimuthal current density for a scalar
field with zero chemical potential in a D-dimensional AdS
spacetime, obtained from the geometry described above
excluding the z coordinate. The corresponding expression
is obtained from (4.8) by the replacement D → D − 1.
Considering the asymptotic for large values of the

compactification length, we note that for a given value

FIG. 3. The same as in Fig. 2 for the azimuthal (left panel) and axial (right panel) current densities.
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of the chemical potential the maximal length of the
compact dimension, Lm, is determined by the condition
(2.18): Lm ¼ 2πjδ0j=jμj. For the zero chemical potential,
μ ¼ 0, the thermal charge density vanishes. Denoting

hjsiðTÞL¼∞ ¼ limL→∞ hjsiðTÞ for the components s ¼ 2, 3,

we can see that hj3iðTÞL¼∞ ¼ 0 and

hj2iðTÞL¼∞ ¼ ea−D−1

ð2πÞD2
Z

∞

0

dxx
D
2
IνðxÞ
ex

J 2ðq; α0; xρ2Þ

× F2ð0; β2x=ð2w2ÞÞ: ð5:9Þ

This result gives the current density for a cosmic string in
locally AdS bulk where the z direction has uncompactified
topologyR1. In order to find the next terms in the expansion

over 1=L, we use the representation (3.40) with the function
F1ðδ0; L2uÞ from (3.15) and with

F2ð0; β2uÞ ¼
1

β

ffiffiffi
π

u

r X0∞

j¼0

e−π
2j2=ðβ2uÞ −

1

2
: ð5:10Þ

The leading contribution to the difference hjsiðTÞ − hjsiðTÞL¼∞
comes from the term j ¼ 0 in (5.10) and we get

hjsiðTÞ ≈ hjsiðTÞL¼∞ þ 2eqw2νþ1r2qjα0jðw=aÞDþ1T

π
D−1
2 Γðνþ 1ÞΓðqjα0j þ 1Þ

�
qα0
2r2

�
δs2

×

�
−L
π

∂δ0

�
δs3 X∞

l¼1

cos ð2πlδ0Þ

×
ΓðDþ1

2
þ νþ qjα0j − δs2Þ

ðlLÞDþ1þ2ðνþqjα0j−δs2Þ : ð5:11Þ

for s ¼ 2, 3.
For D ¼ 4 minimally coupled massless scalar field, the

dependence of the charge and current densities on the
proper length of the compact dimension is depicted in
Figs. 4 and 5. The graphs are plotted for r=w ¼ 0.5,
wμ ¼ 0.5, q ¼ 1.5, α0 ¼ 0.25, δ0 ¼ 1=3 and for different
values of the temperature (the numbers near the curves). In
accordance with the asymptotic analysis, all the compo-
nents tend to zero for small values of the compactification
length.

C. Small and large distances from cosmic string

In order to find the asymptotic of the thermal current
density near the cosmic string, ρ ≪ 1, we use the expres-
sion (3.40) and the approximation (3.43) for the function
J sðq; α0; 2ur2Þ. The latter shows that hjsiðTÞ ∝ r2qjα0j−2δs2
for r → 0. Hence, for α0 ≠ 0 the charge and axial current

FIG. 5. The same as in Fig. 4 for the azimuthal (left panel) and axial (right panel) current densities.

FIG. 4. The charge density for a minimally coupled scalar field
as a function of the compactification length in the D ¼ 4 model.
The graphs are plotted for r=w ¼ 0.5, wμ ¼ 0.5, q ¼ 1.5,
α0 ¼ 0.25, δ0 ¼ 1=3 and the numbers near the curves are the
respective values of the temperature.
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densities vanish on the string. The contravariant component
of the azimuthal current density vanishes on the string for
jα0j > 1=q and diverges for jα0j < 1=q. Note that the
physical component of the azimuthal current density

behaves as hj2iðTÞp ∝ r2qjα0j−1.
At large distances from the string, ρ ≫ 1, one gets

limr→∞ hjsiðTÞ ¼ hjsiðTÞ0 , where the components with

s ¼ 0, 3 are given by (4.1) and hj2iðTÞ0 ¼ 0. The effects
induced by cosmic string and magnetic flux are encoded in

the difference hjsiðTÞ − hjsiðTÞ0 . For ρ ≫ 1 the dominant
contribution to the integral over u in (3.40) comes from the
region with small values of u. By using the corresponding
asymptotics (3.42), we can see that

hjsiðTÞ ¼ hjsiðTÞ0 þ 2eTwDþ2νþ2μδs0

π
D
2
−1Γðνþ 1ÞaDþ1L

�
2π

L
δ0

�
δs3
�
E2
0 − μ2

2

�D
2
þν−1þδs2

2
42X0

½q=2�

k¼1

AðsÞ
k fD

2
þν−1þδs2

ð2rsk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 − μ2

q
Þ

−
q
π

Z
∞

0

dy
fD

2
þν−1þδs2

ð2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 − μ2

p
coshðy=2ÞÞ

coshðqyÞ − cosðqπÞ hsðq; α0; yÞ
3
5: ð5:12Þ

If, in addition, r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 − μ2

p
≫ 1, the cosmic string induced

contribution hjsiðTÞ − hjsiðTÞ0 decays as e−2rs1
ffiffiffiffiffiffiffiffiffiffi
E2
0
−μ2

p
=

rðD−1Þ=2þνþδs2 for q ≥ 2 and like e−2r
ffiffiffiffiffiffiffiffiffiffi
E2
0
−μ2

p
=

rðD−1Þ=2þνþδs2 for 1 < q < 2. As it has been already dis-
cussed in Sec. III, the total charge, per unit volume in the
subspace ðxk; wÞ, induced by the presence of the cosmic
string is finite and is given by the expression (3.28). This
finiteness is a consequence of the exponential decrease of the
related charge density at large distances from the string.
The dependence of the thermal charge and current

densities on the proper distance from the cosmic string
is displayed in Figs. 6 and 7. The graphs are plotted for
D ¼ 4 minimally coupled massless field for fixed values
L=w ¼ 1, Tw ¼ 1, wμ ¼ 0.5, α0 ¼ 0.25, δ0 ¼ 1=3 and the
numbers near the curves correspond to the values of the

parameter q. In accordance with the asymptotic analysis
given above, the components with s ¼ 0, 3 vanish on the
string. For the parameters we have taken in Fig. 7 and for
q ¼ 2 one has 2qjα0j ¼ 1 and the azimuthal component
tends to finite nonzero value on the cosmic string. The
graphs on the left panel of Fig. 7 also confirm the features
described by the asymptotic analysis on that the physical
component of the thermal contribution to the azimuthal
current density vanishes on the string for jα0j > 1=ð2qÞ and
diverges for jα0j < 1=ð2qÞ.
Before we summarize the main results of the paper it is

worth pointing out about some potential applications and
generalizations. In Sec. I we mentioned two mechanisms for
the production of cosmic string type topological defects:
formation of cosmic strings as a result of symmetry
breaking phase transitions in the expanding early universe
and formation of string-type linear structures in brane
inflation models. The defects produced in the second
mechanism can be either fundamental strings or one-
dimensional branes (F- and D-strings, respectively). Their
bound states can be formed as well. The linear structures
formed in brane inflation models may have different sizes
and cosmologically extended ones become cosmic super-
strings. The investigations of the effects induced by those
structures in the AdS spacetime are partly motivated by that
the related geometry appears as ground state in superstring
theories and as a bulk geometry in braneworld models. An
additional motivation comes from the AdS/CFT correspon-
dence: the initial version of that correspondence states a
duality between IIB string theory on the AdS bulk andN ¼
4 super-Yang-Mills (SYM) theory on its boundary. The
defect we have discussed in the present paper can be
considered as a simple realization of Dp-brane with
p ¼ D − 2. The geometry of the core is described by the
line element (2.2) that corresponds to (D − 1)-dimensional
AdS spacetime (locally AdS in the model with compactified
z direction). The vacuum polarization and the Casimir

FIG. 6. The dependence of the thermal charge density on the
proper distance from the cosmic string for a minimally coupled
D ¼ 4 scalar field. For the parameters we have taken L=w ¼ 1,
Tw ¼ 1, wμ ¼ 0.5, α0 ¼ 0.25, δ0 ¼ 1=3, and the numbers near
the curves present the values of q.
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forces for planar Dp-branes with p ¼ D − 1, orthogonal to
the AdS boundary, have been discussed in Refs. [52,56]. In
the problem under consideration and for D ¼ 3 one has a
linear defect in the AdS bulk and a pointlike defect in the
dual theory on the AdS boundary. Note that the gravitational
field of the point mass in three-dimensional spacetime is
described by conical geometry (see, for example, [57]). That
geometry also appears in the effective long-wavelength
description for a number of planar condensed matter
systems (examples are the graphene nanocones). In
Ref. [58] the AdS4=CFT3 correspondence has been used
to evaluate the Green’s function for scalar operators in three-
dimensional conical spacetime. For spatial dimension D ¼
4 the defect in the bulk is two dimensional and the
corresponding counterpart in the dual theory is the standard
straight cosmic string (in the model with −∞ < z < þ∞)
or a cosmic string compactified along its axis (model with
compactified z direction). Hence, the results described in the
present paper can be used to investigate the thermal effects
of cosmic string type defects in the dual theory on the AdS
boundary by using the AdS/CFT map.
We have considered a thermal field theory in the back-

ground geometry described by the metric (2.1). In the
context of the AdS/CFT correspondence, the dual theory
is a thermal field theory with the line element ds2CFT ¼
dt2 − γijdxidxj, where γijdxidxj ¼ dr2 þ r2dϕ2 þ dz2þ
dx2

k. Note that for the geometry with decompactified z
coordinate and for scale invariant dual theories the only
dimensionful parameter is the temperature. The latter can be
changed by a scaling and there are no phase transitions in
those theories. An example is theN ¼ 4 SYM on R3 as the
dual theory in the initial version of the AdS/CFT corre-
spondence. The compactification of the z coordinate intro-
duces an additional length scale in the model and the phase
transitions may take place (see, for example, the discussion
in Ref. [59] forN ¼ 4 SYM). It is important to note that the
AdS counterpart of the boundary theory is not unique. As

alternatives to the pure AdS spacetime, AdS black holes with
different geometries of the horizon have been considered in
the literature (for black hole solutions in AdS spacetimewith
different topologies of the horizon see, e.g., Refs. [60,61]).
The corresponding solution with the planar horizon, most
appropriate in the problem under consideration, is given by

ds2BH¼
a2

w2

��
1−

�
w
wH

�
D
�
dt2−

dw2

1− ðw=wHÞD
− γijdxidxj

�
;

ð5:13Þ

where the hypersurface w ¼ wH, with

wH ¼
�ðD − 1ÞaD−1

16πGρm

�
1=D

; ð5:14Þ

corresponds to the horizon. Here, G is the gravitational
constant in (Dþ 1)-dimensional spacetime and ρm is the
mass per unit volume of the subspace with the line element
γijdxidxj. For 0 ≤ ϕ ≤ 2π, introducing a new radial coor-
dinate ρ ¼ a2=w and the Cartesian coordinates in the
subspace ðr;ϕÞ, this solution is reduced to the one given,
for example, in Ref. [61]. In the case 0 ≤ ϕ ≤ ϕ0 < 2π the
metric (5.13) describes a combination of AdS planar black
hole with a generalized cosmic string type topological defect
crossing the black hole horizon. In the context of the AdS/
CFT correspondence, two geometries described by (2.3) and
(5.13) may correspond to two different phases of the dual
theory. The phase transition in the dual theory is interpreted
in terms of the Hawking-Page phase transition in the AdS
bulk [36].
The thermal charge and current densities will also

appear for a quantum charged scalar field propagating
in the background of the black hole geometry (5.13). At
large distances from the horizon, w=wH ≪ 1, correspond-
ing to points near the AdS boundary, the geometry we
have considered in the present paper is the leading order

FIG. 7. The same as in Fig. 6 for the azimuthal (left panel) and axial (right panel) current densities.
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approximation to the line element (5.13). The expressions
for the charge and current densities given above will give
the leading terms in the respective asymptotic expansions
with respect to the small ratio w=wH. Another limiting
region where the geometry (5.13) is simplified corre-
sponds to points near the black hole horizon, 1 − w=
wH ≪ 1. Expanding the metric tensor and introducing new
coordinates

τ ¼ Dt
2wH

; ū ¼ −
2affiffiffiffi
D

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

w
wH

r
;

ðr̄; z̄; x̄kÞ ¼
a
wH

ðr; z;xkÞ; ð5:15Þ

the line element (5.13) is approximated by

ds2BH ≈ ū2dτ2 − dū2 − dr̄2 − r̄2dϕ2 − dz̄2 − dx̄2
k: ð5:16Þ

The right-hand side corresponds to the (Dþ 1)-dimensional
Rindler spacetime with compact z direction and in the
presence of a generalized cosmic string. Note that the length
of the compact dimension z̄ is given by L̄ ¼ aL=wH and it
depends on the location of the horizon. The simple form of
the near-horizon metric allows us to obtain closed analytic
expressions for the expectation values of the charge
and current densities. In the absence of the cosmic string,
the corresponding vacuum expectation values in Rindler
spacetime with an arbitrary number of toroidally compact
dimensions have been recently discussed in [62].

VI. CONCLUSIONS

We have investigated combined effects of background
gravitational field, nontrivial spatial topology and finite
temperature on the expectation values of the charge and
current densities for a massive scalar field with general
curvature coupling. Motivated by high symmetry and by
importance in recent theoretical constructions, as a bulk
geometry we have chosen the locally AdS spacetime. Two
sources of nontrivial topology are considered. The first one
corresponds to a defect that is a generalization of a cosmic
string in the presence of extra dimensions and the second
one comes from the compactification of a spatial dimension
in Poincaré coordinates. We have started the investigation
from the Hadamard two-point function. The finite temper-
ature part of that function in the problem at hand is
expressed as (2.16) with particle and antiparticle contribu-
tions coming from the terms with u ¼ þ and u ¼ −. The
evaluation of various physical characteristics bilinear in the
field is based on the Hadamard function. An important
difference from the Minkowskian bulk is related to the
upper bound of the chemical potential given by (2.18). It
does not depend on the field mass and becomes zero in the
decompactification limit. This qualitative difference is
related to that the mass does not enter in the expression

for the energy of the modes. We have also evaluated the
bulk-to-boundary propagator for a scalar field that plays an
important role in the interpretations of the bulk quantities in
terms of the boundary field theory in the context of the AdS/
CFT correspondence.
As important characteristics for a charged field, we have

considered the charge and current densities. The vacuum
expectation values of those quantities have been considered
in a recent publication [25] and here we were mainly
concerned with the thermal contributions. The nonzero
components correspond to the charge density, azimuthal
current density, and the current density along the compact
dimension (axial current). We note that the nonzero charge
density is a pure thermal effect: the corresponding vacuum
average is zero. The combined expression for the nonzero
components is given by (3.40). As a consequence of the AdS
maximal symmetry, the thermal expectation values depend
on the parameters having the dimension of length through
the ratios like r=w, L=w. They correspond to the proper
distance from the defect and proper length of the compact
dimension in the units of the curvature radius. The charge
density is an odd function of the chemical potential. It
vanishes for zero chemical potential as a result of cancella-
tion between the contributions from particles and antipar-
ticles. The azimuthal and axial currents are even functions of
the chemical potential and survive in the limit μ ¼ 0. We
have considered two types of magnetic fluxes. The first one
is confined inside the defect core and another one is
interpreted as a flux enclosed by compact dimension. All
the components of the current density are periodic functions
of those fluxes with the flux quantum being the period. The
dependence of the expectation values on the magnetic fluxes
appears in the form of two parameters α0 and δ0 corre-
sponding to the ratios of the magnetic fluxes to the flux
quantum.
Our general results include various special cases. In the

absence of the cosmic string the only source of the nontrivial
topology is the compactification of the z coordinate and the
azimuthal current density becomes zero. The thermal
contributions to the charge and axial current densities in
this special case are given by (4.1). For the zero chemical
potential we have provided alternative representation (4.5)
for the azimuthal and axial currents. In this special case we
can consider also the decompactification limit L → ∞. For
the nonzero chemical potential one has the maximal value of
the compactification length given by Lm ¼ 2πjδ0j=jμj. For a
conformally coupled massless scalar field the problem at
hand is conformally related to the problem of a cosmic
string in the Minkowski spacetime with a compact dimen-
sion in the presence of a planar Dirichlet boundary
orthogonal to the string [see (4.9) and (4.10)]. The total
charge, per unit volume in the subspace ðxk; wÞ, induced by
the cosmic string is finite. Its dependence on the parameters
of the cosmic string is factorized in a simple form [see
(3.28)]. Depending on the planar angle deficit and magnetic
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flux, the presence of the cosmic string can either increase or
decrease the total charge.
To clarify the behavior of the expectation values we have

considered various asymptotic limits. In the zero temper-
ature limit the thermal densities tend to zero like
TD=2þνþqjα0je−ðE0−μÞ=T . The high temperature behavior is
different for the charge density and current densities. At
high temperatures the influence of the gravitational field
and topology on the charge density is subdominant and the
leading term coincides with that for the charge density in
the Minkowski spacetime with the behavior ∝ TD−1. The
current densities are topology-induced quantities and their
behavior at high temperatures is completely different with
the linear dependence on the temperature. For δ0 > 0 all the
expectation values are exponentially small for small values
of the compactification length. The situation is different in
the case δ0 ¼ 0when the chemical potential is zero as well.
The charge and axial current densities are zero in this case.
The leading term in the expansion of the azimuthal current
density for small values of L is given by the right-hand side

of (5.8), where hj2iðTÞD is the azimuthal current density in
D-dimensional AdS spacetime which is obtained from the
geometry we consider excluding the coordinate corre-
sponding to the compact dimension z. In the consideration
of the decompactification limit for the z direction the
chemical potential should be set zero. In the decompactified
geometry the charge and axial current densities are zero and
the azimuthal current density is given by (5.9). The next-to-
leading terms in the azimuthal (s ¼ 2) and axial (s ¼ 3)
current densities decay like 1=LDþ1þ2ðνþqjα0j−δs2Þ. The
suppression for the axial component is stronger. Near
the cosmic string the thermal contributions to the charge

and axial current densities behave like r2qjα0j and they
vanish on the cosmic string for α0 ≠ 0. In the same limit the
physical azimuthal component behaves as r2qjα0j−1. The
leading terms in the expansion of the thermal expectation
values over the inverse distance from the cosmic string
coincide with the corresponding quantities in the geometry
where the cosmic string is absent. The next-to-leading
terms encode the effects of the cosmic string. For q ≥ 2, at
large distances their decay is described by the factor

e−2rs1
ffiffiffiffiffiffiffiffiffiffi
E2
0
−μ2

p
=rðD−1Þ=2þνþδs2 . The suppression factor in the

range 1 < q < 2 is obtained by the replacement s1 → 1.
The investigation of thermal effects on the AdS bulk may

shed light on the phase structure in the boundary theory. We
have emphasized the importance of compactification to
have phase transitions in scale invariant theories. The
confining phase in the boundary gauge theory is mapped
onto AdS black hole geometry. Our results approximate the
corresponding expectation values around black holes with
planar horizons at large distances from the horizon. We
have noted that closed analytic expressions can also be
obtained for the near-horizon region where the geometry is
approximated by Rindler spacetime with a compact dimen-
sion in the presence of a cosmic string type topological
defect.
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